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Abstract

We consider the learning task consisting in predicting as well as the best function
in a finite reference set G up to the smallest possible additive term. If R(g) denotes
the generalization error of a prediction function g, under reasonable assumptions
on the loss function (typically satisfied by the least square loss when the output is
bounded), it is known that the progressive mixture rule ĝ satisfies

ER(ĝ) ≤ ming∈G R(g) + Cst log |G|
n , (1)

where n denotes the size of the training set, and E denotes the expectation w.r.t.
the training set distribution.This work shows that, surprisingly, for appropriate
reference sets G, the deviation convergence rate of the progressive mixture rule is
no better than Cst /

√
n: it fails to achieve the expected Cst /n. We also provide

an algorithm which does not suffer from this drawback, and which is optimal in
both deviation and expectation convergence rates.

1 Introduction

Why are we concerned by deviations? The efficiency of an algorithm can be summarized by its
expected risk, but this does not precise the fluctuations of its risk. In several application fields of
learning algorithms, these fluctuations play a key role: in finance for instance, the bigger the losses
can be, the more money the bank needs to freeze in order to alleviate these possible losses. In this
case, a “good” algorithm is an algorithm having not only low expected risk but also small deviations.

Why are we interested in the learning task of doing as well as the best prediction function of a given
finite set? First, one way of doing model selection among a finite family of submodels is to cut the
training set into two parts, use the first part to learn the best prediction function of each submodel
and use the second part to learn a prediction function which performs as well as the best of the
prediction functions learned on the first part of the training set. This scheme is very powerful since
it leads to theoretical results, which, in most situations, would be very hard to prove without it. Our
work here is related to the second step of this scheme.

Secondly, assume we want to predict the value of a continuous variable, and that we have many
candidates for explaining it. An input point can then be seen as the vector containing the prediction
of each candidate. The problem is what to do when the dimensionality d of the input data (equiva-
lently the number of prediction functions) is much higher than the number of training points n. In
this setting, one cannot use linear regression and its variants in order to predict as well as the best
candidate up to a small additive term. Besides, (penalized) empirical risk minimization is doomed
to be suboptimal (see the second part of Theorem 2 and also [1]).

As far as the expected risk is concerned, the only known correct way of predicting as well as the
best prediction function is to use the progressive mixture rule or its variants. These algorithms are
introduced in Section 2 and their main good property is given in Theorem 1. In this work we prove
that they do not work well as far as risk deviations are concerned (see the second part of Theorem
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3). We also provide a new algorithm for this ’predict as well as the best’ problem (see the end of
Section 4).

2 The progressive mixture rule and its variants

We assume that we observe n pairs of input-output denoted Z1 = (X1, Y1), . . . , Zn = (Xn, Yn)
and that each pair has been independently drawn from the same unknown distribution denoted P .
The input and output spaces are denoted respectively X and Y , so that P is a probability distribution
on the product space Z , X ×Y . The quality of a (prediction) function g : X → Y is measured by
the risk (or generalization error):

R(g) = E(X,Y )∼P `[Y, g(X)],

where `[Y, g(X)] denotes the loss (possibly infinite) incurred by predicting g(X) when the true
output is Y . We work under the following assumptions for the data space and the loss function
` : Y × Y → R ∪ {+∞}.
Main assumptions. The input space is assumed to be infinite: |X | = +∞. The output space is
a non-trivial (i.e. infinite) interval of R symmetrical w.r.t. some a ∈ R: for any y ∈ Y , we have
2a− y ∈ Y . The loss function is

• uniformly exp-concave: there exists λ > 0 such that for any y ∈ Y , the set
{
y′ ∈ R :

`(y, y′) < +∞}
is an interval containing a on which the function y′ 7→ e−λ`(y,y′) is

concave.
• symmetrical: for any y1, y2 ∈ Y , `(y1, y2) = `(2a− y1, 2a− y2),

• admissible: for any y, y′ ∈ Y∩]a; +∞[, `(y, 2a− y′) > `(y, y′),
• well behaved at center: for any y ∈ Y∩]a; +∞[, the function `y : y′ 7→ `(y, y′) is twice

continuously differentiable on a neighborhood of a and `′y(a) < 0.

