Variants of known results
0000000000

Risk bounds for linear regression

New results
00000

Jean-Yves Audibert'-2 & Olivier Catoni®

1. Imagine - Université Paris Est,
2. Willow - CNRS/ENS/INRIA
3. DMA - CNRS/ENS

May 2009



Variants of known results New results
©000000000 00000

Ordinary least squares and empirical risk minimization

@ Linear aggregation: F = Fji, = span{e1, ..., ¢4} and £, = f*
@ Let 79 e argmin, - 1 S0 [Y; — f(X)]?.

o ER(FOS) — R(f:) = E[FO9(X) — f2 (X)]2.

@ if sup,c Var(Y|X = x) = 02 < o0 and 19 = fx

i, we have

n

B{ 1 - [F900) - X))} < o°

i=1

sla

@ It does not imply a ¢ upper bound on ER(f®9) — R(fx)).
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Ordinary least squares and empirical risk minimization

Theorem (Gy®drfi, Kohler, Krzyzak, Walk, 2004)
If supyer Var(Y|X = x) = 02 < +oo and

1179 |0 = sup |19 (x)| < H
XEX

for some H > 0, then the truncated estimator
7Ol — (F0I9) A H) v —H satisfies

ER(FO'®) — R(flred))
2 2
—i—H(U vV H%)dlog n

< 8[R(fiy) — R(f*)] -

for some numerical constant k.
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Ordinary least squares and empirical risk minimization

Theorem (Catoni, 2004)
Let F' C Fn satisfying for some positive constants a, M, M’ :

@ there exists fy € F' s.t. forany x € X,
]E{exp[aW— fO(X)\] ‘X: x} <M.

@ forany fi,fo € F',sup,cx |fi(X) — fa(Xx)| < M.

LetQ = E[cp(X) (X) ] and Q = [ Z, 1 <p(X)go(X,-)T}. IfdetQ # 0,
then there exist positive constants Cy and C. s.t. with probability at
least1 — ¢, as soon as

{fefnn:rmsr( ©9)) 4 ¢, 2 }C]-",

we have

>

d + log(e™") + log( &
n

R(f®9) — R(fz) < C» 8).

lin
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Ordinary least squares and empirical risk minimization

Theorem (Alquier, 2008)

Let gmin be the smallest eigenvalue of Q = E[p(X)p(X)T].
Let fy and H such that ||f — o < H.
Assume that there exists C > 0 such that |Y| < C.

Then for an appropriate randomized estimator requiring the
knowledge of fy, H and C, for any ¢ > 0 with probability at least

1 — ¢, we have

R(}) — R(£:) < w(H? + Cz)cﬂog(aqrgﬁn,)7 +log(c™")
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Ordinary least squares and empirical risk minimization

Theorem (Bartlett, Bousquet, Mendelson, 2005)
Assume that for some positive constants H and C,

sup [|0] <1,
=)

le()l <H, Vxex
Y| <C.

Letvy > --- > vg be the eigenvalues of Q = E[p(X)p(X)T].
With probability at least 1 — ¢, we have

20@5&1 <h+ \/M) + log(e~!

n

R(fe™) — R(f*) < x(H + C)
—1
< w(H+ Cf%g(e),

where k is a numerical constant.
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Ordinary least squares and empirical risk minimization

Theorem (Birgé, Massart, 1998)
Assume that for any fy, f in F, ||fi — k|| < H and 3fy € F satisfying

forany x € X, ]E{exp[A‘1|Y— fo(X)” )X = x} <M,
for some positive constants A and M. Let

d 2

" 1 0j0; o

S M
Blyeens bd 6cRI—{0} ”0“00

where the infimum is taken w.r.t. all possible orthonormal basis of F
for (i, f,) = Efi(X)%(X). Then, with probability at least 1 — e:

dlog[2 + (B/n) A (n/d)] + log(e™")

R(F™)Y — R(f*) < r(A% + H?) p ,

where k is a positive constant depending only on M.
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Projection estimator

Theorem (Tsybakov, 2003)

Let ¢1,...,9q be an o.n.b. of Fi for (fy, o) = Efi (X)R(X).
The projection estimator on this basis is fP) = 377 | 9/(.pr°')¢,-, with

UV
(proj) _ - Z Yigi (X))
i=1

If
xXeX
and
119 = sup #9(x)| < H < +o0,
xXeX

then we have d
ER(FP)) — A(f) < (o + H?) .
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Penalized least squares estimator

Theorem (Caponnetto, De Vito, 2007)

f(ndge € argmin — Z[Y — fo( )]2 + )\H@HZ.
{fg OER"}

Let gmin be the smallest eigenvalue of Q = E [p(X)p(X)T].

