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Variants of known results New results

Ordinary least squares and empirical risk minimization

Linear aggregation: F = Flin = span{ϕ1, . . . , ϕd} and f ∗lin = f ∗

Let f̂ (ols) ∈ argminf∈Flin

1
n

∑n
i=1[Yi − f (Xi )]2.

ER(f̂ (ols))− R(f ∗lin) = E
[
f̂ (ols)(X )− f ∗lin(X )

]2
.

if supx∈X Var (Y |X = x) = σ2 < +∞ and f (reg) = f ∗lin, we have

E
{

1
n

n∑
i=1

[
f̂ (ols)(Xi )− f ∗lin(Xi )

]2} ≤ σ2 d
n
.

It does not imply a d
n upper bound on ER(f̂ (ols))− R(f ∗lin).
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Ordinary least squares and empirical risk minimization

Theorem (Györfi, Kohler, Krzyżak, Walk, 2004)

If supx∈X Var (Y |X = x) = σ2 < +∞ and

‖f (reg)‖∞ = sup
x∈X
|f (reg)(x)| ≤ H

for some H > 0, then the truncated estimator
f̂ (ols)
H = (f̂ (ols) ∧ H) ∨ −H satisfies

ER(f̂ (ols)
H )− R(f (reg))

≤ 8[R(f ∗lin)− R(f (reg))] + κ
(σ2 ∨ H2)d log n

n

for some numerical constant κ.
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Ordinary least squares and empirical risk minimization

Theorem (Catoni, 2004)

Let F ′ ⊂ Flin satisfying for some positive constants a,M,M ′:

there exists f0 ∈ F ′ s.t. for any x ∈ X ,

E
{

exp
[
a
∣∣Y − f0(X )

∣∣] ∣∣∣X = x
}
≤ M.

for any f1, f2 ∈ F ′, supx∈X |f1(x)− f2(x)| ≤ M ′.

Let Q = E
[
ϕ(X )ϕ(X )T

]
and Q̂ =

[ 1
n

∑n
i=1 ϕ(Xi )ϕ(Xi )

T
]
. If det Q 6= 0,

then there exist positive constants C1 and C2 s.t. with probability at
least 1− ε, as soon as{

f ∈ Flin : r(f ) ≤ r(f̂ (ols)) + C1
d
n

}
⊂ F ′,

we have

R(f̂ (ols))− R(f ∗lin) ≤ C2
d + log(ε−1) + log( det Q̂

det Q )

n
.
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Ordinary least squares and empirical risk minimization

Theorem (Alquier, 2008)

Let qmin be the smallest eigenvalue of Q = E
[
ϕ(X )ϕ(X )T ].

Let f0 and H such that ‖f ∗lin − f0‖∞ ≤ H.
Assume that there exists C > 0 such that |Y | ≤ C.
Then for an appropriate randomized estimator requiring the
knowledge of f0, H and C, for any ε > 0 with probability at least
1− ε, we have

R(f̂ )− R(f ∗lin) ≤ κ(H2 + C2)
d log(3q−1

min) + log(ε−1)

n
.
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Ordinary least squares and empirical risk minimization

Theorem (Bartlett, Bousquet, Mendelson, 2005)

Assume that for some positive constants H and C,

sup
θ∈Θ
‖θ‖ ≤ 1,

‖ϕ(x)‖ ≤ H, ∀x ∈ X

|Y | ≤ C.

Let ν1 ≥ · · · ≥ νd be the eigenvalues of Q = E
[
ϕ(X )ϕ(X )T

]
.

