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Framework

Least squares regression

@ Training data = n input-output pairs :
Zy = (X1, Y1),...,Zn = (Xn, Yn)

@ A new input X comes
@ General goal: predict the corresponding output Y
@ Probabilistic assumption :

Z=(X,Y).Z,....Z, iid.

from some unknown distribution P

@ Prediction function: f: X = R
@ Risk: R(f)=E[Y — f(X)]2
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Linear least squares

@ ¢1,...,pq functions from X to R
©1(X)

X— | = ¢(X)
¢ (X)

@ © c RY closed convex
o F={fh=30 01p0=(0.....00) €O}

@ Goal: predict as well as f* € argmin,. »R(f) (which is
possibly different from £(9 : x — E(Y|X = x))
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Decomposition of the risk

@ Gram matrix: Q = E[p(X)e'(X)]
@ The risk is a quadratic form with matrix Q:
R(fy) = E(Y — 07 (X))?
—EY? - 20T E[p(X)Y] + 67 Qo
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Motivations

@ Better understanding of the parametric linear least squares
regression

@ Central task for nonparametric regression with linear
approximation space

@ Two-stage model selection
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Variants of known results

Ordinary least squares and empirical risk minimization

@ Linear aggregation: F = Fjj, = span{¢1,...,¢q4} and ff = f*

lin —

@ Let 79 ¢ argmin, . 1 527 [V — f(X)]2.

@ ifsup,cy Var(Y|X =x) = 02 < 400 and fre9) — fx

i, we have

n

E{:, > [ - ”*n(x,-)f} <o

i=1

sla

® ER(H9) — R(f) = E[O9(X) — f1,(X)]"
@ It does not imply a ¢ upper bound on ER(F%)) — R(fz ).
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Variants of known results

Theorem (Gy®drfi, Kohler, Krzyzak, Walk, 2004)
If supycy Var(Y|X = x) = 02 < +oo0 and

[#7%9|o = sup |9 (x)| < H
XEX

for some H > 0, then the truncated estimator
7Ol — (F0I9) A H) v —H satisfies

ER(FO'%) — R(f(red))
2 2
—i—H(U V H%)dlog n

< 8[R(fi) — R(f*)] -

for some numerical constant «.
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Variants of known results

Theorem (Birgé, Massart, 1998)
Assume that for any fy, f in F, ||fi — k||« < H and 3fy € F satisfying

forany x € X, ]E{exp[A‘1|Y— fo(X)” )X = x} <M,
for some positive constants A and M. Let

d 2

" 1 0j%; 0

S M
Blyeens bd 6cRI—{0} ”0“00

where the infimum is taken w.r.t. all possible orthonormal basis of F
for (i, f,) = Efi(X)%(X). Then, with probability at least 1 — e:

dlog[2 + (B/n) A (n/d)] +log(e")

R(F™) — R(f*) < r(A% + H?) p :

where k is a positive constant depending only on M.
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Variants of known results

Projection estimator

Theorem (Tsybakov, 2003)

Let ¢1,...,¢q be an o.n.b. of Fii for (f, o) = Efi (X)(X).
The projection estimator on this basis is fP) = 27:1 9}p’°')¢,-, with

a1
floroi) _ - Z Y/(b/(xl)
i=1

If
supVar(Y|X = x) = 0? < 40
XEX
and
#5910 = sup |9 (x)] < H < +oo,
XEX

then we have

ER(®) — R(f) < (0° + H) 2.
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Variants of known results

Conclusion of the survey

o R(ferm) — R(f+) = O(dlo9@tn/d)Hoa(c 1)) for | bounded
F and exponential moments

@ There is no simple d/n which does not require strong
assumptions

@ Degraded convergence rate when Q is ill-conditioned ?
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Main statements

Ridge regression and empirical risk minimization

Theorem

Let x>0 and f € argming,c = { R(f) + A[|0]|}.

Assume E[||p(X)||*] < +oo and sup,cx E{[Y — F(X)]?|X = x} < 02.
Letvy,..., vy be the eigenvalues of Q, and

d
_ Vi _ 1/2
=N Y q, = E )

D ;er ~o=Tr[(Q+AN'Q] =E{|(Q+ X)|1P}.
For any e > 0, there is n. s.t. for any n > n., with proba. at least1 — e,
R(F'%)) + N6 |2 < min {R(fy) + All¢]|*}

(S

230D +1000l0g(3c™")
g o
n
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Main statements

A simple tight risk bound

Theorem
Assume supy, 7 |fi — f2||oc < H and, for some o > 0,

SUPE{[Y — f*(X)]|X = x} < 0% < +oo.

xeX

For an appropriate (randomized) estimator, for any ¢ > 0, with
probability at least 1 — ¢, we have

> d+log(2¢~ 1)

R(f) — R(f*) < 17(20 + H) -
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The PAC-Bayesian approach

