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Abstract. We propose a sequential randomized algorithm, which at
each step concentrates on functions having both low risk and low variance
with respect to the previous step prediction function. It satisfies a sim-
ple risk bound, which is sharp to the extent that the standard statistical
learning approach, based on supremum of empirical processes, does not
lead to algorithms with such a tight guarantee on its efficiency. Our gener-
alization error bounds complement the pioneering work of Cesa-Bianchi
et al. [12] in which standard-style statistical results were recovered with
tight constants using worst-case analysis.

A nice feature of our analysis of the randomized estimator is to put
forward the links between the probabilistic and worst-case viewpoint. It
also allows to recover recent model selection results due to Juditsky et
al. [16] and to improve them in least square regression with heavy noise,
i.e. when no exponential moment condition is assumed on the output.

1 Introduction

We are given a family G of functions and we want to learn from data
a function that predicts as well as the best function in G up to some
additive term called the rate of convergence. When the set G is finite,
this learning task is often referred to as model selection aggregation.
This learning task has rare properties. First, in general an algorithm
picking functions in the set G is not optimal (see e.g. [10, p.14]). This
means that the estimator has to looked at an enlarged set of prediction
functions. Secondly, in the statistical community, the only known opti-
mal algorithms are all based on a Cesaro mean of Bayesian estimators
(also referred to as progressive mixture rule). And thirdly, the proof of
their optimality is not achieved by the most prominent tool in statistical
learning theory: bounds on the supremum of empirical processes.

The idea of the proof, which comes back to Barron [5], is based on a
chain rule and appeared to be successful for least square and entropy
losses [9, 10, 6,22, 7] and for general loss in [16].

In the online prediction with expert advice setting, without any prob-
abilistic assumption on the generation of the data, appropriate weight-
ing methods have been showed to behave as well as the best expert up
to a minimax-optimal additive remainder term (see [18] and references



within). In this worst-case context, amazingly sharp constants have been
found (see in particular [15,12,13,23]). These results are expressed in
cumulative loss and can be transposed to model selection aggregation to
the extent that the expected risk of the randomized procedure based on
sequential predictions is proportional to the expectation of the cumula-
tive loss of the sequential procedure (see Lemma 3 for precise statement).
This work presents a sequential algorithm, which iteratively updates a
prior distribution put on the set of prediction functions. Contrarily to
previously mentioned works, these updates take into account the vari-
ance of the task. As a consequence, posterior distributions concentrate
on simultaneously low risk functions and functions close to the previous
prediction. This conservative law is not surprising in view of previous
works on high dimensional statistical tasks, such as wavelet threshold-
ing, shrinkage procedures, iterative compression schemes ([3]), iterative
feature selection ([1]).

The paper is organized as follows. Section 2 introduces the notation and
the existing algorithms. Section 3 proposes a unifying setting to combine
worst-case analysis tight results and probabilistic tools. It details our
randomized estimator and gives a sharp expectation bound. In Sections
4 and 5, we show how to apply our main result under assumptions com-
ing respectively from sequential prediction and model selection aggrega-
tion. Section 6 contains an algorithm that satisfies a sharp standard-style
generalization error bound. To the author’s knowledge, this bound is not
achievable with classical statistical learning approach based on supre-
mum of empirical processes. Section 7 presents an improved bound for
least square regression regression when the noise has just a bounded
moment of order s > 2.

2 Notation and existing algorithms

We assume that we observe n pairs Z; = (X1,Y1),...,Zn, = (Xn,Ys) of
input-output and that each pair has been independently drawn from the
same unknown distribution denoted P. The input and output space are
denoted respectively X and ), so that P is a probability distribution on
the product space Z £ X x ). The target of a learning algorithm is to
predict the output Y associated to an input X for pairs (X,Y) drawn
from the distribution P. The quality of a prediction function g : X — Y
is measured by the risk

R(g) £ ]E]P’(dZ)L(Zy 9)7

where L(Z, g) assesses the loss of considering the prediction function g
on the data Z € Z. We use L(Z, g) rather than L[Y, g(X)] to underline
that our results are not restricted to non-regularized losses, where we
call non-regularized loss a loss that can be written as [[Y, g(X)] for some
function [ : Y x Y — R.

We will say that the loss function is convex when the function g — L(z, g)
is convex for any z € Z. In this work, we do not assume the loss function
to be convex except when it is explicitly mentioned.