With probability at least 1− ε, we have

R(f̂ (erm))− R(f ∗) ≤ κ(H + C)2
min

0≤h≤d

(
h +

√
n

(H+C)2

∑
i>h νi

)
+ log(ε−1)

n

≤ κ(H + C)2 d + log(ε−1)

n
,

where κ is a numerical constant.
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Theorem (Birgé, Massart, 1998)

Assume that for any f1, f2 in F , ‖f1 − f2‖∞ ≤ H and ∃f0 ∈ F satisfying

for any x ∈ X , E
{

exp
[
A−1

∣∣Y − f0(X )
∣∣] ∣∣∣X = x

}
≤ M,

for some positive constants A and M. Let

B̃ = inf
φ1,...,φd

sup
θ∈Rd−{0}

‖
∑d

j=1 θjφj‖2
∞

‖θ‖2
∞

where the infimum is taken w.r.t. all possible orthonormal basis of F
for 〈f1, f2〉 = Ef1(X )f2(X ). Then, with probability at least 1− ε:

R(f̂ (erm))− R(f ∗) ≤ κ(A2 + H2)
d log[2 + (B̃/n) ∧ (n/d)] + log(ε−1)

n
,

where κ is a positive constant depending only on M.
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Projection estimator

Theorem (Tsybakov, 2003)

Let φ1, . . . , φd be an o.n.b. of Flin for 〈f1, f2〉 = Ef1(X )f2(X ).
The projection estimator on this basis is f̂ (proj) =

∑d
j=1 θ̂

(proj)
j φj , with

θ̂(proj) =
1
n

n∑
i=1

Yiφj (Xi ).

If
sup
x∈X

Var (Y |X = x) = σ2 < +∞

and
‖f (reg)‖∞ = sup

x∈X
|f (reg)(x)| ≤ H < +∞,

then we have
ER(f̂ (proj))− R(f ∗lin) ≤ (σ2 + H2)

d
n
.
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Penalized least squares estimator

Theorem (Caponnetto, De Vito, 2007)

f̂ (ridge)
λ ∈ argmin

{fθ ; θ∈Rd}

1
n

n∑
i=1

[Yi − fθ(Xi )]2 + λ‖θ‖2.

Let qmin be the smallest eigenvalue of Q = E
[
ϕ(X )ϕ(X )T

]
.

Let K = supx∈X
∑d

j=1 ϕj (x)2 = ‖‖ϕ‖2‖∞.

Recall f ∗lin =
∑d

j=1 θ
∗
j ϕj . Let 0 < ε < 1/2 and Lε = log2(ε−1).

Assume that for any x ∈ X ,

E
(
e|Y−f∗lin(X)|/A|X = x) ≤ M.

For λ = (KdLε)/n, if λ ≤ qmin, with probability at least 1− ε:

R(f̂ (ridge)
λ )− R(f ∗lin) ≤ κLε

d
n

(
A2 +

λ

qmin
KLε‖θ∗‖2

)
for some positive constant κ depending only on M.
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Penalized least squares estimator

f̂ (lasso)
λ ∈ argmin

{fθ; θ∈Rd}

1
n

n∑
i=1

(
Yi − fθ(Xi)

)2
+ λ‖θ‖1.

As the L2 penalty, the L1 penalty shrinks the coefficients.
It allows to select relevant variables (i.e., find the j ’s such
that θ∗j 6= 0).

Assume that f (reg) is a linear combination of only d∗ � d
variables/functions ϕj ’s, then under strong conditions on
the eigenvalues of submatrices of Q, the risk of the Lasso
estimator for λ of order

√
(log d)/n is of order (d∗ log d)/n.

From a model selection approach, the assumptions can be
weakened.
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Conclusion of the survey

R(f̂ (erm))− R(f ∗) = O
(d log(2+n/d)+log(ε−1)

n

)
for L∞-bounded

F and exponential moments

There is no simple d/n which does not require strong
assumptions

Degraded convergence rate when Q is ill-conditioned ?
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Ridge regression and empirical risk minimization

Theorem

Let λ ≥ 0 and f̃ ∈ arg minfθ∈F
{

R(fθ) + λ‖θ‖2
}
.

Assume E
[
‖ϕ(X )‖4

]
< +∞ and E

{
‖ϕ(X )‖2

[
f̃ (X )− Y

]2}
< +∞.

