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Known results New results

Framework

Least squares regression

Training data = n input-output pairs :

Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn)

A new input X comes
General goal: predict the corresponding output Y
Probabilistic assumption :

Z = (X ,Y ),Z1, . . . ,Zn i.i.d.

from some unknown distribution P

Prediction function: f : X → R
Risk: R(f ) = E [Y − f (X )]2
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Framework

Linear least squares

ϕ1, . . . , ϕd functions from X to R

X −→

 ϕ1(X )
...
ϕd (X )

 = ϕ(X )

Θ ⊂ Rd closed convex
F =

{
fθ =

∑d
j=1 θjϕj ; θ = (θ1, . . . , θd ) ∈ Θ

}
Goal: predict as well as f ∗ ∈ argminf∈FR(f )

(
which is

possibly different from f (reg) : x 7→ E(Y |X = x)
)
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Framework

Decomposition of the risk

Gram matrix: Q = E[ϕ(X )ϕT (X )]

The risk is a quadratic form with matrix Q:

R(fθ) = E(Y − θTϕ(X ))2

= EY 2 − 2θTE[ϕ(X )Y ] + θT Qθ
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Framework

Motivations

Better understanding of the parametric linear least squares
regression
Central task for nonparametric regression with linear
approximation space
Two-stage model selection
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Variants of known results

Ordinary least squares and empirical risk minimization

Linear aggregation: F = Flin = span{ϕ1, . . . , ϕd} and f ∗lin = f ∗

Let f̂ (ols) ∈ argminf∈Flin

1
n

∑n
i=1[Yi − f (Xi )]2.

if supx∈X Var (Y |X = x) = σ2 < +∞ and f (reg) = f ∗lin, we have

E
{

1
n

n∑
i=1

[
f̂ (ols)(Xi )− f ∗lin(Xi )

]2} ≤ σ2 d
n
.

ER(f̂ (ols))− R(f ∗lin) = E
[
f̂ (ols)(X )− f ∗lin(X )

]2
.

It does not imply a d
n upper bound on ER(f̂ (ols))− R(f ∗lin).
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Variants of known results

Theorem (Györfi, Kohler, Krzyżak, Walk, 2004)

If supx∈X Var (Y |X = x) = σ2 < +∞ and

‖f (reg)‖∞ = sup
x∈X
|f (reg)(x)| ≤ H

for some H > 0, then the truncated estimator
f̂ (ols)
H = (f̂ (ols) ∧ H) ∨ −H satisfies

ER(f̂ (ols)
H )− R(f (reg))

≤ 8[R(f ∗lin)− R(f (reg))] + κ
(σ2 ∨ H2)d log n

n

for some numerical constant κ.
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Variants of known results

Theorem (Birgé, Massart, 1998)

Assume that for any f1, f2 in F , ‖f1 − f2‖∞ ≤ H and ∃f0 ∈ F satisfying

for any x ∈ X , E
{

exp
[
A−1

∣∣Y − f0(X )
∣∣] ∣∣∣X = x

}
≤ M,

for some positive constants A and M. Let

B̃ = inf
φ1,...,φd

sup
θ∈Rd−{0}

‖
∑d

j=1 θjφj‖2
∞

‖θ‖2
∞

where the infimum is taken w.r.t. all possible orthonormal basis of F
for 〈f1, f2〉 = Ef1(X )f2(X ). Then, with probability at least 1− ε:

R(f̂ (erm))− R(f ∗) ≤ κ(A2 + H2)
d log[2 + (B̃/n) ∧ (n/d)] + log(ε−1)

n
,

where κ is a positive constant depending only on M.
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Variants of known results

Projection estimator

Theorem (Tsybakov, 2003)

Let φ1, . . . , φd be an o.n.b. of Flin for 〈f1, f2〉 = Ef1(X )f2(X ).
The projection estimator on this basis is f̂ (proj) =

∑d
j=1 θ̂

(proj)
j φj , with

θ̂(proj) =
1
n

n∑
i=1

Yiφj (Xi ).

