Motivation Contributions
0000000 0000000000

A randomized online learning algorithm for
better variance control

Jean-Yves Audibert

ParisTech - Ecole des Ponts
CERTIS

Conference on Learning Theory, 2006



Motivation

Contributions
0000000

0000000000

Outline

o Motivation
@ The learning task
@ The progressive mixture rule

@ A striking sequential prediction result in least square
regression



Motivation Contributions
0000000 0000000000

Outline

o Motivation
@ The learning task
@ The progressive mixture rule
@ A striking sequential prediction result in least square
regression

9 Contributions
@ The variance function
@ The algorithm and its risk bound
@ Application to general loss function
@ Application to least square loss



Motivation Contributions
9000000 0000000000

The learning task

A standard learning framework...

@ Training data Z/: Z, = (X, Y;) i=1
@ Prediction function: g: X — )Y

@ Loss: L(Z,9)

@ Risk: R(g) = Epz)L(Z,9)

@ Model:

e P = the set of proba on Z in which we assume that P is
e G = a set of prediction functions

. Qid. ~P

@ Best prediction functionin G: g = argmingR

The (L, P, G)-learning task:

Predict as well as g.
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A standard learning framework...

@ Training data Z/: Z, = (X, Y;) i=1
@ Prediction function: g: X — )Y

@ Loss: L(Z,9)

@ Risk: R(g) = Epz)L(Z,9)

@ Model:

e P = the set of proba on Z in which we assume that P is
e G = a set of prediction functions

. Qid. ~P

@ Best prediction functionin G: g = argmingR

The (L, P, G)-learning task:

Predict as well as g. More formally: find a mapping Z; — § such that
for any P € P, we have
EzR(g) < R(g)+ small term
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The learning task

A standard learning framework...

@ Trainingdata Z/: Z = (X, Y;) i=1,....,n iid. ~P
@ Prediction function: g: X — )Y

@ Loss: L(Z,9)

@ Risk: R(g) = Epz)L(Z,9)

@ Model:

e P = the set of proba on Z in which we assume that P is
e G = a set of prediction functions

@ Best prediction functionin G: g = argmingR

The (L, P, G)-learning task:

Predict as well as g. More formally: find a mapping Z; — § such that
for any P € P, we have
EzR(g) < R(g)+ C(log|G|)/n for L(Z,g) =[Y — g(X)?
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The learning task

...however unusual properties

@ To be “optimal”, we need to choose g outside the model G.

@ For least square loss (i.e. L(Z,9) = [Y — g(X)]?), the only
known optimal algorithm is the progressive mixture rule
(see next slides)

@ The proof is not based on bounds on the supremum of
empirical processes
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The progressive mixture rule

The progressive mixture rule
Notation

@ Cumulative loss of g up to time i: X;(g) = Z/ 1L(Z,9)
@ Prior distributionon G: =
@ Gibbs distribution: forany h: G — R,

)

— : —h(9g) .
m_n(dg) = Ey e &) m(dg)x e m(dg)

Key idea:

m_p concentrates on the prediction functions for which h is minimum.

@ Typical example of Gibbs distribution: 7_,5 with A > 0
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The progressive mixture rule

The progressive mixture rule
Definition and property

Let A > 0. Predict according to § = 715 > o Ex_,; (dg)G-

Property [Catoni (1999), Juditsky, Rigollet & Tsybakov (2005)]:

For the least square loss, under the assumptions

@ the output has exponential moments
(i.e. Ja,M >0 Vx c X E[e*!Vl|X =x] < M)

@ the functions of the model are uniformly bounded
IB>0Vgeg,|gll« <B

@ ) small enough, i.e. A < C(«o, M, B)

log |G|
A(n+1)°

ER(G) < R(9) +
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A striking sequential prediction result in least square regression

Sequential prediction framework

@ G = set of prediction functions (or static experts)
@ No probabilistic assumption on the data

@ Context: At time /, you knpw Zy,...,Z;i_1 and you have to
give a prediction function h;, which will be only used to
predict the output associated with X.

@ Target: Predict as well as the best function in terms of
cumulative loss:

S04 L(Z, by) < mingeg £n(g) + small term
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A striking sequential prediction result in least square regression

Sequential prediction in least square setting

Key idea [Vovk (1990), Haussler, Kivinen & Warmuth (1998)]:

Assume that Y = [—B; B] (i.e. bounded outputs). Let A = 2‘@.
Forany i e {1,...,n}, let h; be a prediction function such that

Vzez  L(z,h)<-1llogE dg)€ =9,

Toazr;_4(

~

@ h; exists even if it has no simple explicit formula!

