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Abstract

This work presents an efficient method for image multi-zone segmentation under human
supervision. As most of the segmentation methods, our procedure relies on an energy
minimization and this energy contains a data-consistent term and a coherence term. In
this work, the pixel-by-pixel data-consistent term is based on a Support Vector Machine
designed in order to deal with color and textural information. For the coherence term,
our contribution is to take into account the gradient information of the image through
the use of a Canny edge detector. To minimize the energy, as in Blake et al. ([1]), we
use a Graph-Cut algorithm. Finally, we obtain excellent segmentation results at low
computational cost. We compare our results on an image data bank on-line1.

1 http://research.microsoft.com/vision/cambridge/i3l/segmentation/
GrabCut.htm

http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm




Résumé

Ce travail présente une méthode efficace et rapide pour segmenter en plusieurs zones
une image dans laquelle l’utilisateur a spécifié grossièrement un début de segmentation
(voir p.3). Comme la plupart des méthodes de segmentation, notre procédure repose sur
la minimisation d’une énergie composant un terme d’attache aux données et un terme de
cohérence. Dans ce travail, l’attache aux données pixel par pixel est assurée par le score
de Séparateurs à Vastes Marges ayant appris les couleurs et textures caractéristiques
des différentes régions. Pour le terme de cohérence, notre contribution est de prendre en
compte l’information de gradient de l’image à travers un détecteur de contours. Pour mi-
nimiser l’énergie, comme dans Blake et al. ([1]), nous utilisons un algorithme de coupe
minimale. Finalement, nous obtenons d’excellents résultats de segmentation pour un
temps de calcul faible. Nous comparons nos résultats sur une base de données acces-
sible en ligne2.

2 http://research.microsoft.com/vision/cambridge/i3l/segmentation/
GrabCut.htm

http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
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1 Introduction
To segment an image is to partition the image in regions having homogeneous meaning.
For instance it may be used to separate an object from its background or to find the
different areas (forest, field, montain, town) in satellite images. It has direct applications
in painting software and may be used as a first step to detect, recognize, localize object,
and more generally to understand the image.

However, state-of-the-art algorithms do not manage to segment images as perfectly
as human brains. The reason is simple. To cut objects in the image, humans use meaning
information. For instance, we know that animals have a head so we know that the red
head of a turkey has to be segmented with the turkey even if their texture are radically
different. Besides the brain combine multiple source of information to cut object such
as form, texture, color, binocular vision. Meaning information are still rather hard to
find, and is still an active research topic.

For a given image, there is no unique way of segmenting it. In this work, to circum-
vent this problem, we take the same approach as in [1]: we let a human user point out
patches representative of the regions he wants to separate (see figure 1a).

Figure 1: (a)To the left, patches put by the user to show the three parts he wants to
segment. (b) To the Right the resulting segmentation

The segmentation algorithm will learn from the given examples in order to perform
a meaning-consistent segmentation of the entire image coherent with the patches of the
user (see figure 1b). However for one given set of patches there is often several possible
segmentations. For instance if the user wants to segment a character on a photo he could
have forgotten to show where he wanted the object this one has in hand to be cut. The
algorithm will give one of the possible segmentation. If the user is not satisfied he can
add new patches to be more explicit. The algorithm computes another segmentation.
And it loops until the user obtains the results he wanted. However a good segmentation
algorithm is supposed to be able to find it at the first iteration for most of the time.
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The paper is organized as follows. Section 2 gives an overview of one iteration in
which an energy is minimized. Section 3 and 4 specify the first and second order terms
of the energy. Section 5 is dedicated to experimental results.

2 Overview of the segmentation procedure
Before giving the overview of our segmentation method, let us present formally the
segmentation problem. Let us consider a pixel set P = {p1, p2, ..., pn} and a label set
L = {l1, l2, ..., ln}. The segmentation problem consists in assigning a label λp ∈ L to
each pixel p ∈ P . For any pixel p, we assume that we have a subset Vp in P − {p} such
that q ∈ Vp implies p ∈ Vq. The typical content of the neighbourhood Vp is the set of
points close to p up to some distance threshold. For any set A ⊂ P , let λA denote the
set {λa : a ∈ A}. To segment an image, we will minimize the energy