For any i € {0,...,n}, the cumulative loss suffered by ‘the prediction
function g on the first ¢ pairs of input-output, denoted Zi for short, is

Ez(g) = ZL(Zjag)7

where by convention we take Yo identically equal to zero (Xo = 0).
Throughout this work, without loss of generality, we assume that ) is
convex so that convex combination of prediction functions are prediction
functions. The symbol C will denote some positive constant whose value
may differ from line to line.

To handle possibly continuous set G, we consider that G is a measur-
able space and that we have some prior distribution 7 on it. The set of
probability distributions on G will be denoted M. The Kullback-Leibler
divergence between a distribution p € M and the prior distribution 7 is

N IE‘:p dg IOg %(g) if P < T,
K(p,m) = {+o(o : ( ) otherwise
where £ denotes the density of p w.r.t. 7 when it exists (i.e. p < 7). For
any p € M, we have K(p,7) > 0 and when = is the uniform distribution
on a finite set G, we also have K(p,n) < log|G|. The Kullback-Leibler
divergence satisfies the duality formula (see e.g. [11, p.10]): for any real-
valued measurable function h defined on G,

plenjf/l {Ep(dg)h(g) + K(p, 7'(')} = — log Eﬂ-(dg)e_h(g) . (1)
and that the infimum is reached for the Gibbs distribution

A e—h(9)

T=h= E. (agye "D -m(dg). (2)
The algorithm used to prove optimal convergence rates for several dif-
ferent losses (see e.g. [9, 10,6, 22,7, 16]) is the following:

Algorithm A: Let A > 0. Predict according to #—1 > Eﬁﬂzi(dg)g,
where we recall that X; maps a function g € G to its cumulative loss up
to time <.

In other words, for a new input z, the prediction of the output given by

. . 1 n fg(x)efxzi(-‘”ﬂ'(dg)
Algorlthm Ais oy i=0 m
From Vovk, Haussler, Kivinen and Warmuth works ([20, 15, 21]) and the
link between cumulative loss in online setting and expected risk in the

batch setting (see later Lemma 3), an “optimal” algorithm is:

Algorithm B: Let A > 0. For any i € {0,...,n}, let hi be a prediction
function such that

Vz€Z  L(zhi) < —tlogE. . (ge 9.

If one of the h; does not exist, the algorithm is said to fail. Otherwise it
predicts according to ;25 Y7 ha.



In particular, for appropriate A > 0, this algorithm does not fail when
the loss function is the square loss (i.e. L(z,g) = [y — g(x)]?) and when
the output space is bounded. Algorithm B is based on the same Gibbs
distribution 7_»x, as Algorithm A. Besides, in [15, Example 3.13], it is
shown that Algorithm A is not in general a particular case of Algorithm
B, and that Algorithm B will not generally produce a prediction function
in the convex hull of G unlike Algorithm A. In Sections 4 and 5, we will
see how both algorithms are connected to our generic algorithm.

We assume that the set, denoted G, of all measurable prediction functions
has been equipped with a o-algebra. Let D be the set of all probability
distributions on G. By definition, a randomized algorithm produces a
prediction function drawn according to a probability in D. Let P be a
set of probability distributions on Z in which we assume that the true
unknown distribution generating the data is.

3 The algorithm and its generalization error
bound

The aim of this section is to build an algorithm with the best possible
convergence rate regardless of computational issues. For any A > 0, let
0 be a real-valued function defined on Z x G x G that satisfies

VpeM 3Fa(p) €D

sup { Ex(y) ag) Er(az) 108 Ep(ag)” [t@a)-2z0-0r 200 )]} <o0.
PeP

(3)
Condition (3) is our probabilistic version of the generic algorithm con-
dition in the online prediction setting (see [20, proof of Theorem 1] or
more explicitly in [15, p.11]), in which we added the variance function
Ox. Our results will be all the sharper as this variance function is small.
To make (3) more readable, let us say for the moment that

— without any assumption on P, for several usual strongly convex loss
functions, we may take §y = 0 provided that X\ is a small enough
constant (see Section 4).

— Inequality (3) can be seen as a “small expectation” inequality. The
usual viewpoint is to control the quantity L(Z, g) by its expectation
with respect to (w.r.t.) Z and a variance term. Here, roughly, L(Z, g)
is mainly controlled by L(Z,g’) where ¢’ is appropriately chosen
through the choice of #(p), plus the additive term dx. By definition
this additive term does not depend on the particular probability dis-
tribution generating the data and leads to empirical compensation.