If
sup
x∈X

Var (Y |X = x) = σ2 < +∞

and
‖f (reg)‖∞ = sup

x∈X
|f (reg)(x)| ≤ H < +∞,

then we have
ER(f̂ (proj))− R(f ∗lin) ≤ (σ2 + H2)

d
n
.
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Variants of known results

Conclusion of the survey

R(f̂ (erm))− R(f ∗) = O
(d log(2+n/d)+log(ε−1)

n

)
for L∞-bounded

F and exponential moments

There is no simple d/n which does not require strong
assumptions

Degraded convergence rate when Q is ill-conditioned ?
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Main statements

Ridge regression and empirical risk minimization

Theorem

Let λ ≥ 0 and f̃ ∈ arg minfθ∈F
{

R(fθ) + λ‖θ‖2
}
.

Assume E
[
‖ϕ(X )‖4

]
< +∞ and supx∈X E

{
[Y − f̃ (X )]2

∣∣X = x
}
≤ σ2.

Let ν1, . . . , νd be the eigenvalues of Q, and

D =
d∑

i=1

νi

νi + λ
1νi>0 = Tr

[
(Q + λI)−1Q

]
= E

{
‖(Q + λI)−1/2ϕ(X )‖2}.

For any ε > 0, there is nε s.t. for any n ≥ nε, with proba. at least 1− ε,

R(f̂ (ridge)
λ ) + λ‖θ̂(ridge)‖2 ≤ min

fθ∈F

{
R(fθ) + λ‖θ‖2}

+ σ2 30D + 1000 log(3ε−1)

n
.
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Main statements

A simple tight risk bound

Theorem

Assume supf1,f2∈F ‖f1 − f2‖∞ ≤ H and, for some σ > 0,

sup
x∈X

E
{

[Y − f ∗(X )]2
∣∣X = x

}
≤ σ2 < +∞.

For an appropriate (randomized) estimator, for any ε > 0, with
probability at least 1− ε, we have

R(f̂ )− R(f ∗) ≤ 17(2σ + H)2 d + log(2ε−1)

n
.
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The PAC-Bayesian approach

Kullback-Leibler (KL) divergence

K (ρ, π) =

{
Eρ(df ) log( ρπ (f )) if ρ� π

+∞ otherwise

1 If ρ� π, then we have K (ρ, π) = Eπ(df )χ
(
ρ
π (f )

)
with

χ : u 7→ u log(u) + 1− u convex and nonnegative

2 K (ρ, π) ≥ 0

3 K (ρ, π) = 0⇔ ρ = π

4 If F is finite and π is the uniform distribution on F , let
H(ρ) = −

∑
f∈F ρ(f ) log ρ(f ), then

K (ρ, π) = log(|F|)− H(ρ) ≤ log |F|.
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The PAC-Bayesian approach

Legendre transform of the KL divergence

Let h : F → R s.t. Eπ(df )eh(f ) < +∞. Define

πh(df ) =
eh(f )

Eπ(df ′)eh(f ′) · π(df )

1 K (ρ, πh) = K (ρ, π)− Eρ(df )h(f ) + logEπ(df )eh(f )

2 supρ
{
Eρ(df )h(f )− K (ρ, π)

}
= logEπ(df )eh(f )

3 argmaxρ
{
Eρ(df )h(f )− K (ρ, π)

}
= πh

4 λ 7→ K (πλh, π) is nondecreasing on [0,+∞).
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The PAC-Bayesian approach

Core of the PAC-Bayesian approach

Let χ : F → R be an empirical process (for instance:
χ(f ) = R(f )− r(f ) with r(f ) = 1

n
∑n

i=1[Yi − f (Xi)]2)

Eexp

(
sup
ρ

{
Eρ(df )χ(f )−K (ρ, π′)

})
= Eπ′(df )Eexp

(
χ(f )

)
.

