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Abstract Di�erent optimal structures: minimum cuts, minimum spanning
forests and shortest-path forests, have been used as the basis for
powerful image segmentation procedures. The well-known notion
of watershed also falls into this category. In this paper, we present
some new results about the links which exist between these di�er-
ent approaches. Especially, we show that min-cuts coincide with
watersheds for some particular weight functions.
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Introduction

Min-cuts (graph cuts) and watersheds are two popular tools for image seg-
mentation, which can both be expressed in the framework of graphs and are
well suited to computer implementations. Informally, a cut in a graph is a
set of edges which, when removed from the graph, separates it into di�erent
connected components. Given a set of vertices or subgraphs called markers,
the goal of these operators is to �nd a cut for which each induced component
contains exactly one marker, and which best matches a criterion based on
the image contents. For example, the criterion is often designed in such a
way that the cut is located along the contours of the objects present in the
image. To this aim, edges of the pixel adjacency graph can be weighted for
example with the inverse of the gradient modulus. The principle of min-cut
segmentation is then to �nd a cut (relative to the markers) which sum of
edge weights is minimal [6].

The watershed is a well-known notion from the �eld of topography, intro-
duced for image segmentation purposes by S. Beucher and C. Lantuéjoul [5].
Intuitively, the watershed of a function (seen as a topographical surface) is
composed by the locations from which a drop of water could �ow down
towards di�erent minima. In a framework of edge-weighted graphs, the
watershed is de�ned in [9, 10] as a cut relative to the regional minima of
the weight function, and which satis�es this �drop of water� principle. In
[15], Meyer shows the link between minimum spanning forests and �ooding
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algorithms, which are most often used to compute watersheds. There is in-
deed an equivalence between watersheds de�ned as cuts satisfying the drop
of water principle and cuts induced by minimum spanning forests (MinSF)
relative to the minima, as proved in [9, 10].

Another point of view on the watershed is studied in [13, 14]. Let us
de�ne the �length� of a path as the maximum weight of the edges along
this path, then the watershed is de�ned by these authors as a cut which
separates the components of the graph induced by a shortest-path forest
rooted in the minima. This de�nition in terms of shortest-path forest is
also the basis for the so-called fuzzy connected image segmentation [2, 16].

The goal of this paper is to clarify the links between these di�erent
optimal structures used for image segmentation. To this aim, we �rst give a
set of de�nitions for these di�erent paradigms in a same unifying framework
of edge-weighted graphs. Then, we show that any MinSF is a shortest-path
forest, and that the converse is, in general, not true.

At last, we prove a property which links graph cuts and watersheds,
through the notion of MinSF. It is well known that the MinSFs, and hence
the watersheds, are invariant if an increasing transformation is applied si-
multaneously to all the weights. For example, if we raise all the weights
to a same positive power n, a MinSF remains a MinSF. On the contrary,
min-cuts may be di�erent for di�erent values of n. We show that, for any
weighted graph, there exists a value n such that min-cuts coincide with cuts
induced by maximum spanning forests relative to the markers, furthermore,
this will also be true for any number greater than n.

Proofs of the theorems presented in this paper are in [1].

1. Basic notions on graphs

In this section we state basic notions on graphs before presenting the def-
initions of extension and cut over a graph, which will be necessary in the
sequel of the paper.

We de�ne a graph as a pair G = (V,E) where V is a �nite set and E
is composed of unordered pairs of elements of V , precisely, E is a subset of
{{x, y} ⊆ V | x 6= y}. Each element of V is called a node or a vertex (of
G), and each element of E is called an edge (of G). We denote by G∅ the
empty graph, i.e. G∅ = (∅, ∅).

Let G be a graph. If e = {x, y} is an edge of G, we say that x and y are
adjacent (for G). Let π = 〈x0, . . . , x`〉 be an ordered sequence of nodes of
G, we say that π is a path from x0 to x` in G (or in V ) if for any i ∈ [1; `],
xi is adjacent to xi−1. In this case, we say that x0 and x` are linked for G.
We say that π is a simple path from x0 to x` in G (or in V ) if π is a path
from x0 to x` and if all nodes of π are distinct. Notice that if there exists a
path from x0 to x` in G, then there exists a simple path from x0 to x`. We
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say that G is connected if any two vertices of G are linked for G. Notice
that G∅ is connected.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. If V ′ ⊆ V and E′ ⊆ E
then we say that G′ is a subgraph of G and we write G′ ⊆ G. Notice that
G∅ is a subgraph of any graph.

