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Input 



Unsharp Mask, not edge-aware  



Edge-aware image processing 

𝐿0 Gradient Minimization [Xu et al. 2011] 

Guided Image Filtering  
[He et al. 2010] 

Adaptative Manifolds  
[Gastal and Oliveira 2012] 

Edge-aware wavelets  
[Fattal 2009] 

See also [Fattal et al. 2002], [Farbman et al. 2008], [Subr et al. 2009], [Gastal and Oliveira 2011]… 
  

Bilateral Filter [Tomasi and Manduchi 1998] 



Local Laplacian Filter, edge-aware  
[Paris et al. 2011] 
• No halos or gradient inversion 
• Even for extreme edits 
 



Some limitations… 

• Too slow for interactive editing: 4s/Mpixel 

 

• Unknown relationship to other filters 

 

• Only detail manipulation and tone mapping 

 

 



Our contributions 

• Too slow for interactive editing: 4s/Mpixel 

 20x speed up 

• Unknown relationship to other filters 

 Formal analysis and relation to Bilateral Filter 

• Only detail manipulation and tone mapping 

 General gradient manipulations and style transfer 

 



• Resolution halved at each level using Gaussian kernel 
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Background on Gaussian Pyramids 



Background on Laplacian Pyramids 

• Difference between adjacent Gaussian levels 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Background on Local Laplacian Filters 
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Input 



Smoothing 



Enhancement 



1. Speed up 
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STEP 2: 
PYRAMID 

STEP 1: 
INTENSITY REMAPPING 

One-level Local Laplacian Filter 
𝑖 → 𝑖 − 𝑑(𝑖 − 𝑔) 𝐼 → 𝐼 − 𝐺𝜎 ∗ 𝐼  
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STEP 2: 
PYRAMID 

STEP 1: 
INTENSITY REMAPPING 24 24 

locally processed 
image 

24 

input image 

level 1 

level 0 

partial pyramid 

copy 𝑂𝑝 = 𝐼𝑝 +  𝐺𝜎 𝑞 − 𝑝 𝑑(𝐼𝑞 − 𝐼𝑝)𝑞   

One-level Local Laplacian Filter 
𝑖 → 𝑖 − 𝑑(𝑖 − 𝑔) 𝐼 → 𝐼 − 𝐺𝜎 ∗ 𝐼  
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Why is it slow? 

For each pixel For each  neighborhood 

 Computed #neighborhood x #pixels 

𝑖 → 𝑖 − 𝑑(𝑖 − 𝑔) 𝐼 → 𝐼 − 𝐺𝜎 ∗ 𝐼  

𝑂𝑝 = 𝐼𝑝 +  𝐺𝜎 𝑞 − 𝑝 𝑑(𝐼𝑞 − 𝐼𝑝)𝑞   



Idea: if 𝑔 were constant, we would need to 

compute d only once per pixel 

Speed up 

Compute d only for a small set of values  

    of 𝑔 and interpolate 

 Compute d  K x #pixels 

𝑑(𝑖 − 𝑔) 



In practice 
g=0.3 g=0.5 g=0.7 … … … … 

Remapped 
images 

Laplacian 
pyramids 

output 



Performance 

Suitable for interactive editing 
  

implemented in Lightroom/Photoshop 

[Paris  2011] Our method Speed up 

1Mpixel CPU 15 s  350 ms 50x 

4Mpixel GPU   1 s   49 ms 20x 



Input Image 

 



Ground truth enhancement 

 



Our method with 20 values 

 



Our method with 10 values 

 



Our method with 5 values 

 



2. Relation to  
Bilateral Filter 



Bilateral Filter 
 
 

One-level Local Laplacian Filter 

 

 
 

 

Interpretation 

Spatial weight 

Spatial weight 
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Weighted intensities 
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function 



Bilateral Filter 
 
 

One-level Local Laplacian Filter 
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Power function Gaussian 



Bilateral Filter 
 
 

One-level Local Laplacian Filter 
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Rewriting the bilateral filter 

 
Weights sum to 1 Bilateral Filter 

 
 

 

 
 

 



Bilateral Filter 
 
 

One-level Local Laplacian Filter 

 

 
 

 

Interpretation 

Spatial weight 

Spatial weight 
from pyramid 

Remapping  
function 

Original  
image 

Weighted intensities 



Multi-scale effect: input 

 



Multi-scale effect: 1 scale 

 



Multi-scale effect: 2 scales 

 



Multi-scale effect: 4 scales 

 



Multi-scale effect: 8 scales 

 



3. Style transfer 
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Local statistics manipulation 

Single-neighbor case 

Interpret the remapping function as a 
remapping of pixel differences 



Can be interpreted as averaging target differences 
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Local statistics manipulation 

Many neighboors case 



• h controls how the gradients are remapped 
 
 
 
 
 
 
 
 

 Use histogram transfer function to define h 

Local statistics manipulation 



 

Example: 
 



Example: 
iteration 1 
 



Example: 
iteration 2 
 













Also in the paper 

• Link with PDEs / Anisotropic diffusion 
 

• Introduction of Un-normalized Bilateral Filter 

– Discussion of effect on edges 
 

• More results and comparisons 

– Quantitative evaluations of transfer 



Conclusion 
• 20x to 50x speed-up 
  in Lightroom and Photoshop 

 

• Relationship with BF and PDE 
 
 

 

• Gradient histogram transfer 
Photographic style transfer 

Matlab code and more results: 
http://www.di.ens.fr/~aubry/llf.html 

http://www.di.ens.fr/~aubry/llf.html
http://www.di.ens.fr/~aubry/llf.html
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