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Abstract

We consider a multi-zone segmentation of a single image when user-supplied
seeds are provided in each region. We view this task as a statistical transductive
inference, in which some pixels are already associated with given zones and the
remaining ones need to be classified. Our method relies on the Laplacian graph
regularizer, a powerful manifold-learning tool that is based on the estimation of
variants of the Laplace-Beltrami operator and that is tightly related to diffusion
processes. Our segmentation is modeled as the task of finding matting coefficients
for unclassified pixels given known matting coefficients of seed pixels. The resul-
ting segmentation procedure is simple, fast, and accurate. Comparison with other
methods on natural images databases are given.





Résumé

Nous considérons le problème de segmentation multi-zone d’une image lorsque
l’utilisateur fournit des graines pour chaque région. Des pixels sont donc déjà éti-
quetés par la zone à laquelle ils appartiennent et nous souhaitons trouver à quelles
zones appartiennent les autres pixels. Pour résoudre ce problème, nous utilisons un
outil puissant d’inférence transductive : le laplacien de graphe. Cet outil puissant
d’apprentissage est basé sur l’estimation de variantes de l’opérateur de Laplace-
Beltrami d’une variété - opérateur fortement lié à des processus canoniques de
diffusion sur la variété.

Notre algorithme permet de trouver les coefficients de mélange (“matting”) de
chaque pixel non étiqueté à partir des coefficients de mélange des pixels étiquetés
fournis par l’utilisateur. La procédure en découlant est simple, rapide et précise et
peut s’interpréter comme une diffusion partant des pixels étiquetés. Nous fournis-
sons une comparaison avec les autres méthodes existantes sur des bases d’images
naturelles.
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1 Introduction
Image segmentation, the process of automatically partitioning an image into dif-
ferent homogeneous regions, is a fundamental task in a large number of appli-
cations in computer vision, medical imaging, . . . For instance, it may be used to
separate an object from its background (e.g. identification of specific anatomical
structures in medical images, tracking of persons or objects in video sequences,
. . . ), to identify different areas in images (forests, fields, mountains, towns in
satellite images), it has direct applications in painting software (alpha matting for
landscape recomposition, virtual reality, . . . ). More generally, image segmenta-
tion is one of the first fundamental steps toward better scene understanding and
object recognition.

Yet, state-of-the-art algorithms do not segment images as efficiently as hu-
mans do. To identify objects in images, human beings rely on a combination of
low-level information (e.g. color and texture) with high-level information (shape
priors, semantic cues, . . . ). Images are corrupted by various perturbing factors
such as noise, occlusions, missing parts, cluttered data, among others. The incor-
poration of high-level knowledge, which is often necessary to resolve the ambi-
guity inherent to the segmentation of complex images, is still a challenging and
active research area.

The difficulty of the task is also increased by the non-uniqueness of a segmen-
tation, i.e. there is no unique way of segmenting a given image. In this paper, we
circumvent this problem by taking a transductive learning viewpoint; we follow
the same approach as Blake et al. in [3]. A human user identifies small patches
representative of the regions he wants to segment. Given those, our algorithm
generates a meaning-consistent segmentation of the “entire” image that is coher-
ent with the user-supplied patches.

Figure 1: a) original image to be segmented. (b) The resulting segmentation with
our method

The paper is organized as follows. Section 2 presents our transductive view-
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point of image segmentation and Section 3 describes our segmentation algorithm.
Section 4 discusses the links with previous works. Section 5 gives experimental
results.

2 Transductive viewpoint of image segmentation

2.1 Transductive vs Inductive inference
One of the main issues addressed by machine learning is labeling of new data
points given set of labeled examples; classically, one observes input-output points
and wants to derive from this database (i.e. the training set) the outputs associated
with new inputs.

We usually distinguish two types of learning, inductive inference vs transduc-
tive inference. In inductive inference, the new points are not known beforehand,
so that the algorithm has to deduce from the database a mapping from (all) the
input space to the output space. When new inputs come in, the learned function
maps them to corresponding outputs.