In the sequel, G = (V,E) will denote a graph.
We say that X is a connected component of G if X is a connected sub-

graph of G which is maximal for this property, i.e. for any connected graph
X ′, X ⊆ X ′ ⊆ G implies X ′ = X. Notice that G∅ is not a connected com-
ponent of any non-empty graph, and that G∅ is the connected component
of, and only of, G∅.

Let X be a subgraph of G, we denote respectively by V (X) and E(X)
the node set and the edge set of X.

Let X and Y be two subgraphs of G. We de�ne (X ∪ Y ) = (V (X) ∪
V (Y ), E(X) ∪ E(Y ) and (X ∩ Y ) = (V (X) ∩ V (Y ), E(X) ∩ E(Y )).

Let X be a subgraph of G. An edge {x, y} of G is adjacent to X if
{x, y} ∩ V (X) 6= ∅ and {x, y} /∈ E(X). In this case, if x ∈ V (X), either
y ∈ V (X) or y is adjacent to X.

If S is a subset of E, we denote by S the complementary set of S in E,
that is, S = E \ S.

Let S ⊆ E. The graph induced by S is the graph whose edge set is S
and whose vertex set is made of all points which belong to an edge in S. By
abuse of notation, the subgraph induced by S will also be denoted by S.

We now present the notions of extension and (graph) cut which play an
important role for optimal structures in edge-weighted graphs. The notion
of extension was introduced in [4] for the case of sets. In [9, 10] this notion
was extended to connected graphs. The following de�nition presents this
notion in the case of unspeci�ed graphs.

De�nition 1 (Extension, spanning extension and cut). Let G be a graph
and let G1, G2, . . . , Gn be the connected components of G. LetM and X be
two subgraphs of G. For any i ∈ [1;n], let Mi = M ∩Gi and Xi = X ∩Gi.
We say that X is an extension of M if, for all i ∈ [1;n], Mi ⊆ Xi and each
connected component of Xi contains exactly one connected component of
Mi. We say that X is a spanning extension of M (over G) if X is an
extension of M and if V (X) = V . Let C ⊆ E, we say that C is a (graph)
cut relative to M (over G) if C is an extension of M over G and if C is
minimal for this property (i.e. considering D ⊆ E, C = D whenever D ⊆ C
and D is an extension of M over G). It may be seen that, if C is a cut,
then C is necessarily a spanning extension. Moreover, if X is a spanning
extension of M , then there exists a unique cut C relative to X which is
called the cut induced by X. It may be seen that C is also a cut relative to
M .

Examples of these de�nitions are shown in Figure 1.
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2. Optimal structures

In this section we de�ne the following structures: maximum spanning forests,
watersheds, minimum cuts and shortest-path spanning forests.

2.1 Maximum spanning forests and watersheds

In this part, we �rst recall the de�nition of Maximum Spanning Forests
(MaxSF) relative to a subgraph of G. It is shown in [10] that this notion
is equivalent to the one of maximum spanning tree, which has been studied
for many years in combinatorial optimization (see [8]). From this, we de�ne
the MaxSF cut and then remind the notion of watershed to highlight the
link that exists between them.

Let F and M be two subgraphs of G. We say that F is a forest relative
to M if:
� F is an extension of M , and
� for any extension X ⊆ F of M , V (X) = V (F ) ⇒ X = F (i.e. we
cannot eliminate an edge of F and keep the extension property).

Let F andM be two subgraphs of G. We say that F is a spanning forest
relative to M (over G) if:
� F is a forest relative to M , and
� V (F ) = V .

Equivalently, we say that F is a spanning forest relative to M (over G)
if there exists a spanning extension X relative to M over G such that F is
obtained by eliminating edges of X as long as it is possible to do it while
preserving the spanning extension property.

Examples of these de�nitions are shown in Figures 1(e) and 1(f).
It can be seen that if G is connected and M = (VM , ∅) where VM ⊆ V

(i.e. M is a subgraph without edge), then the notion of forest relative
to M corresponds exactly to the usual notion of forest. Furthermore, if
|V (M)| = 1 then we retrieve the usual notion of tree.