These assumptions imply that

• Y has necessarily one of the following form: ]−∞; +∞[, [a− ζ; a+ ζ] or ]a− ζ; a+ ζ[
for some ζ > 0.

• for any y ∈ Y , from the exp-concavity assumption, the function `y : y′ 7→ `(y, y′) is
convex on the interval on which it is finite1. As a consequence, the risk R is also a convex
function (on the convex set of prediction functions for which it is finite).

The assumptions were motivated by the fact that they are satisfied in the following settings:

• least square loss with bounded outputs: Y = [ymin; ymax] and `(y1, y2) = (y1−y2)
2. Then

we have a = (ymin + ymax)/2 and may take λ = 1/[2(ymax − ymin)
2].

• entropy loss: Y = [0; 1] and `(y1, y2) = y1 log
(
y1

y2

)
+ (1 − y1) log

(
1−y1

1−y2

)
. Note that

`(0, 1) = `(1, 0) = +∞. Then we have a = 1/2 and may take λ = 1.
• exponential (or AdaBoost) loss: Y = [−ymax; ymax] and `(y1, y2) = e−y1y2 . Then we

have a = 0 and may take λ = e−y2
max .

• logit loss: Y = [−ymax; ymax] and `(y1, y2) = log(1 + e−y1y2). Then we have a = 0 and
may take λ = e−y2

max .

Progressive indirect mixture rule. Let G be a finite reference set of prediction functions. Under the
previous assumptions, the only known algorithms satisfying (1) are the progressive indirect mixture
rules defined below.

For any i ∈ {0, . . . , n}, the cumulative loss suffered by the prediction function g on the first i pairs
of input-output is

Σi(g) ,
∑i

j=1 `[Yj , g(Xj)],

1Indeed, if ξ denotes the function e−λ`y , from Jensen’s inequality, for any probability distribution,
E`y(Y ) = E

(− 1
λ
log ξ(Y )

) ≥ − 1
λ
logEξ(Y ) ≥ − 1

λ
log ξ(EY ) = `y(EY ).
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where by convention we take Σ0 ≡ 0. Let π denote the uniform distribution on G. We define the
probability distribution π̂i on G as

π̂i ∝ e−λΣi · π
equivalently for any g ∈ G, π̂i(g) = e−λΣi(g)/(

∑
g′∈G e−λΣi(g

′)). This distribution concentrates
on functions having low cumulative loss up to time i. For any i ∈ {0, . . . , n}, let ĥi be a prediction
function such that

∀ (x, y) ∈ Z `[y, ĥi(x)] ≤ − 1
λ logEg∼π̂i e

−λ`[y,g(x)]. (2)

The progressive indirect mixture rule produces the prediction function

ĝpim = 1
n+1

∑n
i=0 ĥi.

From the uniform exp-concavity assumption and Jensen’s inequality, ĥi does exist since one may
take ĥi = Eg∼π̂i

g. This particular choice leads to the progressive mixture rule, for which the
predicted output for any x ∈ X is

ĝpm(x) =
∑

g∈G
(

1
n+1

∑n
i=0

e−λΣi(g)∑
g′∈G e−λΣi(g

′)

)
g(x).

Consequently, any result that holds for any progressive indirect mixture rule in particular holds for
the progressive mixture rule.