In transductive inference, the setup is different. At the beginning, we get si-
multaneously the training set and the input test set. As a consequence, the two
steps, which consist in learning the input-to-output mapping and in consecutively
using it on new test points, can be replaced by a single one: learning the output
associated with the input test points. This more-direct approach follows Vapnik’s
principle: do not try to learn more than necessary as an intermediate step. In
addition, one can use the input test set to “estimate” the input distribution, which
turns out to be often useful, as this second key principle highlights: outputs vary
a lot only on input regions having low density.

The example of figure 2 points out the advantage of transductive segmentation
toward inductive one. We have to differentiate 2 families of points in R2. The
learning sets are represented in 2.a. An inductive classifier would find a separation
border in the middle of the two classes (2.c). Thanks to unlabeled points position
shown in 2.b, the inductive method will find a separator localized at low density
area. And the resulting edge is quite more satisfactory (2.d). Indeed, in natural
images, unlabeled points features can change slowly as in 2.b, especially due to
luminance effects.

2.2 The segmentation input space
In our multi-zone segmentation problem, the outputs associated with seed pixels
are given; the inference problem consists in determining the outputs associated
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Figure 2: a) top-left, the learning sets of points. b) top-right, the unlabeled points
in gray. c) bottom-left, the transductive algorithm separator and results. d) bottom-
right, the transductive algorithm separator and results.

with the remaining pixels of the image. This is basically a transductive classifi-
cation task in which the number of classes is the number of selected zones in the
segmentation. In machine learning, the question of representation is of crucial im-
portance. This is the first question we address, i.e. how should we represent image
pixels? Our choice for the input space is motivated by the following conditions:

• pixels coming from the same zone should be well clustered,

• clusters coming from different zones should be well separated,

• geometric (position) as well as photometric (color, texture) information
should be used to cluster pixels.

In order to capture the texture of the different objects, we associate to each pixel
a local patch centered around it: the texture is then encoded by the color level of
the patch. Finally, the pixel geometrical position is just encoded by the row and
column of the pixel.

2.3 Graph Laplacian method: the state-of-the-art transductive
inference algorithm

Graph Laplacian-based methods have emerged recently and have been success-
fully used in transductive inference ([2]), (spectral) clustering ([12]) and and di-
mensionality reduction ([1]).
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The underlying assumption of these methods is the following: the (input)
points are generated by a probability distribution with support on a submanifold
of the Euclidean space. Let M denote this submanifold. Let p be the density of
the input probability distribution with respect to the canonical measure on M (i.e.
the one associated with the natural volume element dV ). Note that M could be all
the Euclidean space (or a subset of it of same dimension) so that p can simply be
viewed as a density with respect to the Lebesgue measure on the Euclidean space.

In transductive inference, one searches for a smooth function f from the input
space into the output space such that f(Xi) is close to the associated output Yi on
the training set and such that the function is allowed to vary only on low density
regions of the input space. Let s > 0 be a parameter characterizing how low the
density should be to allow large variations of f , i.e. we consider a s-weighted
version of the density p. One of the main contributions of this work consists in
carefully choosing the parameter s as well as the correct graph Laplacian.

For the sake of clarity, let us consider a real-valued output space (such as the
space of alpha-matting coeffents in a two-zone segmentation task [10]). Depend-
ing on the confidence we assign to the training outputs, we obtain the following
optimization problem:

min
f

∑
i∈{train pixels}

ci[Yi − f(Xi)]
2

+
∫

M
‖(∇f)(x)‖2ps(x)dV (x),

(1)

where the ci’s, ∀i ci > 0, are regularization coefficients measuring how much
we want to fit the training point (Xi, Yi). Typically, ci = +∞ imposes a hard
constraint on the function f so that f(Xi) = Yi. The s-th weighted Laplacian
operator is characterized:

∫
M

f × (∆sg) psdV =
∫

M
〈∇f,∇g〉 psdV,

where f, g are infinitely smooth real-valued functions defined on M and with
compact support. By the law of large numbers, the integral in (1) can be then
approximated by

1
n

∑n
i=1 f(Xi)∆sf(Xi)p

s−1(Xi).

Unfortunately, the direct computation of ∆sf(Xi) for every possible function f is
not possible and solving (1) is intractable.