In the following, P will be a map from E to R+.
The pair (G,P ) is an edge-weighted graph. If e is an edge of G, P (e)

is called the altitude or the weight of e. The weight of a subgraph X of G,
denoted by P (X), is the sum of its edge weights (P (X) =

∑
x∈E(X) P (x)).

De�nition 2 (Maximum spanning forest). Let F andM be two subgraphs
of G. We say that F is a Maximum Spanning Forest (MaxSF) relative to
M (for P ) if F is a spanning forest relative to M and if the weight of F is
maximum, i.e. greater than or equal to the weight of any other spanning
forest relative to M . Notice that if the weight of F is minimum instead of
maximum, then we have a Minimum Spanning Forest (MinSF).

Examples of this de�nition are shown in Figure 4.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Graph G, composed of three connected components (G1, G2 and G3),
with in bold: (a) a subgraph M ; (b) an extension relative to M ; (c) a spanning
extension relative to M ; (d) a cut relative to M ; (e) a forest relative to M ; (f) a
spanning forest relative to M .

Remark 1. Let M and F be two subgraphs of G, f : R+ → R+ be a strictly
increasing function and g : R+ → R+ be a strictly decreasing function.
From classical results on extremal spanning forests, we know that the three
following statements are equivalent:
� F is a MaxSF relative to M for P ;
� F is a MaxSF relative to M for (f ◦ P );
� F is a MinSF relative to M for (g ◦ P ).

LetM be a subgraph of G and let F be a MaxSF relative toM . Since F
is a spanning forest, hence a spanning extension, there exists a unique
(graph) cut relative to M induced by F . We say that this cut is a MaxSF
cut relative to M .

We now remind the de�nition of watersheds for a map (see [15]) and its
equivalence with MinSF cuts relative to the minima of this map (see [9,10]).

The intuitive idea underlying the notion of watershed comes from the
�eld of topography: a drop of water falling down on a topographic surface
follows a descending path and reaches a regional minimum area. The water-
shed may be thought of as the separating lines of the domain of attraction
of drops of water.

The regions of a watershed, also called catchment basins, are associated
with the regional minima of the map. In other words, each catchment basin
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contains a unique regional minimum, and conversely, each regional mini-
mum is included in a unique catchment basin: the regions of the watershed
are the connected components of an extension relative to the minima. They
are separated by a set of edges from which a drop of water can �ow down
towards di�erent minima, in the sense de�ned below.

A subgraph X of G is a (regional) minimum of P if:
� X is connected, and
� all the edges of X have the same altitude, that we will refer to as the
altitude of X, and

� the altitude of any edge adjacent to X is strictly greater than the
altitude of X.

We denote by Min(P ) the graph whose vertex set and edge set are, respec-
tively, the union of the vertex sets and edge sets of all minima of P .

Let π = 〈x0, . . . , x`〉 be a path in G. The path π is descending (for P )
if ∀i ∈ [1, `− 1], P ({xi−1, xi}) ≥ P ({xi, xi+1}).
De�nition 3 (Watershed, Def. 2.3 in [9]). Let C be a subset of E. We
say that C is a watershed cut (for P ), or simply a watershed (for P ), if
C is an extension of Min(P ) and if for any e = {x0, y0} ∈ C, there exist
π1 = 〈x0, . . . , xm〉 and π2 = 〈y0, . . . , yn〉 two descending paths in C such
that:
� xm and yn are nodes of two distinct minima of P , and
� P (e) ≥ P ({x0, x1}) (resp. P (e) ≥ P ({y0, y1})), whenever m > 0
(resp. n > 0).

Notice that a watershed is indeed a graph cut relative to Min(P ).

Theorem 1 (Th. 3.1 in [9]). Let C be a subset of E. The set C is a MinSF
cut relative to Min(P ) (for P ) if and only if C is a watershed (for P ).

Any minimum spanning tree algorithm can be employed to compute a
MinSF relative to a subgraph of G (see a survey in [8]). The best of them
does this in quasi-linear time (see [7]), but algorithms speci�c to watersheds
run in linear time (see [9]).

2.2 Minimum cuts (min-cuts)

In this section, we remind the notion of minimum cut.
LetM be a subgraph of G and let C ⊆ E. We say that C is a minimum

cut (min-cut) relative to M (for P ) if for any cut C ′ ⊆ E relative to M ,
P (C) ≤ P (C ′). It can be seen that a cut C relative to M is of minimum
weight if and only if C is a (spanning) extension of maximum weight relative
to M . Examples of this de�nition are shown in Figure 4.