Lot K = Spex zj’ 12j(0)? = IlllolPlloc-
Recall f:, = Z/ (07 ). Let0 < e <1/2 and L. = log?(e™").
Assume that for anyx eX,

]E(ely—ﬁi*n(X)I/A|X =x)< M.

For X = (KKdL.)/n, if \ < gmin, With probability at least1 — e:

)

R(™®) _ R(fr) < nL.” (A2 T

for some positive constant . depending only on M.
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Penalized least squares estimator

. R
f)(\lasso) € argmin — Z (Yi— f@()(l.))2 + A0+
{fp:0erd} 1M

@ As the L? penalty, the L' penalty shrinks the coefficients.

@ It allows to select relevant variables (i.e., find the j’s such
that 67 # 0).

@ Assume that (9 s a linear combination of only d* < d
variables/functions ¢;’s, then under strong conditions on
the eigenvalues of submatrices of Q, the risk of the Lasso
estimator for \ of order \/(log d)/n is of order (d*log d)/n.

@ From a model selection approach, the assumptions can be
weakened.
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Conclusion of the survey

o R(ferm)y — R(f*) = O(2lo92tn/d)+loge D)y for | pounded
F and exponential moments

@ There is no simple d/n which does not require strong
assumptions

@ Degraded convergence rate when Q is ill-conditioned ?
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Ridge regression and empirical risk minimization
Theorem
Let x>0 and f € argming,c= { R(f) + A[|0]}.
Assume E[|jo(X)[[4] < +oo andE{||ga(X)||2[?(X) - Y}"’} < foo.
Letvy,...,vy be the eigenvalues of Q, and Q, = Q + M. Let

d
= >0 Y, 00 = T[(@+ A1) = B{IG; 7).
i=1 !

For any e > 0, there is n. s.t. for any n > n., with proba. at least1 — ¢,

R(RI) + N899 |2 < min {A(fy) + All9]|*}
(S

+30E{IIO;‘/2 X I2[FX) - YI°} D
E{)|Q5 2p(X)|2} n
2

E[(v, o2 [FX) = Y1%] 1og(ae1)
000U v D FAVIE n
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Ridge regression and empirical risk minimization

For any e > 0, there is n. s.t. for any n > n., with proba. at least1 — ¢,

R(1'%)) < R(fy) + Allo*||?
30D + 1000log(3¢~ 1)
n

+esssupE{[Y — F(X)]?| X}

d
— 1A o _ _
D= ; vi+ A 1,50 = Tr[(Q+ A)~'Q] = effective ridge dimension
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Ridge regression and empirical risk minimization

Letd' = rank(Q). Assume E{[Y — f*(X)]*} < +oc and

B= sup I1£11% /EIF(X)?] < +o0.

fespan{p1,...,q} —{0}

Consider the (unique) function flerm) - x s (™) (X)) on F for
which €™ ¢ span{o(Xy), ..., o(Xn)}.
For any values of e and n such that2/n < e < 1 and

16B2d"?
n

n > 1280B% |3Bd’' + log(2¢~ ') +

with probability at least 1 — e,

< 1920 By/E[Y — f*(X)]*

3Bd’ + log(2¢1) (4B 2
n n
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A simple tight risk bound for a sophisticated PAC-Bayes algorithm

Let
@ O bounded
@ 7 uniform distribution on F
e \>0
© Wi(f.f') = M[Yi = F(X)]° = [i = F'(x)]°}

~

_ n(al')
® &N =100 | sy =wir oy pwr 7

E(F) = ALY — F(X)I? + log [ n(df) exp{ ALY - 107,

We consider the “posterior” distribution # on the set 7 with density:

9t eplEf]
dn [ exp[—&(f)]x(df")
an £ ~ exp{— )‘27 LYi— (X/)]Z}

ar)™ Texp(oAs [V, — PR }(dr)
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A simple tight risk bound for a sophisticated PAC-Bayes algorithm

Assume supy, e |fi — f2||oc < H and, for some o > 0,

SUpE{[Y — F*(X)|X = x} < 0% < +oo.
XEX

Let\ = m andf be a prediction function drawn from the
distribution 7.

Then for any € > 0, with probability at least 1 — ¢, we have

R(F) - R(*) < 17(20 + H)? %(26*‘).
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