▲□▶▲□▶▲□▶▲□▶ □ のQ@

Risk bounds for linear regression

Jean-Yves Audibert^{1,2} & Olivier Catoni³

Imagine - Université Paris Est,
 Willow - CNRS/ENS/INRIA
 DMA - CNRS/ENS

October 2009

New results

Framework

Least squares regression

• Training data = *n* input-output pairs :

$$Z_1 = (X_1, Y_1), \ldots, Z_n = (X_n, Y_n)$$

- A new input X comes
- General goal: predict the corresponding output Y
- Probabilistic assumption :

$$Z = (X, Y), Z_1, \ldots, Z_n \qquad \text{i.i.d.}$$

from some unknown distribution P

• Prediction function: $f: \mathcal{X} \to \mathbb{R}$

• Risk:
$$R(f) = \mathbb{E} [Y - f(X)]^2$$

Framework

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Linear least squares

• $\varphi_1, \ldots, \varphi_d$ functions from \mathcal{X} to \mathbb{R}

$$X \longrightarrow \left(egin{array}{c} arphi_1(X) \ dots \ arphi_d(X) \end{array}
ight) = arphi(X)$$

• $\Theta \subset \mathbb{R}^d$ closed convex

•
$$\mathcal{F} = \left\{ f_{\theta} = \sum_{j=1}^{d} \theta_{j} \varphi_{j}; \theta = (\theta_{1}, \dots, \theta_{d}) \in \Theta \right\}$$

Goal: predict as well as f^{*} ∈ argmin_{f∈F}R(f) (which is possibly different from f^(reg) : x → E(Y|X = x))

New results

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Decomposition of the risk

- Gram matrix: $Q = \mathbb{E}[\varphi(X)\varphi^T(X)]$
- The risk is a quadratic form with matrix *Q*:

$$egin{aligned} & \mathcal{R}(f_{ heta}) = \mathbb{E}(Y - heta^{ op}arphi(X))^2 \ & = \mathbb{E}Y^2 - 2 heta^{ op}\mathbb{E}[arphi(X)Y] + heta^{ op}\mathcal{Q} heta \end{aligned}$$

Framework

New results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivations

- Better understanding of the parametric linear least squares regression
- Central task for nonparametric regression with linear approximation space
- Two-stage model selection

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Variants of known results

Ordinary least squares and empirical risk minimization

- Linear aggregation: F = F_{lin} = span{φ₁,...,φ_d} and f^{*}_{lin} = f^{*}
- Let $\hat{f}^{(\text{ols})} \in \operatorname{argmin}_{f \in \mathcal{F}_{\text{lin}}} \frac{1}{n} \sum_{i=1}^{n} [Y_i f(X_i)]^2$.
- if $\sup_{x \in \mathcal{X}} \operatorname{Var}(Y|X = x) = \sigma^2 < +\infty$ and $f^{(\operatorname{reg})} = f^*_{\operatorname{lin}}$, we have

$$\mathbb{E}\left\{\frac{1}{n}\sum_{i=1}^{n}\left[\hat{f}^{(\text{ols})}(X_{i})-f_{\text{lin}}^{*}(X_{i})\right]^{2}\right\}\leq\sigma^{2}\frac{d}{n}.$$

- $\mathbb{E}R(\hat{f}^{(\text{ols})}) R(f^*_{\text{lin}}) = \mathbb{E}[\hat{f}^{(\text{ols})}(X) f^*_{\text{lin}}(X)]^2.$
- It does not imply a $\frac{d}{n}$ upper bound on $\mathbb{E}R(\hat{f}^{(\text{ols})}) R(f^*_{\text{lin}})$.

Variants of known results

Theorem (Györfi, Kohler, Krzyżak, Walk, 2004)

If $\sup_{x \in \mathcal{X}} Var(Y|X = x) = \sigma^2 < +\infty$ and

$$\|f^{(\mathsf{reg})}\|_{\infty} = \sup_{x\in\mathcal{X}} |f^{(\mathsf{reg})}(x)| \le H$$

for some H > 0, then the truncated estimator $\hat{f}_{H}^{(ols)} = (\hat{f}^{(ols)} \land H) \lor -H$ satisfies

$$\mathbb{E}R(\hat{f}_{H}^{(\text{ols})}) - R(f^{(\text{reg})}) \\ \leq 8[R(f_{\text{lin}}^{*}) - R(f^{(\text{reg})})] + \kappa \frac{(\sigma^{2} \vee H^{2})d\log n}{n}$$

for some numerical constant κ .