Different from the standard approach based on the
analysis of supf∈F χ(f ).
Study Eρ̂(df )R(f ) for any distribution ρ̂ on F depending on
the training data
−→ similar to the study of R(f̂ ) (whatever f̂ is)
Uses a (prior) distribution to evaluate the complexity of the
data-dependent (or posterior) distribution
The bound holds for any prior and posterior
−→ different from the usual Bayesian approach
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The PAC-Bayesian approach

Choice of the empirical process

Consider ř : F → R be an observable process such that for
any f ∈ F , we have

Eexp
(
χ(f )

)
≤ 1

for χ(f ) = λ[R(f )− ř(f )] and some λ > 0. For instance:

ř(f ) = −1
λ

n∑
i=1

log
(

1− λ

n
[Yi − f (Xi)]2

)
.

for any ε > 0, with probability at least 1− ε, for any
distribution ρ on F , we have

Eρ(df )R(f ) ≤ Eρ(df )ř(f ) +
K (ρ, π′) + log(ε−1)

λ
.

π′−λř minimizes the righthand-side
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The PAC-Bayesian approach

The resulting sophisticated PAC-Bayes algorithm

π uniform distribution on F (with Θ bounded)

λ > 0

Wi (f , f ′) = λ
n

{[
Yi − f (Xi )

]2 − [Yi − f ′(Xi )
]2}

Ê(f ) = logEπ(df ′)
1∏n

i=1[1−Wi (f ,f ′)+ 1
2 Wi (f ,f ′)2]

We consider the “posterior” distribution π̂ = π−Ê(f )

for λn small enough, 1−Wi (f , f ′) + 1
2 Wi (f , f ′)2 is close to

e−Wi (f ,f ′), and consequently

Ê(f ) ≈ λr(f ) + logEπ(df ′)e−λr(f ′),

and
π̂ ≈ π−λr
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The PAC-Bayesian approach

PAC-Bayesian localization

For a given ρ̂, the prior minimizing the expected value of
the bound for ρ̂ is

π = argminπ′EK (ρ̂, π′) = E[ρ̂]

since EK (ρ̂, π) = EK (ρ̂,E[ρ̂]) + K (E[ρ̂], π).

Problem: E[ρ̂] is not observable
Solution (Catoni, 2003): apply basic bound to π−βR,
expand K (ρ, π−βR):

K (ρ, π−βR) = K (ρ, π) + log
(∫

π(df ) exp[−βR(f )]

)
+ β

∫
ρ(df )R(f ),

and develop additional empirical bounds to control the non
observable terms
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The PAC-Bayesian approach

Properties of PAC-Bayesian localization

Advantages
allow to replace K (ρ, π) with K (ρ, π−λr )
gain of logarithmic factor in parametric convergence rates

Disadvantages = increase of the constant factors
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The PAC-Bayesian approach

For linear least squares

Assume supf1,f2∈F ‖f1 − f2‖∞ ≤ H and, for some σ > 0,

sup
x∈X

E
{

[Y − f ∗(X )]2
∣∣X = x

}
≤ σ2 < +∞.

Let 0 < λ < (2σ + H)−2, η = λ(2σ + H)2, and ε > 0
Let I(β) = − logEπ(df ) exp

{
− β[R(f )− R(f ∗)]

}
For 0 ≤ γ ≤ λn(1− η), with proba. at least 1− ε,

[λn(1−η)−γ][R(f̂ )−R(f ∗)] ≤ 2I
(
λn(1+η)

)
−2I

(
γ
)
+2 log(2ε−1),

Without vs with localization: γ = 0 vs γ = Cn
I
(
Cn
)
≈ d log n vs I

(
βn
)
− I

(
αn
)
≈ d log(β/α).
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The PAC-Bayesian approach

Conclusion

For any ε > 0, with probability at least 1− ε, for any
distribution ρ on F , we have

Eρ(df )R(f ) ≤− 1
λ
Eρ(df )

n∑
i=1

log
(

1− λ

n
[Yi − f (Xi)]2

)

+
K (ρ, π′) + log(ε−1)

λ
.

Main result: d
n convergence rate in deviations under

minimal moment assumption
Key tools:
localized PAC-Bayesian bounds + soft truncation
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