— in the examples we will be interested in throughout this work, #(p)
will be either equal to p or to a Dirac distribution on some function,
which is not necessarily in G.

— for any loss function L, any set P and any A > 0, one may choose
6x(Z,9,9") = 3[L(Z,9) — L(Z, g/)]2 (see Section 6).

Our results concern the following algorithm, in which we recall that 7 is
a prior distribution put on the set G.



Generic Algorithm:
1. Let A > 0. Define po = #(7) in the sense of (3) and draw a function
go according to this distribution. Let So(g) = 0 for any g € G.
2. For any ¢ € {1,...,n}, iteratively define

Si(9) £ Si-1(9) + L(Zi,g) + 0x(Zi, g,§i—1)  forany g € G.

and
pi = #(m_xs;) (in the sense of (3))

and draw a function §; according to the distribution p;.
3. Predict with a function drawn according to the uniform distribution

on {go, . 7gn}

Remark 1. When 6,(Z,g,g’) does not depend on g, we recover a more
standard-style algorithm to the extent that we then have m_xs, = T_x5,.
Precisely our algorithm becomes the randomized version of Algorithm A.
When 6x(Z,g,g’) depends on g, the posterior distributions tend to con-
centrate on functions having small risk and small variance term.

For any i € {0,...,n}, the quantities S;, p; and §; depend on the training
data only through Zi,...,Z;. Let (2; denote the joint distribution of
5 % (go,...,9:) conditional to Zi, where we recall that Z; denotes
(Z1,...,Z;). Our randomized algorithm produces a prediction function
which has three causes of randomness: the training data, the way g; is
obtained (step 2) and the uniform draw (step 3). So the expected risk of
our iteratively randomized generic procedure is

€ £ Epazp) B, (dop) wit oieo B(00) = 737 Cico Beiazi)Eg, (agi) B(3:)
Our main result is

Theorem 1. Let Ax(g,g) £ Eraz)07(Z,9,9") for g € G and ¢’ € G.
The expected risk of the generic algorithm satisfies

. 20 Ax(9,94) K(p,m
€ < min {Ep(dmR(g) + Ep(ag) Br(azp) B, (agp) ==y 290 + Flen)

(4)
In particular, when G is finite and when the loss function L and the set
P are such that 0x = 0, by taking ™ uniform on G, we get

. log |G|
E< mgln R+ A(i+1) (5)

Proof. Let Z,11 € Z be drawn according to P and independent from
Zi,...,Zyn. To shorten formulae, let 7; L m_xs,; so that by definition we
have p; = (#;) in the sense of (3). Inequality (3) implies that

Ei (o)) B(9") < = 3Ea(o)(ag) Er(uz) 10g Ep(agye MEE TN Z0a0,

so by Fubini’s theorem for any i € {0,...,n},

]EF’((ZZI)]E.QZ(dgé)]z(gz)
1 —A[L Zi+ ) 9 Z'L’+ 19594
<_XE ( i 1)Ezi( 0) OgEAV(l)e [L( 1,9) Al 1 9)]



Consequently, by the chain rule (i.e. cancellation in the sum of logarith-
mic terms; [5]) and by intensive use of Fubini’s theorem, we get

1 n ~
&= ntl 2o ]E]P’(dZ{)EQi(dgg)R(gi)

1 n ANL(Zia1,9) 405 (Zin 1,981
< =570 im0 Brazi+ 1) Ea, (agg) 108 Er, ag e~ Frtn 0 ¥ (Fi1.9.00)]
_ 1

n “A[L(Zi41,9)+62(Zit1,9,8i
= _A(n+1)E1P<dzf+1)E9n(d§5‘) 2 im0 108 Ex, (agye EZi1,9)105 Zi41,9,50)]

]Eﬂ(dwe’ksf#l(g)

Er(agye 5119

—ASp,
Er(dg)€ +1(9)

]Ew(dg)efkso(y)

—ASp4+1(9)

_ 1 n
== A(n+1)En»(dz;L+1)Eﬂn,(d§3) > i log (

_ 1

== A(n+1)En»(dz;L+1)EQn(d§3) log (
1

== A(n+1)En>(dZ{‘+1)EQn(d§3) log Ex(ag€

Now from the following lemma, we obtain

€< —5mm log Enage  Fezrth enaag) Smt1(d)
n

A (n+1)R(9)+Ep( 1y E ony S Ax (9,3
_)\<n1+1) 108 Er (dg)€ [( VR(9)+Epazp)Eq, (4gn) Zizo ,\(99)]