Graph Laplacian methods, which are based on a discrete approximation of
the s-th weighted Laplacian operator, propose a discrete alternative to this prob-
lem. The method is based on a neighborhood graph in which the nodes are the
input points coming from both the training and test sets. Let X1, . . . , Xn de-
note these points. Let k̃ : X × X → R be a symmetrical function giving the
similarity between two input points. The typical kernel k is the gaussian kernel
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k̃(x′, x′′) = e−
‖x′−x′′‖2

2σ2 . The degree function associated with this first kernel is
d̃(x) =

∑n
i=1 k̃(Xi, x). Let λ ≥ 0. General graph Laplacian methods use the

normalized kernel defined as

k(x′, x′′) = k̃(x′,x′′)
[d̃(x′)d̃(x′′)]λ

. (2)

For λ = 0, no normalization is done. For λ = 1/2, perfect normalization occurs.
The degree function associated with this first kernel is d(x) =

∑n
i=1 k(Xi, x).

The kernel k induces a weighted undirected graph in which the nodes are
X1, . . . , Xn and in which any two nodes are linked with an edge of weight k(Xi, Xj).
The degree of a node is defined by the sum of the weights of the edges at the node,
i.e. d(Xj).

Let W be the n× n matrix in which the generic element is k(Xi, Xj). Let D
be the diagonal n×n matrix for which the i-th diagonal element is d(Xi). Finally
let I be the identity matrix of size n× n.

In the literature, three kinds of graph Laplacian are defined through their as-
sociated matrices:

the random walk matrix: Lrw = I −D−1W,
the unnormalized matrix: Lun = D −W,
the normalized matrix: Ln = I −D−1/2WD−1/2.

For a given function f : X → R, let F be the vector defined as Fi = f(Xi).
The main result of [7] is essentially

(LrwF )i Ã
(
∆2(1−λ)f

)
(Xi)

(LunF )i Ã [p(Xi)]
1−2λ

(
∆2(1−λ)f

)
(Xi)

(LnF )i Ã [p(Xi)]
1
2
−λ

[
∆2(1−λ)

(
f

p1/2−λ

)]
(Xi)

(3)

where Ã means convergence almost sure when the sample of size n goes to infin-
ity and the kernel bandwidth h goes to zero not too rapidly (e.g. h = (log n)−1),
up to normalization of the left-hand side by an appropriate function of n and h.
Besides one can understand the role of the degree functions through the conver-
gences:

d̃(x) Ã p(x)
d(x) Ã [p(x)]1−2λ

For instance, for λ = 1/2, the three graph Laplacians are essentially the same
since the matrix D converges to the identity matrix.

The above analysis shows that instead of focusing on the intractable opti-
mization (1), one should solve the simple quadratic problem (with possibly linear
equality constraints if some ci’s are infinite):

min
F∈Rn

∑
i∈{train pixels}

ci(Yi − Fi)
2 + F tLunF (4)
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where λ = 1 − s/2. Let C be the diagonal n × n matrix for which the i-th
diagonal element is ci or 0 depending whether i corresponds to a training or test
point. Similarly let Y be the n-dimensional vector for which the i-th diagonal
element is Yi or 0 depending whether i corresponds to a training or test point. (4)
reduces to

min
F∈Rn

(F − Y )tC(F − Y ) + F tLunF,

whose solutions are the solutions of the linear system

(Lun + C)F = CY. (5)

For infinite regularization coefficient ci, we have Fi = Yi, while the other Fj’s are
the solutions of the system:

∀k ∑
j∈{test pixels} Lk,jFj = −∑

i∈{train pixels} Lk,iYi, (6)

where Li,j are the coefficients of the matrix Lun.