E(λP) =
∑
p∈P

Dp(λp) +
∑

p∈P , q∈Vp

Vp,q(λp, λq), (1)

in which Dp and Vp,q are functions allowed to depend on the image colors. In our
procedure, Dp is a pixel-by-pixel data consistent term to the extent that it ensures that a
pixel should be labelled coherently with image data. For instance, a blue pixel labelled
as sky would give a lower energy than a green pixel labelled as sky. The second order
term Vp,q leads to a coherent labelling. For instance a pixel should not be labelled
foreground if all his neighbours are labelled background. So we will start from this
formalization of the problem, and try to give well-chosen Dp and Vp,q to obtain efficient
segmentations. To compute the minimum energy labelling, we resort to the graph cut
method ([8]), which is known to be fast and to obtain the exact minimum at least in the
two-labels setting. In the more than 2 regions segmentation task, we use the α-expansion
technique (see [2] and also e.g. [7, Chapter 3]).

The main steps of the algorithm are described below and presented in figure 3.

• Extract square patches on a regular thin grid of the image

• Extract features (see Section 3.1) from all those patches

• For each user-labelled region, from a Support Vector Machine (SVM), learn a
score function to distinguish the features of the region from the features of all
other regions. We have as many SVM as there are parts in the segmentation

• For each SVM, for each extracted square patch, give its associated score

• For each SVM, give the associated score to all pixels by bilinear extrapolation of
the previously obtained scores

• Use an edge detector to compute a binary image of frontiers
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Figure 2: Overview of the segmentation procedure
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• Combine score functions and edges to obtain the energy of a configuration

• Minimize this energy using a graph cut with α-expansion algorithm

• Segment the image associated to the minimum obtained

3 Color and texture learning
Most of state-of-the-art algorithms (e.g. [1, 6]) only use the color of the pixel p to
calculate the pixel-by-pixel data dependent term Dp. Here we use the color and tex-
ture information (through the local representations proposed in Section 3.1), learn their
characteristics in each region through an SVM (defined in Section 3.2) and convert the
SVM scores into the pixel-by-pixel data dependent term given in Section 3.3.

3.1 Color and texture representation

There are several ways of describing the texture at a location in the image. Here we
use square patches. These patches can be considered as a vector of colors with as many
colors as there are pixels in the patches. This ’brute representation’ can be replaced with
a more compact one based on the color information at different scales.
Typically, a 16-by-16 square patch can be rep-
resented through

• the colors of the four central pixels,

• the mean colors of the four central 2-by-2
square around the point,

• the mean colors of the four central 4-by-4
square around the point,

• the mean colors of the four central 8-by-8
square around the point (see figure).

More generally, this ’compact representation’ can be used for any square of size 2j

with j ∈ N∗. In this representation, the learning algorithm will decide at which scale
the color is pertinent. For instance, if you try to distinguish black and white stripes from
unvarying grey, the smaller scale is the important one: at this scale, colors are black or
white in one case and grey in the other. However if we try to separate black and white
stripes from unvarying white, a larger scale is the important one: at this scale, colors
are grey in one case and white in the other. Besides those features have the advantage
to take far less coordinates: ’4 scales x 2x2 squares’=16 colors for a 16x16 square
instead of 256 colors for the ’brute representation’. Finally thanks to the integral image
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trick, the computations of these features takes only few computational resources. Both
representations have been tested in the numerical experiments (see Section 5).

3.2 Gaussian kernel SVM with no constant term
Let X denote the set of possible representations of the neighbourhood of a pixel. Typ-
ically, X ⊂ R256 for a brute representation of a 16x16 square. Let k : X × X → R

be a symmetric definite positive function, i.e. a real-valued function such that for any
m ∈ N, α1, . . . , αm ∈ X and x1, . . . , xm ∈ X , we have

∑
1≤j,k≤m αjαkk(xj, xk) ≥ 0

and this sum is zero iff all the αj’s are zeroes. The function k is often referred to as
a Mercer kernel. On a training set (x1, . . . , xn, y1, . . . , yn) ∈ X n × {−1; +1}n, the
output of the standard SVM with Mercel kernel k and trade-off constant C > 0 is the
prediction function sign

( ∑n
i=1 αik(xi, x) + b

)
, where the αi’s are the solution of

maxPn
i=1 αi=0

0≤αiyi≤C

n∑
i=1

αiyi − 1/2
∑

1≤i,j≤n

αiαjk(xi, xj), (2)

and b is obtained by b = yj −
∑n

i=1 αik(xi, xj) for (any) j such that αj 6= 0. When one
wants to assess the confidence in the prediction of the output associated with the input
x, one uses the margin

∣∣ ∑n
i=1 αik(xi, x) + b

∣∣, which can be viewed as the distance to
the boundary in an appropriate feature space.