- S0 Ar(9.8) . Ko
min {Ep(dg)R(g)+]Ep(dg>EMde>Enn<d§g> e g

Lemma 1. Let W be a real-valued measurable function defined on a
product space A1 X Az and let 1 and pa be probability distribtutions on
respectively A1 and As such that By, (day) 108 Eyy(dagye "V *1%2) < 400,
We have

_Em(dﬂl) IOgEuz(daz)e_W(al’az) < - IOgEu2(da2)eiEu1(dal)W(a17a2)'

Proof. It mainly comes from (1) (used twice) and Fubini’s theorem.
Inequality (5) is a direct consequence of (4).

Theorem 1 bounds the expected risk of a randomized procedure, where
the expectation is taken w.r.t. both the training set distribution and
the randomizing distribution. From the following lemma, for convex loss
functions, (5) implies

no A . log |G
EP(dZ?)R(EQn(déE}) %ﬂ 2o gi) = mn R+ A(()iJ‘rll)’ (6)

where we recall that (2, is the distribution of g5 = (go, ..., gn) and A is
a parameter whose typical value is the largest A > 0 such that §y = 0.

Lemma 2. For convex loss functions, the doubly expected risk of a ran-
domized algorithm is greater than the expected risk of the deterministic
version of the randomized algorithm, i.e. if p denotes the randomizing
distribution,

Ep(zr)R(Ep(ag)9) < Ep(zm)Epag) R(9)-
Proof. The result is a direct consequence of Jensen’s inequality.

In [12], the authors rely on worst-case analysis to recover standard-style
statistical results such as Vapnik’s bounds [19]. Theorem 1 can be seen
as a complement to this pioneering work. Inequality (6) is the model



selection bound that is well-known for least square regression and entropy
loss, and that has been recently proved for general losses in [16].

Let us discuss the generalized form of the result. The r.h.s. of (4) is a
classical regularized risk, which appears naturally in the PAC-Bayesian
approach (see e.g. [8,11,4,24]). An advantage of stating the result this
way is to be able to deal with uncountable infinite G. Even when G
is countable, this formulation has some benefit to the extent that for
any measurable function h : G — R, min,e m{E,ag)h(g) + K(p, )} <
min {h(g) +log 7 (9)}.

Our generalization error bounds depend on two quantities A and 7 which
are the parameters of our algorithm. Their choice depends on the precise
setting. Nevertheless, when G is finite and with no special structure a
priori, a natural choice for 7 is the uniform distribution on G.

Once the distribution 7 is fixed, an appropriate choice for the parameter
A is the minimizer of the r.h.s. of (4). This minimizer is unknown by the
statistician, and it is an open problem to adaptively choose A close to it.

4 Link with sequential prediction

This section aims at illustrating condition (3) and at clearly stating in
our batch setting results coming from the online learning community.
In [20, 15, 21], the loss function is assumed to satisfy: there are positive
numbers 1 and c¢ such that

VpeM 3Jg,:X =Y VreX Vyey ]
L{(z,y),90] < —%logEP(dg)e*"L[(wvy)»g] (7)

Then (3) holds both for A = n and 6x(Z,9,9') = —(1 — 1/c)L(Z,q")
and for A = n/c and §5(Z,g,9") = (c — 1)L(Z,g), and we may take in
both cases 7(p) as the Dirac distribution at g,. This leads to the same
procedure which is described in the following straightforward corollary
of Theorem 1.

Corollary 1. Let Gr_yx, be defined in the sense of (7). Consider the
algorithm which predicts by drawing a function in {gﬁﬂ]):0 o Gn_ps )
according to the uniform distribution. Under assumption (7), the expected
risk of this procedure satisfies

. K(p,m)
£< ¢ min {Epao) R(9) + 1055 ) (8)

This result is not surprising in view of the following two results. The first
one comes from worst case analysis in sequential prediction.

Theorem 2 (Haussler et al. [15], Theorem 3.8). Let G be countable.
For any g € G, let X;(g) = 22:1 L(Z;,g) (still) denote the cumulative
loss up to time i of the expert which always predict according to function
g. The cumulative loss on Z1' of the strategy in which the prediction at

time i is done according to Gr_py,_, N the sense of (7) is bounded by

infgeg{cXn(g) + %logwfl(g)}. (9)



The second result shows how the previous bound can be transposed into
our model selection context by the following lemma.