3 Our segmentation algorithm

3.1 Two-zone segmentation
Our segmentation algorithm is parameterized by

s ∈ [1, 2] : measures how much we believe in
“outputs should vary only on input regions
having low density” (see (1))

σg > 0 : scale of geometric neighbourhoods (see (7))
σc > 0 : scale of chrometric neighbourhoods (see (7))
m ∈ N : size of the local patch (see below)

Let C(i) denote the RGB levels of a square patch of size 2m + 1 around the pixel
i. Let xi denote the geometric position (row+column) of the pixel i. We use the
following kernel between pixels

k(i, j) = e
− ‖xi−xj‖2

2σ2
g

− ‖C(i)−C(j)‖2
2σ2

c . (7)

The labels of the training pixels are fixed to 0 or +1 depending which zone the
pixel i belongs to. Finally, our segmentation method consists in:

(1) computing Lun (see (3))
(2) solving the sparse linear system (6)
(3) thresholding the output to 1/2:

pixel j is assigned to zone 1Fj≥1/2.
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3.2 Multi-zone segmentation

The previous procedure can be simply extended to a multi-zone segmentation with
more than 2 zones. Let d denote the number of zones. The output value associated
with the k-th zone is defined to be the vector of Rd having all zero coefficients ex-
cept its k-th coefficient being equal to one. Then, in order to produce a smooth
function that is coherent with the observed outputs on the training points (espe-
cially on high-density regions), we solve (6) for each coordinate fk, k = 1, . . . , d.
This procedure can be viewed as a simple one-vs-all segmentation method; at the
end, a pixel is assigned to the zone l where l = argmaxk=1,...,dfk.

3.3 Segmentation with prior knowledge of the zones

One might want to use the algorithm without even giving the seeds. Consider a
two-zone segmentation problem: object vs background. If absolutely no infor-
mation is given on the zones, then one can use the prior proposed in [6, Section
2.2].

In some situations, the user has prior knowledge of the following form: each
pixel i has a score si measuring the likelihood that the pixel belongs to the object
zone. This is in particular the case when the user wants to segment an object
with a known texture previously-learned from a database of objects of the same
category. This information can be directly plugged into the segmentation method
by adding the term: c

∑
i∈{test pixels}(si − Fi)

2. The numerical complexity of the
method remains unchanged (see below).

3.4 Computational complexity

The computational complexity of the algorithm comes from the resolution of the
linear system (7). Using a truncated version of the gaussian kernel, the resulting
matrix becomes sparse. Solving such a system can be computed in O(n.p) where
n corresponds to the matrix dimension (the number of unlabelled points) and p
the number of non-zero entries in the matrix (the number of neighbors for all the
points). Efficient computing methods based on multicore processors can be used
to speed up the process. In comparison, graphcut algorithms which are known
to be fast use the Ford-Fulkerson min-cut max-flow algorithm. Its complexity is
O(E.f), where E is the number of edge and f the max flow. In our case, E is
equivalent to s and f is proportional to n, showing that the two algorithms have the
same complexity.
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4 Link with previous segmentation approaches

4.1 Min-cuts methods
If the labels Yi’s take their value in {−1; +1}, then a variant of our segmentation
algorithm would be to replace (4) with

min
F∈{−1;1}n

∑
i∈{train pixels}

ci(Yi − Fi)
2 + F tLunF (8)

so that steps (2) and (3) are replaced with the combinatorial task

min
F∈{−1;1}n

Fi=Yi on train pixels

F tLunF.
(9)

This problem can be efficiently solved by a graph-cut algorithm in which the edge
between two pixels i and j is weighted by four times the (i, j)-element of the
matrix W .

For s = 1 (equivalently λ = 1/2 in (2)), the matrix which appears is exactly
the one of the normalized cut eigenvalue problem ([11]). Besides, the discrete
version of our algorithm for s = 2 (equivalently λ = 0 in (2)) is comparable to
the regularization used in [5, 3, 4].

4.2 Iterative segmentation methods
Several segmentation procedures (e.g. with level sets [9], with iterated graph-
cuts [8]) rely on the evolution of a curve or region in which, at each step, the
visual properties (e.g. color and texture) of the regions are updated. This leads to
generally slow methods because of the iterative aspects of the problem. We be-
lieve that our viewpoint is conceptually and practically more satisfactory since the
“chicken-and-egg” aspect is directly encoded in our global optimization problem.