Some links between min-cuts and watersheds 259

A fundamental result in combinatorial optimization states that, given
two isolated nodes of an edge-weighted graph (called source and sink), �nd-
ing a min-cut that separates these two nodes is equivalent to �nding a max-
imum �ow between them (see [12], chapter 6.2). This problem is equivalent
to �nding a min-cut relative to a subgraph having exactly two connected
components (consider adding two extra nodes to G, the source and the sink,
and highly weighted edges from each one of them to all the nodes of each
of the components of M). In this case, we have polynomial-time algorithms
to compute a min-cut. On the other hand, �nding a min-cut relative to a
subgraph with more than two connected components is NP-hard [11], but
there exists approximation algorithms [6].

2.3 Shortest-path spanning forests cuts (SPSF cuts)

We now present the notion of shortest-path forest which also constitutes
an optimization paradigm used for image segmentation. In particular, the
image-foresting-transform [13] and the relative fuzzy-connected image seg-
mentation [2,17] fall in the scope of shortest-path forests. Intuitively, these
methods partition the graph into connected components associated to seed
points. The component of each seed consists of the points that are �more
closely connected� to this seed than to any other. In many cases, in order to
de�ne the relation �is more closely connected to�, we consider the length of
a path π as the maximum value of an edge along π. Then, point p is more
closely connected to seed s than to seed s′ if the length of a shortest path
from p to s is less than the length of a shortest path from p to s′. Given
a set of seed points (or a seed graph), the resulting segmentation is then
obtained as a shortest-path forest.

In this section, we assume that G is connected and thatM is non-empty.
Let π = 〈x0, . . . , x`〉 be a path in the graph G. If we have l > 0, we

de�ne P (π) = max{P ({xi−1, xi}) | i ∈ [1; `]}. If we have π = 〈x0〉, we
de�ne P (π) = min{P (u) | x0 ∈ u, u ∈ E}; P (π) is the length of π. Let X
and Y be two subgraphs of G, we denote by Π(X,Y ) the set of all paths
from X to Y in G. The connection value between X and Y (in G and
for P ), denoted by P (X,Y ), is the length of a shortest path from X to Y ,
i.e. P (X,Y ) = min{P (π) | π ∈ Π(X,Y )}.

If x is a vertex of G, to simplify the notation, the graph ({x}, ∅) will be
also denoted by x.

De�nition 4 (SPSF cut). Let M and F be two subgraphs of G. We
say that F is a shortest-path forest relative to M if F is a forest relative
to M and if, for any x ∈ V (F ), there exists, from x to M , a path π in F
such that P (π) = P (x,M). If F is a shortest-path forest relative to M
and V (F ) = V , we say that F is a shortest-path spanning forest (SPSF)
relative to M . If F is a SPSF relative to M , the (unique) cut for F is called
a SPSF cut for M .
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Figure 2. Graph G and map P with in bold: (a) a subgraph M ; (b) a MinSF
relative to M ; (c) a shortest-path spanning forest relative to M which is not a
MinSF relative to M .

Let G be the graph in Figure 2 and let P be the corresponding map.
Let M , F and F ′ be the bold graphs depicted in, respectively, Figures 2(a),
2(b) and 2(c). The two graphs F and F ′ are SPSFs relative to M . The
induced SPSF cuts for M are represented by dashed edges.

3. Some links between optimal structures

In this section, we reveal some relations existing between the di�erent op-
timal structures exposed above.

3.1 Min-cut and MaxSF cut

In this section, we show that min-cuts and MaxSF cuts are linked through
a modi�cation of the map P preserving the order and emphazing the weight
di�erence between the edges. We denote by P [n], and say P power n, the
map from E to R+ de�ned by, for any e ∈ E, P [n](e) = [P (e)]n.

Theorem 2. If M is a subgraph of G, then there exists a real number m
such that, for any n ≥ m, any min-cut relative to M for P [n] is a MaxSF
cut relative to M for P [n].