Kullback-Leibler (KL) divergence

. Ep(df) |Og(£(f)) if pLm
K(p,m) = { +00 otherwise

Q If p < 7, then we have K(p, ) = Ex(anx (2(f)) with
X : u— ulog(u) + 1 — u convex and nonnegative

Q K(p,7m)>0
e K(p,Tl'):O<:>p:7T

© If Fis finite and = is the uniform distribution on F, let
H(p) = — > te 7 p(f) log p(f), then

K(p, ) = log(|F]) — H(p) < log|F|.
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The PAC-Bayesian approach

Legendre transform of the KL divergence

Let h: F — R s.t. E g e" < +00. Define

eh(f)

7Th(df) = rﬂﬂ(dﬂ)eh(ﬂ)

- m(df)
Q K(p,mn) = K(p, ) — Epan h(f) + l0g E(qr) €"")
@ sup, {E,unh(f) — K(p,7)} = log Er(ar ")
© argmax {E,anh(f) — K(p,7)} = mh

©Q )\ — K(mxn, ) is nondecreasing on [0, +oc).

New results
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The PAC-Bayesian approach

Core of the PAC-Bayesian approach

@ Let x : 7 — R be an empirical process (for instance:
X(f) = R(f) — r(f) with r(f) = 3274 [Yi — F(X)]?)

E exp (Slip {Ep(df)X(f) — K(p, W')}) = EanEexp (x(f)).

@ Different from the standard approach based on the
analysis of supsc = x(f).

@ Study E;gr R(f) for any distribution 5 on F depending on
the training data
— similar to the study of R(f) (whatever f is)

@ Uses a (prior) distribution to evaluate the complexity of the
data-dependent (or posterior) distribution

@ The bound holds for any prior and posterior
— different from the usual Bayesian approach
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The PAC-Bayesian approach

Choice of the empirical process

@ Consider ¥ : ¥ — R be an observable process such that for
any f € F, we have

Eexp (x(f)) <1
for x(f) = A[R(f) — F(f)] and some X > 0. For instance:

() =~ > toa (1= 51~ FO0)
i=1

o for any ¢ > 0, with probability at least 1 — ¢, for any
distribution p on F, we have

K(p, ') + log(e~" )

E o A(f) < EyanF(f) + \

e 7’ ,, minimizes the righthand-side
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The PAC-Bayesian approach

The resulting sophisticated PAC-Bayes algorithm

@ 7 uniform distribution on F (with © bounded)
e A>0

o Wi(f.f') = {[Yi— 100)]" = [Yi - ()]}
° g(f) - Iog ]Eﬂ'(df/ Hn TA—Wi(f, f/)+1 Wi(F,F)2]

@ We consider the “posterior” distribution # = m_z
o for 2 srpall enough, 1 — W(f, f') + S Wi(f, f')? is close to
e~ Wi(h7) "and consequently
gA(f) ~ /\r(f) + |0g Eﬂ.(df/)e_)\r(f/),

and
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The PAC-Bayesian approach

PAC-Bayesian localization

@ For a given p, the prior minimizing the expected value of
the bound for p is

7 = argmin_EK(p,7") = E[]
since EK(p, ) = EK(p, E[]) + K(E[7], ).
@ Problem: E[j] is not observable

@ Solution (Catoni, 2003): apply basic bound to 7_gg,
expand K(p, m_gR):

K(p.7_3m) = K(p. ) + log ( JEC) exp[—ﬁR(f)])
18 / p(df)R(1),

and develop additional empirical bounds to control the non
observable terms
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The PAC-Bayesian approach

Properties of PAC-Bayesian localization

@ Advantages

e allow to replace K(p, ) with K(p, m_xr)
e gain of logarithmic factor in parametric convergence rates

@ Disadvantages = increase of the constant factors
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The PAC-Bayesian approach

For linear least squares

@ Assume supy, rcr |fi — f2l|oc < H and, for some o > 0,

supE{[Y X)X = x} < 0 < +oo.

o letO< A< (20+H) 2, n= (20+H)2 and e >0

@ LetZ(3) = —log E,(ar exp { — B[R(f) — R(f*)]}
@ For 0 <~ < An(1—n), with proba. at least 1 — ¢,

[An(1=n)—1[R(F)~R(f*)] < 2Z(An(1+n))—2Z(y)+2log(2¢ "),

@ Without vs with localization: v =0vs v = Cn
Z(Cn) = dlognvs Z(3n) — Z(an) ~ dlog(8/a).
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The PAC-Bayesian approach

Conclusion

@ For any € > 0, with probability at least 1 — ¢, for any
distribution p on F, we have

1 L A
Ep(anA(f) < = 1 Epan > log (1 - Y- f(Xi)]2>
p

K(p,n') +log(e™")
+ 8 .

@ Main result: % convergence rate in deviations under
minimal moment assumption

@ Key tools:
localized PAC-Bayesian bounds + soft truncation
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