The gaussian kernel kσ : (x, x′) 7→ e−‖x−x′‖2/σ2 of width σ > 0 is the Mercer kernel
we use in our experiments. With this kernel, a new vector very different from all the
support vectors would have a score close to b Now b could have very different values
and points which are far from any point in the training set should not be classified with
high scores. So we modify the algorithm to optimize the SVM problem with the b = 0
constraint. This ensures that the answer of a SVM to unknown patches is the score
meaning ’I do not know how to classify this patch’. For these pixels, the MRF model
plays a central role and leads to a propagation of the labels between neighbouring pixels.
Technically, the problem (2) becomes

max
0≤αiyi≤C

n∑
i=1

αiyi − 1/2
∑

1≤i,j≤n

αiαjk(xi, xj). (3)

In our experiments, this last problem is solved efficiently by gradient descent in the
directions associated with each αi individually.

3.3 The pixel-by-pixel data-dependent energy term
For each label l ∈ L, consider the training set in which all patches in regions labelled l
by the user are of class +1 and all the other patches in the regions labelled by the user
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are of class −1. The previously described SVM is then trained. For any new patch, it
associates the quantity

scorel(x) =
n∑

i=1

αi,lkσ(xi, x)

which is ’all the more’ positive as the SVM is confident that the patch should be labelled
l. The center of a 2j × 2j pixels square is at an interpixel location. On a regular grid
of interpixels, we compute the associated score of the square centered at this location.
By bilinear interpolation, we obtain the score at any pixel location. For γ > 0, let us
consider the function φγ defined as for any u ∈ R,

φγ(u) =
1

1 + e−γu
.

The pixel-by-pixel data-dependent energy term is defined as

Dp(λp) = φγ

[
scoreλp(p)

]
.

The more confident we are that pixel p should be in the class λp the less the energy
Dp(λp) is. The parameter γ > 0 is chosen empirically (see Section 5).

4 The cohesion term
Let us now define the cohesion terms Vp,q(λp, λq) where p and q are neighbouring pixels.
The cohesion term relies on the two following assertions:

• in general, neighbouring pixels have the same label

• for a given image, neighbouring pixels which are both not on a contour extracted
by an edge detector are very likely to have the same label

The first assertion is not data-dependent (since it does not depend on the image to be
segmented), and is quantified by E11λp 6=λq where E1 is some positive constant. To take
into account the second assertion, a known approach consists in weighting this term by
the inverse of gradient intensity to favorize group labelling just for zone without big
intensity change. This ameliorates the results but it is hard to calibrate.
For instance, the nearby figure is an easy to
segment image. However the gradient norm is
three times higher on the top of the elephant
than on its bottom. And it is much higher on
the marks on the statue. Therefore the gradient
information is not very significant. It is rather
impossible to give a good formula or threshold
to calculate the cohesion term from local gradi-
ent norm.
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To improve the segmentation results, we use the Canny edge detector which follows
the gradient line even if the absolute value of gradient fall low. Let F be the set of pixels
on the borders output by a Canny edge detector. We take

Vp,q(λp, λq) = E11λp 6=λq + E21p/∈F,q /∈F,λp 6=λq . (4)

5 Numerical experiments
We have tested our algorithm on the data set used in [1, 6]. This data set available on-
line3 contains 50 images. As in [1], we choose the parameters of our algorithm using 15
images, and test the resulting algorithm on the remaining 35.

We have used the same control test despite the slight differnce in the segmentation
task. In the database, the user has drawn a big gray line on the border of the object he
wants to cut. The algorithm uses the interior and the exterior as the learning parts and
then segments the gray line. The quality of the segmentation is assessed through

Error rate =
number of misclassified pixels

number of pixels in the gray line
.

This problem is not very appropriate for our algorithm. First, in this database, there
is often in the outer zone, part very similar to part in the gray zone which have to be
classified foreground. Secondly as the learning patches have not been chosen to be
representative, there can be parts which are bound to be arbitrarily classified. Finally
the database did not consider images in which the background and the foreground have
same colors but different textures. Our results are resumed in the following chart.