Theorem 2 is illustrated in Figure 3 and Figure 4.
It has to be noticed that the converse of Theorem 2 is, in general, not

true. See Figure 6 where the MaxSF cut relative to M for P in 6(b) is not
a min-cut relative to M for P , but any min-cut is a MaxSF cut. However,
an intuitive interpretation of this result is to consider the MaxSF cut as a
greedy heuristic to obtain a min-cut. The e�ciency of this heuristic becomes
higher when di�erences between the weights increase.

From Remark 1, we know that the MaxSF cut relative to M for P [n] is
also a MaxSF cut relative to M for P and conversely since the change of
map preserves the order.

Since we know, from Remark 1 and Theorem 1, that the watersheds
are particular cases of MaxSF cuts, we deduce from Theorem 2 that the
watersheds are also particular cases of the min-cuts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Color image segmentation using: (a) markers superimposed to the
original image; (b) watershed on P ; (c) min-cut on P ; (d) min-cut on P [1.4];
(e) min-cut on P [2]; (f) min-cut on P [3]; (g) zoom of watershed on P ; (h) zoom
of min-cut on P [2]; (i) zoom of min-cut on P [3].

Figure 3 illustrates the link between these two well known segmentation
paradigms through the evolution of the min-cut with di�erent values of n.
Notice that the power of the map P could then be considered as a smoothing
term for the min-cut method. Indeed, when this power decreases, shortest
cuts are found whereas, when it increases, longer cuts are found. These
longer cuts can surround more details as well as noise. Therefore, releasing
this smoothing term is not always suitable. See for example Figure 5 where
the min-cut result is better than the watershed.

3.2 MinSF cuts and SPSF cuts

We now investigate the links between SPSF cuts and MinSF cuts. We show
that any MinSF cut relative to a subgraph of G is a SPSF cut relative to this
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(a) (b)

(c) (d)

Figure 4. Graph G and map P with: (a) in bold, a subgraph M ; (b) in bold, the
MaxSF relative toM for P and, in dashed edges, its induced cut which, according
to Remark 1 and Theorem 1, is a watershed (up to a strictly decreasing function
on P ); (c) in dashed edges, the min-cut relative to M for P ; (d) in bold, the
MaxSF relative to M for P [2] and, in dashed edges, its induced cut which is also
the min-cut relative to M for P [2].

subgraph. Therefore, according to Theorem 2, there exist some particular
functions for which any min-cut is a SPSF cut (up to a strictly decreasing
function over P ). Furthermore, we prove that MinSF cuts and SPSF cuts
are equivalent whenever we consider the subgraph of G which corresponds
precisely to the minima of P . Hence, according to Theorem 1, this last re-
sult establishes the equivalence between the watersheds for P and the SPSF
cuts relative to the minima of P .

In this section, we assume that G is connected and thatM is non-empty.

Theorem 3 (Prop. 30 in [10]). Let M and F be two subgraphs of G. If F
is a MinSF relative to M , then F is a shortest-path forest relative to M .
Furthermore, any MinSF cut relative to M is a SPSF cut relative to M . 1

The converse of the previous theorem is, in general, not true. For in-
stance, the graph Z (Figure 2(c)), is a SPSF relative to the graph X (Fig-
ure 2(a)) whereas it is not a MinSF relative to this graph.

In fact, as stated by the following theorem, if the graph M constitutes
precisely the minima of P , the equivalence between both concepts can be
established.

1This result was obtained independently in [3].
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(a) (b) (c)

Figure 5. Color image segmentation: (a) markers superimposed to the original
image; (b) watershed on P ; (c) min-cut on P .

(a) (b) (c)

Figure 6. Graph G and map P with: (a) in bold, a subgraph M ; (b) in bold, a
MaxSF relative to M for P and, in dashed edges, its induced cut, which is not a
min-cut; (c) in dashed edges, a min-cut relative to M for P .

Theorem 4 (Prop. 31 in [10]). Let F be a subgraph of G. The graph F is a
SPSF relative to Min(P ) if and only if F is a MinSF relative to Min(P ).
Furthermore, a cut S relative to Min(P ) is a SPSF cut relative to Min(P )
if and only if S is a MinSF cut relative to Min(P ).

Conclusion

We compared three di�erent optimal structures, namely extremal spanning
forests, min-cuts and shortest-path forests, which have been used as the
basis for popular image segmentation methods. The watershed approach,
which is strongly linked to minimum spanning forests and to shortest-path
forests, is also considered in this study. Although di�erent in general, we
exhibited some particular cases where a strong relation exists between these
structures.
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