Variants of known results

Theorem (Birgé, Massart, 1998)

Assume that for any f_1, f_2 in \mathcal{F} , $\|f_1 - f_2\|_{\infty} \leq H$ and $\exists f_0 \in \mathcal{F}$ satisfying

for any
$$x \in \mathcal{X}, \quad \mathbb{E}\Big\{ \exp\Big[A^{-1} \big| \, Y - f_0(X) \big| \Big] \, \Big| \, X = x \Big\} \leq M,$$

for some positive constants A and M. Let

$$\tilde{B} = \inf_{\phi_1, \dots, \phi_d} \sup_{\theta \in \mathbb{R}^d - \{0\}} \frac{\|\sum_{j=1}^d \theta_j \phi_j\|_{\infty}^2}{\|\theta\|_{\infty}^2}$$

where the infimum is taken w.r.t. all possible orthonormal basis of \mathcal{F} for $\langle f_1, f_2 \rangle = \mathbb{E} f_1(X) f_2(X)$. Then, with probability at least $1 - \epsilon$:

$$R(\hat{f}^{(\mathsf{erm})}) - R(f^*) \leq \kappa (\mathsf{A}^2 + \mathsf{H}^2) \frac{d \log[2 + (\tilde{B}/n) \wedge (n/d)] + \log(\epsilon^{-1})}{n},$$

where κ is a positive constant depending only on M.

Variants of known results

Projection estimator

Theorem (Tsybakov, 2003)

Let ϕ_1, \ldots, ϕ_d be an o.n.b. of \mathcal{F}_{lin} for $\langle f_1, f_2 \rangle = \mathbb{E}f_1(X)f_2(X)$. The projection estimator on this basis is $\hat{f}^{(\text{proj})} = \sum_{i=1}^d \hat{\theta}_i^{(\text{proj})}\phi_i$, with

$$\hat{\theta}^{(\text{proj})} = \frac{1}{n} \sum_{i=1}^{n} Y_i \phi_i(X_i).$$

10	
It	

$$\sup_{x\in\mathcal{X}} \operatorname{Var}(Y|X=x) = \sigma^2 < +\infty$$

and

$$\|f^{(\operatorname{reg})}\|_{\infty} = \sup_{x \in \mathcal{X}} |f^{(\operatorname{reg})}(x)| \le H < +\infty,$$

then we have

$$\mathbb{E}\boldsymbol{R}(\hat{f}^{(\mathsf{proj})}) - \boldsymbol{R}(f^*_{\mathsf{lin}}) \leq (\sigma^2 + H^2)\frac{d}{n}.$$

New results

(日) (日) (日) (日) (日) (日) (日)

Variants of known results

Conclusion of the survey

- $R(\hat{f}^{(\text{erm})}) R(f^*) = O(\frac{d \log(2+n/d) + \log(\epsilon^{-1})}{n})$ for L_{∞} -bounded \mathcal{F} and exponential moments
- There is no simple *d*/*n* which does not require strong assumptions
- Degraded convergence rate when Q is ill-conditioned ?

Main statements

Ridge regression and empirical risk minimization

Theorem

Let $\lambda \geq 0$ and $\tilde{f} \in \arg \min_{f_{\theta} \in \mathcal{F}} \{ R(f_{\theta}) + \lambda \|\theta\|^2 \}$. Assume $\mathbb{E}[\|\varphi(X)\|^4] < +\infty$ and $\sup_{x \in \mathcal{X}} \mathbb{E}\{[Y - \tilde{f}(X)]^2 | X = x\} \leq \sigma^2$. Let ν_1, \ldots, ν_d be the eigenvalues of Q, and

$$D = \sum_{i=1}^{d} \frac{\nu_i}{\nu_i + \lambda} \mathbf{1}_{\nu_i > 0} = \operatorname{Tr} \left[(\mathbf{Q} + \lambda \mathbf{I})^{-1} \mathbf{Q} \right] = \mathbb{E} \left\{ \| (\mathbf{Q} + \lambda \mathbf{I})^{-1/2} \varphi(\mathbf{X}) \|^2 \right\}.$$

For any $\epsilon > 0$, there is n_{ϵ} s.t. for any $n \ge n_{\epsilon}$, with proba. at least $1 - \epsilon$,

$$egin{aligned} &R(\hat{f}^{(ext{ridge})}_{\lambda}) + \lambda \| \hat{ heta}^{(ext{ridge})} \|^2 &\leq \min_{f_ heta \in \mathcal{F}} \left\{ R(f_ heta) + \lambda \| heta \|^2
ight\} \ &+ \sigma^2 \, rac{30D + 1000 \log(3\epsilon^{-1})}{n}. \end{aligned}$$

Main statements

A simple tight risk bound

Theorem

Assume $\sup_{f_1, f_2 \in \mathcal{F}} \|f_1 - f_2\|_{\infty} \leq H$ and, for some $\sigma > 0$,

$$\sup_{x\in\mathcal{X}}\mathbb{E}\big\{[Y-f^*(X)]^2\big|X=x\big\}\leq\sigma^2<+\infty.$$