Lemma 3. Let Z,41 be a random wvariable independent from Z7{' and
with the same distribution P. Let A be a learning algorithm which pro-
duces the prediction function A(Z%) at time i + 1, i.e. from the data
Zi = (Z1,...,Z;). Let L be the randomized algorithm which produces a
prediction function L(ZT') drawn according to the uniform distribution
on {A0), A(Z1),..., A(Z1)}. The (doubly) expected risk of L is equal
to %H times the expectation of the cumulative loss of A on the sequence
VAR

Proof. By Fubini’s theorem, we have

1 Limo Brazp RA(ZD]
n+l im0 Ep(dzﬁl)L[ZHl’ A(Zi)}
= %HE]P’(dZI"*l) Yo LlZit1, A(Z1)).

ER[L(Z1)]

For any n > 0, let ¢(n) denote the infimum of the ¢ for which (7) holds.
Under weak assumptions, Vovk ([21]) proved that the infimum exists
and studied the behaviour of ¢(n) and a(n) = ¢(n)/n, which are key
quantities of (8) and (9). Under weak assumptions, and in particular in
the examples given in the table, the optimal constants in (9) are ¢(n) and
a(n) ([21, Theorem 1]) and we have c¢(n) > 1, n — c(n) nondecreasing
and 7 — a(n) nonincreasing. From these last properties, we understand
the trade-off which occurs to choose the optimal 7). Table 1 specifies (8)
in different well-known learning tasks. For instance, for bounded least
square regression (i.e. when |Y| < B for some B > 0), the generalization
error of the algorithm described in Corollary 1 when n = 1/(2B?) is
bounded with minpeM{EP<d9)R(g) + 232%}.

Output space Loss L(Z,g) c(n)
Entropy loss Y =10;1] Y log (ﬁ) cn)=1ifn<1
[15, Example 4.3] +(1—=Y)log (#&)) c(n) =oc0ifn>1
Absolute loss game| Y = [0;1] Y — g(X)] m
[15, Section 4.2] =1+4+n/44+o0(n)
Square loss Y =[-B,B] Y — g(X)]? c(n) =1if n < 1/(2B%)
[15, Example 4.4] c(n) = +oo if n > 1/(2B?)

Table 1. Value of ¢(n) for different loss functions. Here B denotes a positive real.

5 Model selection aggregation under Juditsky,
Rigollet and Tsybakov assumptions ([16])

The main result of [16] relies on the following assumption on the loss
function L and the set P of probability distributions on Z in which we




assume that the true distribution is. There exist A > 0 and a real-valued
function 1 defined on G x G such that for any P € P

Ep(az) M HE9)"HZ < y(g/ g)  forany g,¢' € G
¥(g,9)=1  foranygeg (10)
the function [g — 1/)(9',9)] is concave for any ¢’ € G

Theorem 1 gives the following result.

Corollary 2. Under assumption (10), the algorithm which draws uni-
formly its prediction function in the set {Eﬂﬂzo(dg)g, N RN (d)9}
satisfies

: K(p,m)
€< by {Ep(ag) R(9) + An+D) S (11)

Besides for convez losses,

n . K(p,m
R(%ﬂ i=0 Eﬂ_xzi(dg)g) < ;258[ {Ep(dg)R(g) + A(ilp+1)) : (12)

Proof. We start by proving that condition (3) holds with §, = 0, and that
we may take m(p) as the Dirac distribution at the function E,44)g. By
using Jensen’s inequality and Fubini’s theorem, assumption (10) implies
that

Er(p)(dg") Bp(dz) 108 Ep(ag) e EZ9) = E(Z:0)]

Ep(az) 10g Ep(agyeH 7 Potag 9 ) = L(Z:0)
log Ep(dg)]EIP(dZ)eML(ZJEp(dg')9/)—L(Zﬁg>]
10g Ey(ag) ¥ (Ep(ag) g’ 9)
log Y(Epag 9, Enag)g)

)

VA VARVAN

so that we can apply Theorem 1. It remains to note that in this context
our generic algorithm is the one described in the corollary.

In this context, our generic algorithm reduces to the randomized version
of Algorithm A. From Lemma 2, for convex loss functions, (11) also holds
for the risk of Algorithm A. Corollary 2 also shows that the risk bounds
of [16, Theorem 3.2 and the examples of Section 4.2] hold with the same
constants for our randomized algorithm (provided that the expected risk
w.r.t. the training set distribution is replaced by the expected risk w.r.t.
both training set and randomizing distributions).