The idea of a progressive mean of estimators has been introduced by Barron ([2]) in the context
of density estimation with Kullback-Leibler loss. The form ĝpm is due to Catoni ([3]). It was also
independently proposed in [4]. The study of this procedure was made in density estimation and least
square regression in [5, 6, 7, 8]. Results for general losses can be found in [9, 10]. Finally, the
progressive indirect mixture rule is inspired by the work of Vovk, Haussler, Kivinen and Warmuth
[11, 12, 13] on sequential prediction and was studied in the “batch” setting in [10]. Finally, in the
upper bounds we state, e.g. Inequality (1), one should notice that there is no constant larger than 1
in front of ming∈G R(g), as opposed to some existing upper bounds (e.g. [14]). This work really
studies the behaviour of the excess risk, that is the random variable R(ĝ)−ming∈G R(g).

The largest integer smaller or equal to the logarithm in base 2 of x is denoted by blog2 xc .

3 Expectation convergence rate

The following theorem, whose proof is omitted, shows that the expectation convergence rate of any
progressive indirect mixture rule is (i) at least (log |G|)/n and (ii) cannot be uniformly improved,
even when we consider only probability distributions on Z for which the output has almost surely
two symmetrical values (e.g. {-1;+1} classication with exponential or logit losses).

Theorem 1 Any progressive indirect mixture rule satisfies

ER(ĝpim) ≤ min
g∈G

R(g) + log |G|
λ(n+1) .

Let y1 ∈ Y−{a} and d be a positive integer. There exists a set G of d prediction functions such that:
for any learning algorithm, there exists a probability distribution generating the data for which

• the output marginal is supported by 2a− y1 and y1: P (Y ∈ {2a− y1; y1}) = 1,

• ER(ĝ) ≥ min
g∈G

R(g) + e−1κ
(
1 ∧ blog2 |G|c

n+1

)
, with κ , sup

y∈Y
[`(y1, a)− `(y1, y)] > 0.

The second part of Theorem 1 has the same (log |G|)/n rate as the lower bounds obtained in sequen-
tial prediction ([12]). From the link between sequential predictions and our “batch” setting with i.i.d.
data (see e.g. [10, Lemma 3]), upper bounds for sequential prediction lead to upper bounds for i.i.d.
data, and lower bounds for i.i.d. data leads to lower bounds for sequential prediction. The converse
of this last assertion is not true, so that the second part of Theorem 1 is not a consequence of the
lower bounds of [12].
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The following theorem, whose proof is also omitted, shows that for appropriate set G: (i) the em-
pirical risk minimizer has a

√
(log |G|)/n expectation convergence rate, and (ii) any empirical risk

minimizer and any of its penalized variants are really poor algorithms in our learning task since their
expectation convergence rate cannot be faster than

√
(log |G|)/n (see [5, p.14] and [1] for results of

the same spirit). This last point explains the interest we have in progressive mixture rules.

Theorem 2 If B , supy,y′,y′′∈Y [`(y, y
′) − `(y, y′′)] < +∞, then any empirical risk minimizer,

which produces a prediction function ĝerm in argming∈G Σn, satisfies:

ER(ĝerm) ≤ min
g∈G

R(g) +B
√

2 log |G|
n .

Let y1, ỹ1 ∈ Y∩]a; +∞[ and d be a positive integer. There exists a set G of d prediction functions
taking their values in {2a − ỹ1, ỹ1} such that: for any learning algorithm producing a prediction
function in G (e.g. ĝerm) there exists a probability distribution generating the data for which

• the output marginal is supported by 2a− y1 and y1: P (Y ∈ {2a− y1; y1}) = 1,

• ER(ĝ) ≥ min
g∈G

R(g) + δ
8

(√
blog2 |G|c

n ∧ 2
)
, with δ , `(y1, 2a− ỹ1)− `(y1, ỹ1) > 0.

The lower bound of Theorem 2 also says that one should not use cross-validation. This holds for the
loss functions considered in this work, and not for, e.g., the classification loss: `(y, y′) = 1y 6=y′ .

4 Deviation convergence rate

The following theorem shows that the deviation convergence rate of any progressive indirect mix-
ture rule is (i) at least 1/

√
n and (ii) cannot be uniformly improved, even when we consider only

probability distributions on Z for which the output has almost surely two symmetrical values (e.g.
{-1;+1} classication with exponential or logit losses).