4.3 Guan and Qiu’s approach
Our framework enables to tackle the energy underlying Guan and Qiu’s approach
([6]). The minimized energy functional is the following:

min
F∈Rn

∑
i∈{train pixels}

ci(Yi − Fi)
2 + F tL2

rwF (10)

with ci = +∞ and the normalizing parameter (used in (2)) λ = 0. In other words,
they solve the discrete version of

min
f :Yi=f(Xi) on train pixels

∫
M
‖(∆f)(x)‖2p(x)dV (x) (11)
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Considering the regularizer
∫

M
‖(∇f)(x)‖2p(x)dV (x) (and its variants) seems to

us more adequate than the above regularizer since the latter gives no penalties for
linearly-varying functions.

Figure 3: Top row) Initial images. Middle row) Masks provided for the segmen-
tation. Bottom row) Results of our segmentation with s = 2. Our method out-
performed other segmentation algorithms with a score of 3.3%. The last column
corresponds to the worst segmentation with 9.15%.

5 Experimental results

5.1 Comparison with state-of-the-art algorithms

Despite the numerous segmentation databases with ground truths, there is, to our
knowledge, only one segmentation database http://research.microsoft.
com/vision/cambridge/i3l/segmentation/GrabCut.htm for which
seed points are given. This database contains seeds of a very particular type since
all pixels are labeled except for a narrow-band around the contour of the seg-
mented object.

As such, this database appears to be of limited interest since one can exploit
this particular type of geometric information to improve the results of a segmen-
tation. An “almost-naive” segmentation approach that would simply track the

http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
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skeleton of the unlabeled points would perform superbly on this data set. The
adaptative thresholding (AT) introduced by Guan and Qui in [6, Section 3.1] is
somehow designed to produce the same effect. Using the same adaptive filter,
we also greatly improved our segmentation results leading to significantly better
results than the ones reported in [6]. Yet, we argue that such post-processing step
should not be used to evaluate the quality of a segmentation method. Our results
are reported in tab.1.

Figure 3 illustrates some typical outputs of our segmentation (with adaptative
filtering and s = 2). The last column, which corresponds to the worst score (i.e.
9.25%) of our segmentation algorithm is still of great quality. Results on the same
dataset with a different parameter s = 1 lead to similar results (3.8%).

Segmentation model Error rate
GMMRF ([3]) 7.9%

Our method without AT 5.2%

Square Laplacian regularizer ([6]) 4.6%
Our method with AT 3.3%

Table 1: Pourcentage of mislabeled pixels in the region to be classified. Note
that the two last scores correspond to algorithms dedicated to segmentation with
contour information (using an adaptative filter [6]).

5.2 Discussion
5.2.1 geometric neighborhood

In the experiments, we considered a relatively small geometric neighborhood
(σc = 10). Our experiments showed that the graph laplacian is not efficient with a
too large σc. Isolated pixels appear, large zones influence become too important.
So the algorithm cannot use long range pixel similarity. To tackle this problem, we
think that this algorithm needs to be plugged with long range or global methods
such as Gaussian Mixture Color Model or SVM classifier. This could be com-
puted using the method explained in section 3.3. The graph laplacian would help
to diffuse the prior knowledge of a smart classifier.

5.2.2 comparison with graphcut

Graph laplacian based algorithms and graphcut algorithms have the same com-
plexity. They can minimize the same Energy function, by modifying the kernel.
However graph cut provide labels and our algorithm provide a real-valued score
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function. It can be used to perform alpha matting. Or it could be used as a confi-
dence score. Indeed zones different from both learning zones received an almost
null score.

5.2.3 computation time

The segmentation process last between 2 seconds and a minute on the database
images, on a Pentium 1.7 MHz. Real time is not yet reachable. But this time
could be improved by standard multicore methods for sparse system.

6 Conclusion

This work presents a simple, yet accurate segmentation procedure based on the
transductive viewpoint. We clearly illustrated the link between the continuous
formulation and its discrete counterpart, introducing a parameter λ = 1 − s/2
as a measure of the output variations on low density input regions. Our discrete
formulation leads to an energy minimization which reduces to a linear system of
size the number of pixels to be labeled. Comparison with methods was provided,
and segmentation results on natural images clearly demonstrated the quality of our
approach. Applied to the data set provided in [3], our method outperformed other
approaches. Future work will focus on improving the design of kernel to make it
better adapted to the segmentation task at hand, and on reducing the complexity
of the algorithm and making it real-time in high-resolution images.
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