On assumption (10) we should say that it does not a priori require the
function L to be convex. Nevertheless, any known relevant examples
deal with strongly convex loss functions and we know that in general
the assumption will not hold for SVM loss function and for absolute loss
function (since 1/n model selection rate are in general not achievable for
these loss functions).

One can also recover the results in [16, Theorem 3.1 and Section 4.1]
by taking 0x(Z,g,9") = 1zes([sup,eg L(Z, g) — infyeg L(Z, g)] with ap-
propriate set S C Z. Once more the aggregation procedure is different
because of the randomization step but the generalization error bounds
are identical.



6 A standard-style statistical bound

This section proposes new results of a different kind. In the previous sec-
tions, under convexity assumptions, we were able to achieve fast rates.
Here we have assumption neither on the loss function nor on the prob-
ability generating the data. Nevertheless we show that our generic algo-
rithm applied for §\(Z,g,9’) = AL(Z,g) — L(Z, ¢')]*/2 satisfies a sharp
standard-style statistical bound.

Theorem 3. Let V(g,g') = Erazy{[L(Z,9) — L(Z,¢))? } Our generic
algorithm applied with §x(Z,g,9') = ANL(Z,9) — L(Z,¢")]*/2 and #(p) =
p satisfies

. x SR Vies) |, K
€ < min {Eoap) R(9) + 3Eptan) Brtazp) Bar, cag) S22 + 5273

(13)

Proof. To check that (3) holds, it suffices to prove that for any z € Z,

E,(agr 1Og]Ep(dg)6>\[L<Z»g’)7L(z,g)]7¥[L<Z‘g/)7L(z’g)]2 0.

To shorten formulae, let a(g’, g) = A[L(z,g") — L(z, g)] By Jensen’s in-
equality and the following symmetrization trick, the previous expectation
is bounded with

ala’ _a2".9)
Ep(agnEp(agy e 2, 2
1 1g—eiehe) “a(g’g)— 2l
< §Ep(d9’)Ep(d9)ea(g 2 2 t 3Ep(agn Ep(agye 9 2
_a?(g’.9)
< Ep(ag) Ep(ag) cosh (a(g, g'))e™ 2
<1
(14)

where in the last inequality we used the inequality cosh(t) < /2 for
any t € R. The first result then follows from Theorem 1.

To make (13) more explicit and to obtain a generalization error bound in
which the randomizing distribution does not appear in the r.h.s. of the
bound, the following corollary considers a widely used assumption that
relates the variance term to the excess risk. Precisely, from Theorem 3,
we obtain (proof omitted of this extended abstract)

Corollary 3. Under the generalized Mammen and Tsybakov’s assump-
tion which states that there exist 0 < v < 1 and a prediction function g
(not necessarily in G) such that V(g,g) < c[R(g) — R(g)]” for any g € G,
the expected risk of the generic algorithm used in Theorem 3 satisfies

— Whenvy=1,

~ . c ~ K(p,m
€~ R(§) < min {12 [Epan R0 - RO + 58 5m

In particular, for G finite, m the uniform distribution, A = 1/2¢,

~ . 4clog |G|
when § belongs to G, we get £ < min R(g) + =5

—When’y<1forany0<ﬂ<1andforR() R(g) — R(9),

E—-R(g) < {% (Ep(dg) [R( )+ C)‘RW( )I\(;p:;)))} N




To understand the sharpness of Theorem 3, we have to compare this
result to the one coming from the traditional (PAC-Bayesian) statistical
learning approach which relies on supremum of empirical processes.
Theorem 4. We still use V(g,9') = Epaz){[L(Z,9) — L(Z,¢')]*}. The
generalization error of the algorithm which draws its prediction function
according to the Gibbs distribution m_xx, satisfies

Epazp)En_y 5, (a9 R(9')
< min {Epmg)R(g) + KDL 4 NE,(ag) Br(azp) En_ 5., (a9 V (9, 9')

A5 X Eptag Brazp) En_y 5, (ag) [L(Zi, 9) — L(Zs, 9’)]2}-
(15

Let ¢ be the positive convex increasing function defined as o(t) 2 e 21

and ©(0) = 3 by continuity. When sup,cg cq |L(Z,9") — L(Z, g)| < B,
we also have

Erazp)Br_y 5, (1) R(9') < min {Ep<dg)R(9)
+AP(AB)Ep(ag) Bp(azp)Er_y s, a9V (9,9") + W}