For an appropriate (randomized) estimator, for any $\epsilon > 0$, with probability at least $1 - \epsilon$, we have

$$R(\hat{f}) - R(f^*) \le 17(2\sigma + H)^2 \frac{d + \log(2\epsilon^{-1})}{n}$$

・ロト・日本・日本・日本・日本・日本

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The PAC-Bayesian approach

Kullback-Leibler (KL) divergence

$$K(\rho, \pi) = \begin{cases} \mathbb{E}_{\rho(df)} \log(\frac{\rho}{\pi}(f)) & \text{if } \rho \ll \pi \\ +\infty & \text{otherwise} \end{cases}$$

- If $\rho \ll \pi$, then we have $K(\rho, \pi) = \mathbb{E}_{\pi(df)}\chi(\frac{\rho}{\pi}(f))$ with $\chi: u \mapsto u \log(u) + 1 u$ convex and nonnegative
- 2 $K(\rho,\pi) \geq 0$
- If \mathcal{F} is finite and π is the uniform distribution on \mathcal{F} , let $H(\rho) = -\sum_{f \in \mathcal{F}} \rho(f) \log \rho(f)$, then

$$K(\rho,\pi) = \log(|\mathcal{F}|) - H(\rho) \le \log |\mathcal{F}|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The PAC-Bayesian approach

Legendre transform of the KL divergence

Let $h : \mathcal{F} \to \mathbb{R}$ s.t. $\mathbb{E}_{\pi(df)} e^{h(f)} < +\infty$. Define

$$\pi_h(df) = rac{e^{h(f)}}{\mathbb{E}_{\pi(df')}e^{h(f')}} \cdot \pi(df)$$

2 $\sup_{\rho} \left\{ \mathbb{E}_{\rho(df)} h(f) - K(\rho, \pi) \right\} = \log \mathbb{E}_{\pi(df)} e^{h(f)}$

3 argmax_{$$\rho$$} { $\mathbb{E}_{\rho(df)}h(f) - K(\rho, \pi)$ } = π_h

• $\lambda \mapsto K(\pi_{\lambda h}, \pi)$ is nondecreasing on $[0, +\infty)$.

The PAC-Bayesian approach

Core of the PAC-Bayesian approach

• Let $\chi : \mathcal{F} \to \mathbb{R}$ be an empirical process (for instance: $\chi(f) = R(f) - r(f)$ with $r(f) = \frac{1}{n} \sum_{i=1}^{n} [Y_i - f(X_i)]^2$) $\mathbb{E} \exp\left(\sup\left\{\mathbb{E}_{x(df)}\chi(f) - K(q, \pi')\right\}\right) = \mathbb{E}_{x(df)}\mathbb{E} \exp\left(\chi(f) - K(q, \pi')\right)$

$$\mathbb{E} \exp\left(\sup_{\rho} \left\{ \mathbb{E}_{\rho(df)} \chi(f) - \mathcal{K}(\rho, \pi') \right\} \right) = \mathbb{E}_{\pi'(df)} \mathbb{E} \exp\left(\chi(f)\right).$$

- Different from the standard approach based on the analysis of sup_{f∈F} χ(f).
- Study E_{ρ̂(df)}R(f) for any distribution ρ̂ on F depending on the training data

 \rightarrow similar to the study of $R(\hat{f})$ (whatever \hat{f} is)

- Uses a (prior) distribution to evaluate the complexity of the data-dependent (or posterior) distribution
- The bound holds for any prior and posterior
 - \rightarrow different from the usual Bayesian approach

(日) (日) (日) (日) (日) (日) (日)

The PAC-Bayesian approach

Choice of the empirical process

 Consider *ř* : *F* → ℝ be an observable process such that for any *f* ∈ *F*, we have

 $\mathbb{E}\exp\left(\chi(f)\right)\leq 1$

for $\chi(f) = \lambda[R(f) - \check{r}(f)]$ and some $\lambda > 0$. For instance:

$$\check{r}(f) = -\frac{1}{\lambda} \sum_{i=1}^{n} \log\left(1 - \frac{\lambda}{n} [Y_i - f(X_i)]^2\right).$$

for any ε > 0, with probability at least 1 − ε, for any distribution ρ on F, we have

$$\mathbb{E}_{\rho(df)} \mathcal{R}(f) \leq \mathbb{E}_{\rho(df)} \check{r}(f) + \frac{\mathcal{K}(\rho, \pi') + \log(\epsilon^{-1})}{\lambda}$$