Let ν1, . . . , νd be the eigenvalues of Q, and Qλ = Q + λI. Let

D =
d∑

i=1

νi

νi + λ
1νi>0 = Tr

[
(Q + λI)−1Q

]
= E

{
‖Q−1/2

λ ϕ(X )‖2}.
For any ε > 0, there is nε s.t. for any n ≥ nε, with proba. at least 1− ε,

R(f̂ (ridge)
λ ) + λ‖θ̂(ridge)‖2 ≤ min

fθ∈F

{
R(fθ) + λ‖θ‖2}

+
30 E

{
‖Q−1/2

λ ϕ(X )‖2
[
f̃ (X )− Y

]2}
E
{
‖Q−1/2

λ ϕ(X )‖2
} D

n

+ 1000 sup
v∈Rd

E
[
〈v , ϕ(X )〉2

[
f̃ (X )− Y

]2]
E(〈v , ϕ(X )〉2) + λ‖v‖2

log(3ε−1)

n
.



Variants of known results New results

Ridge regression and empirical risk minimization

Corollary

For any ε > 0, there is nε s.t. for any n ≥ nε, with proba. at least 1− ε,

R(f̂ (ridge)
λ ) ≤ R(f ∗lin) + λ‖θ∗‖2

+ ess sup E
{

[Y − f̃ (X )]2
∣∣X} 30D + 1000 log(3ε−1)

n

D =
d∑

i=1

νi

νi + λ
1νi>0 = Tr

[
(Q + λI)−1Q

]
= effective ridge dimension
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Ridge regression and empirical risk minimization

Theorem

Let d ′ = rank(Q). Assume E
{

[Y − f ∗(X )]4
}
< +∞ and

B = sup
f∈span{ϕ1,...,ϕd}−{0}

‖f‖2
∞/E[f (X )2] < +∞.

Consider the (unique) function f̂ (erm) : x 7→ 〈θ̂(erm), ϕ(x)〉 on F for
which θ̂(erm) ∈ span{ϕ(X1), . . . , ϕ(Xn)}.
For any values of ε and n such that 2/n ≤ ε ≤ 1 and

n > 1280B2

[
3Bd ′ + log(2ε−1) +

16B2d ′2

n

]
,

with probability at least 1− ε,

R(f̂ (erm))− R(f ∗)

≤ 1920 B
√

E[Y − f ∗(X )]4

[
3Bd ′ + log(2ε−1)

n
+

(
4Bd ′

n

)2
]
.
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A simple tight risk bound for a sophisticated PAC-Bayes algorithm

Let

Θ bounded

π uniform distribution on F

λ > 0

Wi (f , f ′) = λ
{[

Yi − f (Xi )
]2 − [Yi − f ′(Xi )

]2}
Ê(f ) = log

∫ π(df ′)∏n
i=1[1−Wi (f ,f ′)+ 1

2 Wi (f ,f ′)2]

Ê(f ) ≈ λ
∑n

i=1[Yi − f (Xi )]2 + log
∫
π(df ′) exp

{
−λ
∑n

i=1

[
Yi − f ′(Xi )

]2}
,

We consider the “posterior” distribution π̂ on the set F with density:

d π̂
dπ

(f ) =
exp[−Ê(f )]∫

exp[−Ê(f ′)]π(df ′)
.

d π̂
dπ

(f ) ≈
exp{−λ

∑n
i=1[Yi − f (Xi )]2}∫

exp{−λ
∑n

i=1[Yi − f ′(Xi )]2}π(df ′)
.
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A simple tight risk bound for a sophisticated PAC-Bayes algorithm

Theorem

Assume supf1,f2∈F ‖f1 − f2‖∞ ≤ H and, for some σ > 0,

sup
x∈X

E
{

[Y − f ∗(X )]2
∣∣X = x

}
≤ σ2 < +∞.

Let λ = 1
3(2σ+H)2 and f̂ be a prediction function drawn from the

distribution π̂.
Then for any ε > 0, with probability at least 1− ε, we have

R(f̂ )− R(f ∗) ≤ 17(2σ + H)2 d + log(2ε−1)

n
.
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