Proof. Let us prove (16). Let r(g) denote the empirical risk of g € G,
that is r(g) = Z”T(g). Let p € M be some fixed distribution on G. From
[3, Section 8.1], with probability at least 1 — ¢, for any u € M, we have

Eu(dg’)R(gl) - Ep(dg)]?(g)
< Euwgnr(9") — Epag)r(9) »
+FAPAB)E (4 Ep(ag)V (g, g) + Klemitosc )

K(p,m)
an

w\_/

(16)

Since 7_xx, minimizes p— E,qgn7r(g9") + , we have

EW—,\ZW (dg’)R(g/) )
,m)+log(e™
< Epg) R(9) + ApAB)Er_, ;. (agnEp(ag)V (g, 9') + Hlmosle )

Then we apply the following inequality: for any random variable W,
EW < E(W V0) = [;"P( W>udu—f0 “IP(W > log(e!))de. At
last we may choose the distribution p minimizing the upper bound to
obtain (16). Similarly using [3, Section 8.3], we may prove (15).

Remark 2. By comparing (16) and (13), we see that the classical ap-
proach requires the quantity sup cg gl L(Z, g )—L(Z,g)| to be bounded
and the unpleasing function ¢ appears. In fact, using technical small ex-
pectations theorems (see [2, Lemma 7.1]), exponential moments condi-
tions on the above quantity would be sufficient.

The symmetrization trick used to prove Theorem 3 is performed in the
prediction functions space. We do not call on the second virtual training
set currently used in statistical learning theory (see [19]). Nevertheless
both symmetrization tricks end up to the same nice property: we need
no boundedness assumption on the loss functions. In our setting, sym-
metrization on training data leads to an unwanted expectation and to a
constant four times larger (see the two variance terms of (15) and the
discussion in [3, Section 8.3.3]). In particular, deducing from Theorem 4
a corollary similar to Corollary 3 is only possible through (16), because
of the last variance term in (15) (since X, depends on Z;).



7 Application to least square regression

This section shows that Theorem 1 used jointly with the symmetrization
idea developed in the previous section allows to obtain improved conver-
gence rates in heavy noise situation. We start with the following theorem
concerning twice differentiable convex loss functions.

Theorem 5. Let B > b > 0. Consider a loss function L which can be
written as L[(z,y),g] = lly, g(z)], where the functionl:Y x Y — R is
twice differentiable and convexr w.r.t. the second variable. Let I' and 1’
denote respectively the first and second derivative of the function | w.r.t.

the second variable. Let A(y) = sup [l(y,a) — I(y, ﬂ)] Assume
la|<b,|B|<b

A ; U (y,y') 8
that Ao = \y|gg,1|fy/\§b W > 0 and that sup eg e x|g(x)] <.
For any 0 < A < Ao, the algorithm which draws uniformly its prediction
function among Ew_kzo(dg)g,. N RN Y satisfies

. K(p,m
€< mig {]E"‘dg)R(g) + X0
2
+E{%(Y>1M(y)<1;|y|>3 + [A(Y) - %]1AA(Y)Z1;|Y|>B}-

Proof. According to Theorem 1, it suffices to check that condition (3)
holds for 0 < A < Ao, #(p) the Dirac distribution at E,4q)g and

. 23y A2
0x[(2,9), 9,9'] = 6x(y) = min [Cﬂ(y) + %] Ly >5

AA2
= z(y)le(y)<1;\y\>B + [A(y) - %]1>\A(y)21;\y\>3'

— For any z = (z,y) € Z such that |y| < B, for any probability

distribution p and for the above values of A and Jx, we have
Ep(dg)eA[L(z,Ep(dg/)9')*L(zyg>*5,\(zyg,9')]
— MEE 409 >]Ep(dg>67>‘l[y’g(m)]

< ekl[y,]Ep(dg/)9/(96)]—”[%]]5,;(49)9(90)] =1,

where the inequality comes from the concavity of y’ — e M) for
A < Xo. This concavity argument goes back to [17, Section 4], and
was also used in [7] and in some of the examples given in [16].