• $\pi'_{-\lambda\check{r}}$ minimizes the righthand-side

The PAC-Bayesian approach

The resulting sophisticated PAC-Bayes algorithm

- π uniform distribution on \mathcal{F} (with Θ bounded)
- λ > 0
- $W_i(f, f') = \frac{\lambda}{n} \left\{ \left[Y_i f(X_i) \right]^2 \left[Y_i f'(X_i) \right]^2 \right\}$

•
$$\hat{\mathcal{E}}(f) = \log \mathbb{E}_{\pi(df')} \frac{1}{\prod_{i=1}^{n} [1 - W_i(f, f') + \frac{1}{2} W_i(f, f')^2]}$$

- We consider the "posterior" distribution $\hat{\pi} = \pi_{-\hat{\mathcal{E}}(f)}$
- for $\frac{\lambda}{n}$ small enough, $1 W_i(f, f') + \frac{1}{2}W_i(f, f')^2$ is close to $e^{-W_i(f, f')}$, and consequently

$$\hat{\mathcal{E}}(f) \approx \lambda r(f) + \log \mathbb{E}_{\pi(df')} e^{-\lambda r(f')},$$

and

$$\hat{\pi} \approx \pi_{-\lambda r}$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

The PAC-Bayesian approach

PAC-Bayesian localization

 For a given ρ̂, the prior minimizing the expected value of the bound for ρ̂ is

$$\pi = \operatorname{argmin}_{\pi'} \mathbb{E} \mathcal{K}(\hat{
ho}, \pi') = \mathbb{E}[\hat{
ho}]$$

since $\mathbb{E}K(\hat{\rho}, \pi) = \mathbb{E}K(\hat{\rho}, \mathbb{E}[\hat{\rho}]) + K(\mathbb{E}[\hat{\rho}], \pi).$

- Problem: $\mathbb{E}[\hat{\rho}]$ is not observable
- Solution (Catoni, 2003): apply basic bound to π_{-βR}, expand K(ρ, π_{-βR}):

$$egin{aligned} \mathcal{K}(
ho,\pi_{-eta R}) &= \mathcal{K}(
ho,\pi) + \log\left(\int \pi(df)\exp[-eta R(f)]
ight) \ &+ eta \int
ho(df) \mathcal{R}(f), \end{aligned}$$

and develop additional empirical bounds to control the non observable terms

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The PAC-Bayesian approach

Properties of PAC-Bayesian localization

Advantages

- allow to replace $K(\rho, \pi)$ with $K(\rho, \pi_{-\lambda r})$
- gain of logarithmic factor in parametric convergence rates
- Disadvantages = increase of the constant factors

The PAC-Bayesian approach

For linear least squares

• Assume $\sup_{f_1, f_2 \in \mathcal{F}} \|f_1 - f_2\|_{\infty} \leq H$ and, for some $\sigma > 0$,

$$\sup_{\boldsymbol{X}\in\mathcal{X}}\mathbb{E}\big\{[\boldsymbol{Y}-f^*(\boldsymbol{X})]^2\big|\boldsymbol{X}=\boldsymbol{X}\big\}\leq\sigma^2<+\infty.$$

- Let $0 < \lambda < (2\sigma + H)^{-2}$, $\eta = \lambda(2\sigma + H)^2$, and $\epsilon > 0$
- Let $\mathcal{I}(\beta) = -\log \mathbb{E}_{\pi(df)} \exp \left\{ -\beta [R(f) R(f^*)] \right\}$
- For $0 \le \gamma \le \lambda n(1 \eta)$, with proba. at least 1ϵ ,

 $[\lambda n(1-\eta)-\gamma][R(\hat{f})-R(f^*)] \leq 2\mathcal{I}(\lambda n(1+\eta))-2\mathcal{I}(\gamma)+2\log(2\epsilon^{-1}),$

• Without vs with localization: $\gamma = 0$ vs $\gamma = Cn$ $\mathcal{I}(Cn) \approx d \log n$ vs $\mathcal{I}(\beta n) - \mathcal{I}(\alpha n) \approx d \log(\beta/\alpha)$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Conclusion

For any *ϵ* > 0, with probability at least 1 − *ϵ*, for any distribution *ρ* on *F*, we have

$$\mathbb{E}_{
ho(df)} R(f) \leq -rac{1}{\lambda} \mathbb{E}_{
ho(df)} \sum_{i=1}^{n} \log\left(1 - rac{\lambda}{n} [Y_i - f(X_i)]^2
ight) \ + rac{K(
ho, \pi') + \log(\epsilon^{-1})}{\lambda}.$$

- Main result: $\frac{d}{n}$ convergence rate in deviations under minimal moment assumption
- Key tools:

localized PAC-Bayesian bounds + soft truncation