Theorem 3 If B , supy,y′,y′′∈Y [`(y, y
′)− `(y, y′′)] < +∞, then any progressive indirect mixture

rule satisfies: for any ε > 0, with probability at least 1 − ε w.r.t. the training set distribution, we
have

R(ĝpim) ≤ min
g∈G

R(g) +B
√

2 log(2ε−1)
n+1 + log |G|

λ(n+1)

Let y1 and ỹ1 in Y∩]a; +∞[ such that `y1 is twice continuously differentiable on [a; ỹ1] and
`′y1

(ỹ1) ≤ 0 and `′′y1
(ỹ1) > 0. Consider the prediction functions g1 ≡ ỹ1 and g2 ≡ 2a − ỹ1.

For any training set size n large enough, there exist ε > 0 and a distribution generating the data
such that

• the output marginal is supported by y1 and 2a− y1

• with probability larger than ε, we have

R(ĝpim)− min
g∈{g1,g2}

R(g) ≥ c
√

log(eε−1)
n

where c is a positive constant depending only on the loss function, the symmetry parameter
a and the output values y1 and ỹ1.

Proof 1 See Section 5.

This result is quite surprising since it gives an example of an algorithm which is optimal in terms of
expectation convergence rate and for which the deviation convergence rate is (significantly) worse
than the expectation convergence rate.

In fact, despite their popularity based on their unique expectation convergence rate, the progressive
mixture rules are not good algorithms since a long argument essentially based on convexity shows
that the following algorithm has both expectation and deviation convergence rate of order 1/n. Let
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ĝerm be the minimizer of the empirical risk among functions in G. Let g̃ be the minimizer of the
empirical risk in the star Ĝ = ∪g∈G [g; ĝerm]. The algorithm producing g̃ satisfies for some C > 0,
for any ε > 0, with probability at least 1− ε w.r.t. the training set distribution, we have

R(g̃) ≤ min
g∈G

R(g) + C log(ε−1|G|)
n .

This algorithm has also the benefit of being parameter-free. On the contrary, in practice, one will
have recourse to cross-validation to tune the parameter λ of the progressive mixture rule.

To summarize, to predict as well as the best prediction function in a given set G, one should not
restrain the algorithm to produce its prediction function among the set G. The progressive mix-
ture rules satisfy this principle since they produce a prediction function in the convex hull of G.
This allows to achieve (log |G|)/n convergence rates in expectation. The proof of the lower bound
of Theorem 3 shows that the progressive mixtures overfit the data: the deviations of their excess
risk are not PAC bounded by C log(ε−1|G|)/n while an appropriate algorithm producing prediction
functions on the edges of the convex hull achieves the log(ε−1|G|)/n deviation convergence rate.
Future work might look at whether one can transpose this algorithm to the sequential prediction
setting, in which, up to now, the algorithms to predict as well as the best expert were dominated by
algorithms producing a mixture expert inside the convex hull of the set of experts.

5 Proof of Theorem 3

5.1 Proof of the upper bound

Let Zn+1 = (Xn+1, Yn+1) be an input-output pair independent from the training set Z1, . . . , Zn

and with the same distribution P . From the convexity of y′ 7→ `(y, y′), we have

R(ĝpim) ≤ 1
n+1

∑n
i=0 R(ĥi). (3)

Now from [15, Theorem 1] (see also [16, Proposition 1]), for any ε > 0, with probability at least
1− ε, we have

1
n+1

∑n
i=0 R(ĥi) ≤ 1

n+1

∑n
i=0 `

(
Yi+1, ĥ(Xi+1)

)
+B

√
log(ε−1)
2(n+1)

(4)

Using [12, Theorem 3.8] and the exp-concavity assumption, we have∑n
i=0 `

(
Yi+1, ĥ(Xi+1)