— For any z = (z,y) € Z such that |y| > B, for any 0 < ¢ < 1, by using
twice Jensen’s inequality and then by using the symmetrization trick
presented in Section 6, we have

E,p(dqye (LG Fotag’)9) =L (:9) =03 (2,9:97)]
= e AW, 4y ECEotag) 9 L9
< 676>\(y)]Ep(dg)6>\[]Ep<dg/)L(z,g/)—L(z,g)]
< e NWIE, 40 B p(ag e LG9 L9
= ¢ OB, 1) Byagy exp { M1 = Q[L(2, ') = L(z, 9)]
_%)‘2(1 - C)Q[L(ngl) - L(ng)]Q
HXCL(2,9') = Lz, 9)] + 3X3(1 = O%[L(2, ') — L(z,9)*}
S 676}‘<y)IEp(olg)]Ep(alg’) exp {)‘(1 - C) [L(27 g/) - L(Zv g)}
—IN(1 = QPIL(z0) — Lz ) + ACAW) + 1021 - 2A%) }
< e W ACAWFFA(1-0)?A%(y)



Taking ¢ € [0; 1] minimizing the last r.h.s., we obtain that

Ep(dweML(z’Er)(dQ’)9/)—L(zyg)—5,\(zyg,g')] <1

From the two previous computations, we obtain that for any z € Z,

log Ep((ig)e)\[L(ZJEP(dg/)g’)*L(zvg)*éx(zvgyg’)] <0

so that condition (3) holds for the above values of A, #(p) and dx, and
the result follows from Theorem 1.

In particular, for least square regression, Theorem 5 can be stated as:

Theorem 6. Assume that sup,c¢ ,cxl9(x)] < b for some b > 0. For

any 0 < X < 1/(8b%), the algorithm which draws uniformly its prediction
function among IETF*AE()(dg)g,. < Ba_ s, (a9)9 satisfies:

. K(p,m
&< ;Hglba {Eﬂ<d9)R(9) + >\((np+1))} JrE{ (4b|Y| - %)1\Y\2(4M)*1}

(17)
FE{SN?IY 1 53)-1/2_pejyj<(apn)-1 }-

Proof. The result follows from Theorem 5, computations of \g = W

and A(y) = 4bly|, and from the optimization of the parameter B.

Theorem 6 improves [16, Corollary 4.1] and [7, Theorem 1]. From it, we
can deduce the following improvement of [16, Corollary 4.2].

Corollary 4. Under the assumptions

SUP,eg Lexlg(®)| <b  for some b >0
EY|]* <A for some s > 2 and A >0

g finite
for A= Cl(login‘gl)zﬂﬁz) where C1 > 0, the algorithm which draws uni-
formly its prediction function among Ewﬁzo(dwg,. cEr_y 5, (dg)g salis-
fies

for a quantity C which depends only on C1, b, A and s.

Proof. The moment assumption on Y implies o* E|Y |71}y |>q < A for
any 0 < ¢ < s and a > 0. As a consequence, the second and third
term of the r.h.s. of (17) are respectively bounded with 4bA(4b)\)*~! and
8ADZA(2)) 57272 50 that (17) can be weakened into £ < mingegR(g) +
foglfl 4 ¢/ 4 C"AY2 for €' = A(4b)" and C" = A2>T*/?b?. This
gives the desired result.

In particular, with the minimal assumption E|Y|? < A (i.e. s = 2), the
convergence rate is of order nY 2 and at the opposite, when s goes
to infinity, we recover the n~! rate we have under exponential moment
condition on the output.



8 Conclusion and open problems

A learning task can be defined by a set of reference prediction functions
and a set of probability distributions in which we assume that the distri-
bution generating the data is. In this work, we propose to summarize this
learning problem by the variance function of the key condition (3). We
have proved that our generic algorithm based on this variance function
leads to optimal rates of convergence on the model selection aggregation
problem, and that it gives a nice unified view to results coming from
different communities. Our results concern expected risks and it is an
open problem to provide corresponding tight exponential inequalities.
Besides without any assumption on the learning task, we proved a Bern-
stein’s type bound which has no known equivalent form when the loss
function is not assumed to be bounded. Nevertheless much work still
has to be done to propose algorithms having better generalization error
bounds that the ones based on supremum of empirical processes. For
instance, in several learning tasks, Dudley’s chaining trick [14] is the
only way to prove risk convergence with the optimal rate. So a natural
question and another open problem is whether it is possible to combine
the better variance control presented here with the chaining argument
(or other localization argument used while exponential inequalities are
available).

Acknowledgement. I would like to thank Nicolas Vayatis, Alexandre
Tsybakov, Gilles Stoltz and the referees for their very helpful comments.
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