Segmentation model Error rate
Optimization with Statistical priors ([6]) 4.65%

Our algorithm 5.98%
GMMRF; discriminatively learned γ = 20 (K = 10 full Gaussian) [1] 7.9%

Learned GMMRF parameters (K = 30 isotropic Gauss.) [1] 8.6%
GMMRF; discriminatively learned γ = 25 (K = 30 isotropic Gaussian) [1] 9.4%

Strong interaction model (γ = 1000; K = 30 isotropic Gaussian) [1] 11.0%
Ising model (γ = 25; K = 30 isotropic Gaussian) [1] 11.2%

Simple mixture model – no interaction (K = 30 isotropic Gaussian) [1] 16.3%

Texture classification The following figure shows our segmentation of an artificial
image. composed of three textures having each the same proportion of black and white
colors. In this artificial setting, there is no way of segmenting correctly the image by
looking at individual pixels, i.e. without taking into account the texture information.

Some other segmentation results are given in appendix.
3 http://research.microsoft.com/vision/cambridge/i3l/segmentation/

GrabCut.htm

http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
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Figure 3: (a) Artificial textures. (b) Segmentation result.

6 Conclusion and future work
We have proposed a segmentation procedure learning simultaneously the color and tex-
ture of the different regions through a modified SVM algorithm applied to a compact
multiscale representation of local patches. In our method, the gradient information is
used through a Canny edge detector. The resulting algorithm gives similar results in the
natural images of the benchmark database and it can cope successfully with challenging
texture segmentation.

Future work may concentrate on the following weaknesses of our segmentation al-
gorithm. We need

• to handle better the illumination variations. We already tried HSV, LAB and YUV
but the resulting segmentations were comparable, and sometimes even worse.

• to better localize the border of the regions. When a patch is astride the border, the
SVM scores are generally useless. In most cases, the coherence term allows us
to find the correct segmentation. Nevertheless when the edge detector finds out
many edges near the border (for instance when there are patterns on a tablecloth),
the algorithm is unable to find consistently the edge where it has to stop.

• to have a Canny edge detector for color images. The one we use was considering
the grey level images. As a result, on some images of the database, the edge
detector failed to localize the border. We think that our results would be highly
improved by the use of an color edge detector.

• to use an adaptive edge detector. The Canny edge detector needs thresholds as
parameters. If they are too low, borders invade the whole image. When they are
too high, there is no border. Worse, it is sometimes impossible to have one border
you want, without having unwanted lines. So in our method we first place a high
threshold. Then we segment and look for segment borders which are not lying on
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a border of Canny edge detector. At this place, we extract a little image where we
apply the edge detector at a lower threshold until getting a good border.

A Some segmentation results

Figure 4: Results. to the left, start Image, then user patches, and finally segmentation



10 Fast interactive segmentation

References
[1] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmenta-

tion using an adaptive GMMRF model. In ECCV, pages Vol I: 428–441, 2004.

[2] Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via
graph cuts. IEEE Transaction on Pattern Analysis and Machine Intelligence 23, 11
(2001), 1222–1239.

[3] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In ICCV, pages I: 105–112, 2001.

[4] J.F. Canny, A computational approach to edge detection. IEEE Trans Pattern
Analysis and Machine Intelligence, 8(6): 679-698, Nov 1986.

[5] S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images, PAMI(6), No. 6, November 1984, pp. 721-741.

[6] J. Guan and G. Qiu. Interactive Image Segmentation using Optimization with Sta-
tistical Priors. ECCV 2006.

[7] O. Juan, On some Extensions of Level Sets and Graph Cuts towards their applica-
tions to Image and Video Segmentation, PhD thesis, http://cermics.enpc.
fr/~juan/thesis.pdf, 2006.

[8] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts. IEEE PAMI, 26(2):147–159, 2004.

[9] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press. 2004

http://cermics.enpc.fr/~juan/thesis.pdf
http://cermics.enpc.fr/~juan/thesis.pdf

	Introduction
	Overview of the segmentation procedure
	Color and texture learning
	Color and texture representation
	Gaussian kernel SVM with no constant term
	The pixel-by-pixel data-dependent energy term

	The cohesion term
	Numerical experiments
	Conclusion and future work
	Some segmentation results