) ≤ min
g∈G

∑n
i=0 `

(
Yi+1, g(Xi+1)

)
+ log |G|

λ (5)

Let g̃ ∈ argminG R. By Hoeffding’s inequality, with probability at least 1− ε, we have
1

n+1

∑n
i=0 `

(
Yi+1, g̃(Xi+1)

) ≤ R(g̃) +B
√

log(ε−1)
2(n+1)

(6)

Merging (3), (4), (5) and (6), with probability at least 1− 2ε, we get

R(ĝpim) ≤ 1
n+1

∑n
i=0 `

(
Yi+1, g̃(Xi+1)

)
+ log |G|

λ(n+1) +B
√

log(ε−1)
2(n+1)

≤ R(g̃) +B
√

2 log(ε−1)
n+1 + log |G|

λ(n+1) .

5.2 Sketch of the proof of the lower bound

We cannot use standard tools like Assouad’s argument (see e.g. [17, Theorem 14.6]) because if it
were possible, it would mean that the lower bound would hold for any algorithm and in particular
for g̃, and this is false. To prove that any progressive indirect mixture rule have no fast exponential
deviation inequalities, we will show that on some event with not too small probability, for most of
the i in {0, . . . , n}, π−λΣi concentrates on the wrong function.

The proof is organized as follows. First we define the probability distribution for which we will
prove that the progressive indirect mixture rules cannot have fast deviation convergence rates. Then
we define the event on which the progressive indirect mixture rules do not perform well. We lower
bound the probability of this excursion event. Finally we conclude by lower bounding R(ĝpim) on
the excursion event.

Before starting the proof, note that from the “well behaved at center” and exp-concavity assump-
tions, for any y ∈ Y∩]a; +∞[, on a neighborhood of a, we have: `′′y ≥ λ(`′y)

2 and since `′y(a) < 0,
y1 and ỹ1 exist. Due to limited space, some technical computations have been removed.
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5.2.1 Probability distribution generating the data and first consequences.

Let γ ∈]0; 1] be a parameter to be tuned later. We consider a distribution generating the data such
that the output distribution satisfies for any x ∈ X

P (Y = y1|X = x) = (1 + γ)/2 = 1− P (Y = y2|X = x),

where y2 = 2a− y1. Let ỹ2 = 2a− ỹ1. From the symmetry and admissibility assumptions, we have
`(y2, ỹ2) = `(y1, ỹ1) < `(y1, ỹ2) = `(y2, ỹ1). Introduce

δ , `(y1, ỹ2)− `(y1, ỹ1) > 0. (7)

We have

R(g2)−R(g1) =
1+γ
2 [`(y1, ỹ2)− `(y1, ỹ1)] +

1−γ
2 [`(y2, ỹ2)− `(y2, ỹ1)] = γδ. (8)

Therefore g1 is the best prediction function in {g1, g2} for the distribution we have chosen. Introduce
Wj , 1Yj=y1

− 1Yj=y2
and Si ,

∑i
j=1 Wj . For any i ∈ {1, . . . , n}, we have

Σi(g2)− Σi(g1) =
∑i

j=1[`(Yj , ỹ2)− `(Yj , ỹ1)] =
∑i

j=1 Wjδ = δ Si

The weight given by the Gibbs distribution π−λΣi
to the function g1 is

π−λΣi
(g1) =

e−λΣi(g1)

e−λΣi(g1)+e−λΣi(g2) = 1
1+eλ[Σi(g1)−Σi(g2)] =

1
1+e−λδSi

. (9)

5.2.2 An excursion event on which the progressive indirect mixture rules will not perform
well.

Equality (9) leads us to consider the event:

Eτ =
{∀i ∈ {τ, . . . , n}, Si ≤ −τ

}
,

with τ the smallest integer larger than (log n)/(λδ) such that n − τ is even (for convenience). We
have

log n
λδ ≤ τ ≤ logn

λδ + 2. (10)

The event Eτ can be seen as an excursion event of the random walk defined through the random
variables Wj = 1Yj=y1 −1Yj=y2 , j ∈ {1, . . . , n}, which are equal to +1 with probability (1+γ)/2
and −1 with probability (1− γ)/2.

From (9), on the event Eτ , for any i ∈ {τ, . . . , n}, we have

π−λΣi(g1) ≤ 1
n+1 . (11)

This means that π−λΣi concentrates on the wrong function, i.e. the function g2 having larger risk
(see (8)).

5.2.3 Lower bound of the probability of the excursion event.

This requires to look at the probability that a slightly shifted random walk in the integer space has a
very long excursion above a certain threshold. To lower bound this probability, we will first look at
the non-shifted random walk. Then we will see that for small enough shift parameter, probabilities
of shifted random walk events are close to the ones associated to the non-shifted random walk.

Let N be a positive integer. Let σ1, . . . , σN be N independent Rademacher variables: P(σi =

+1) = P(σi = −1) = 1/2. Let si ,
∑i

j=1 σi be the sum of the first i Rademacher variables. We
start with the following lemma for sums of Rademacher variables (proof omitted).

Lemma 1 Let m and t be positive integers. We have

P
(
max

1≤k≤N
sk ≥ t; sN 6= t;

∣∣sN − t
∣∣ ≤ m

)
= 2P

(
t < sN ≤ t+m

)
(12)

Let σ′
1, . . . , σ

′
N be N independent shifted Rademacher variables to the extent that P(σ′

i = +1) =
(1 + γ)/2 = 1 − P(σ′

i = −1). These random variables satisfy the following key lemma (proof
omitted)
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Lemma 2 For any set A ⊂ {
(ε1, . . . , εN ) ∈ {−1, 1}n :

∣∣∑N
i=1 εi

∣∣ ≤ M
}

where M is a positive
integer, we have

P
{
(σ′

1, . . . , σ
′
N ) ∈ A

} ≥
(

1−γ
1+γ

)M/2(
1− γ2

)N/2P
{
(σ1, . . . , σN ) ∈ A

}
(13)

We may now lower bound the probability of the excursion event Eτ . Let M be an integer larger than
τ . We still use Wj , 1Yj=y1

− 1Yj=y2
for j ∈ {1, . . . , n}. By using Lemma 2 with N = n − 2τ ,

we obtain

P(Eτ ) ≥ P
(
W1 = −1, . . . ,W2τ = −1; ∀ 2τ < i ≤ n,

∑i
j=2τ+1 Wj ≤ τ

)

=
(
1−γ
2

)2τP(∀ i ∈ {1, . . . , N} ∑i
j=1 σ

′
j ≤ τ

)

≥ (
1−γ
2

)2τ( 1−γ
1+γ

)M/2(
1− γ2

)N
2 P

(|sN | ≤ M ;∀ i ∈ {1, . . . , N} si ≤ τ
)

By using Lemma 1, since τ ≤ M , the r.h.s. probability can be lower bounded, and after some
computations, we obtain

P(Eτ ) ≥ τ
(
1−γ
2

)2τ( 1−γ
1+γ

)M/2(
1− γ2

)N
2 [P(sN = τ)− P(sN = M)] (14)

where we recall that τ have the order of log n, N = n − 2τ has the order of n and that γ > 0 and
M ≥ τ have to be appropriately chosen.

To control the probabilities of the r.h.s., we use Stirling’s formula

nne−n
√
2πn e1/(12n+1) < n! < nne−n

√
2πn e1/(12n), (15)

and get for any s ∈ [0;N ] such that N − s even,

P(sN = s) ≥
√

2
πN

(
1− s2

N2

)−N
2
(

1− s
N

1+ s
N

) s
2

e−
1

6(N+s)
− 1

6(N−s) (16)

and similarly

P(sN = s) ≤
√

2
πN

(
1− s2

N2

)−N
2
(

1− s
N

1+ s
N

) s
2

e
1

12N+1 . (17)

These computations and (14) leads us to take M as the smallest integer larger than
√
n such that

n −M is even. Indeed, from (10), (16) and (17), we obtain limn→+∞
√
n[P(sN = τ) − P(sN =

M)] = c, where c =
√
2/π

(
1− e−1/2

)
> 0. Therefore for n large enough we have

P(Eτ ) ≥ cτ
2
√
n

(
1−γ
2

)2τ( 1−γ
1+γ

)M/2(
1− γ2

)N
2 (18)

The last two terms of the r.h.s. of (18) leads us to take γ of order 1/
√
n up to possibly a logarithmic

term. We obtain the following lower bound on the excursion probability

Lemma 3 If γ =
√
C0(log n)/n with C0 a positive constant, then for any large enough n,

P(Eτ ) ≥ 1
nC0

.

5.2.4 Behavior of the progressive indirect mixture rule on the excursion event.

From now on, we work on the event Eτ . We have ĝpim = (
∑n

i=0 ĥi)/(n + 1). We still use δ ,
`(y1, ỹ2)−`(y1, ỹ1) = `(y2, ỹ1)−`(y2, ỹ2). On the event Eτ , for any x ∈ X and any i ∈ {τ, . . . , n},
by definition of ĥi, we have

`[y2, ĥi(x)]− `(y2, ỹ2) ≤ − 1
λ logEg∼π−λΣi

e−λ{`[y2,g(x)]−`(y2,ỹ2)}

= − 1
λ log

{
e−λδ + (1− e−λδ)π−λΣi(g2)

}
≤ − 1

λ log
{
1− (1− e−λδ) 1

n+1

}

In particular, for any n large enough, we have `[y2, ĥi(x)] − `(y2, ỹ2) ≤ Cn−1, with C > 0
independent from γ. From the convexity of the function y 7→ `(y2, y) and by Jensen’s inequality,
we obtain

`[y2, ĝpim(x)]− `(y2, ỹ2) ≤ 1
n+1

∑n
i=0 `[y2, ĥi(x)]− `(y2, ỹ2) ≤ τδ

n+1 + Cn−1 < C1
logn
n
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for some constant C1 > 0 independent from γ. Let us now prove that for n large enough, we have

ỹ2 ≤ ĝpim(x) ≤ ỹ2 + C
√

log n
n ≤ ỹ1, (19)

with C > 0 independent from γ.

From (19), we obtain

R(ĝpim)−R(g1) = 1+γ
2

[
`(y1, ĝpim)− `(y1, ỹ1)

]
+ 1−γ

2

[
`(y2, ĝpim)− `(y2, ỹ1)

]
= 1+γ

2

[
`y1(ĝpim)− `y1(ỹ1)

]
+ 1−γ

2

[
`y1(2a− ĝpim)− `y1(ỹ2)

]
= 1+γ

2

[
δ + `y1(ĝpim)− `y1(ỹ2)

]
+ 1−γ

2

[− δ + `y1(2a− ĝpim)− `y1(ỹ1)
]

≥ γδ − (ĝpim − ỹ2)|`′y1
(ỹ2)|

≥ γδ − C2

√
logn
n ,

(20)
with C2 independent from γ. We may take γ = 2C2

δ

√
(log n)/n and obtain: for n large enough,

on the event Eτ , we have R(ĝpim) − R(g1) ≥ C
√
log n/n. From Lemma 3, this inequality holds

with probability at least 1/nC4 for some C4 > 0. To conclude, for any n large enough, there exists

ε > 0 s.t. with probability at least ε, R(ĝpim)−R(g1) ≥ c
√

log(eε−1)
n . where c is a positive constant

depending only on the loss function, the symmetry parameter a and the output values y1 and ỹ1.
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