Theorem [Haussler, Kivinen & Warmuth (1998)]:

The cumulative loss on Z{" of the strategy in which the
prediction at time i is done according to h; is bounded with

Mingeg £n(g) + 2B%log [G|.
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A striking sequential prediction result in least square regression

Theorem [Haussler, Kivinen & Warmuth (1998)]:

The strategy in which the prediction at time i is done according to
satisfies 27:11 L(Z, hi—1) <infgeg Tni1(g) +2B%log |G|
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A striking sequential prediction result in least square regression

Theorem [Haussler, Kivinen & Warmuth (1998)]:

The strategy in which the prediction at time i is done according to hj
satisfies MUL(Z, hiq) < infyeg Tni1(9) + 2B log |G-

{

The algorithm predicting according to g = ,,%“ 27:0 h; satisfies

ER(9) < R(g) + 2B2'%19

n+1

@ To be compared with
ER(progressive mixture rule) < R(g) + C(a, M, B)

@ Worst case analysis leads to

e optimal convergence rate for our learning task
@ even better constants when the output is bounded!
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The variance function

The new concept: the variance function

Variance function associated with the (L, P, G)-learning task

Let G be the set of all prediction functions (not only those in G).
Forany A > 0, let vy : Z x G x G — R be such that

VpprobaonG 3#(p)probaonG VPP

E#(o)(0g")Er(az) 109 E (o) € Lze)-Lz0-Zad)] <O
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The variance function

The new concept: the variance function

Variance function associated with the (L, P, G)-learning task

Let G be the set of all prediction functions (not only those in G).
Forany A > 0, let vy : Z x G x G — R be such that

VpprobaonG 3#(p)probaonG VPP

E#(p)(do')Er(02) 109 E (o) €” L129)-Lz9-nzo0)] <O0.

To be compared with

log Ep(az) e EraL(Z.9)~L(Z,9)—¢(M\Varsar) L(Z.9)] < (.
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The variance function

The new concept: the variance function

Variance function associated with the (L, P, G)-learning task

Let G be the set of all prediction functions (not only those in G).
Forany A > 0, let vy : Z x G x G — R be such that

VpprobaonG 3#(p)probaonG VPP

E#(p)(do')Er(02) 109 E (o) €” L129)-Lz9-nzo0)] <O0.

Probabilistic version of Vovk, Haussler, Kivinen and Warmuth’s condition:
Vzez  L(zh) <-1l0gE, |, (e 9.
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The new concept: the variance function

Variance function associated with the (L, P, G)-learning task

Let G be the set of all prediction functions (not only those in G).
Forany A > 0, let vy : Z x G x G — R be such that

VpprobaonG 3#(p)probaonG VPP

E#(p)(do')Er(02) 109 E (o) €” L129)-Lz9-nzo0)] <O0.

Probabilistic version of Vovk, Haussler, Kivinen and Warmuth’s condition:

vzez  L(z,h) <-1llog Er_z (o) 8 LE9).
VzeZ  L(z,h,) < —1logE,qgqge 29
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Variance function associated with the (L, P, G)-learning task

Let G be the set of all prediction functions (not only those in G).
Forany A > 0, let vy : Z x G x G — R be such that

VpprobaonG 3#(p)probaonG VPP

E#(p)(do')Er(02) 109 E (o) €” L129)-Lz9-nzo0)] <O0.

Probabilistic version of Vovk, Haussler, Kivinen and Warmuth’s condition:

Vzez  L(zh) <-1l0gE, |, (e 9.
VzeZ  L(z,h,) < —1l0gE,qgqge 29
VP E‘shp (dg’)E]P’(dZ) IOg Ep(dg) eA[L(ng )_L(ng)] S 0
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Variance function associated with the (L, P, G)-learning task

Let G be the set of all prediction functions (not only those in G).
Forany A > 0, let vy : Z x G x G — R be such that

VpprobaonG 3#(p)probaonG VPP

E#(p)(do')Er(02) 109 E (o) €” L129)-Lz9-nzo0)] <O0.

Probabilistic version of Vovk, Haussler, Kivinen and Warmuth’s condition:

Vzez  L(zh) <-1l0gE, |, (e 9.
VzeZ  L(z,h,) < —1l0gE,qgqge 29

VP E‘shp (dg’)E]P’(dZ) IOg Ep(dg) eA[L(ng )_L(ng)] S 0
=wn=0 and 7t(p) = on,
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The variance function

The new concept: the variance function

Variance function associated with the (L, P, G)-learning task

Let G be the set of all prediction functions (not only those in G).
Forany A > 0, let vy : Z x G x G — R be such that

VpprobaonG 3#(p)probaonG VPP

E#(o)(0g")Er(az) 109 E (o) € Lze)-Lz0-Zad)] <O

Whatever L, P and G are, we can take

n(2,0.9) = 5[Lz.0) - Lzg)*  and  #()=p
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The algorithm based on the variance function

Contributions
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Generic Algorithm:

@ Let A > 0. Let Sy(g) =0forany g € G.

Define o = #(7) in the sense of the variance function definition.

Draw a function go according to this distribution.

@ Foranyic {1,...,n}, iteratively define

Si(9) = Si—1(9) + L(Z,9) + va(Z,9,8i—1)  foranygeg.

and
pi & *(m_xs)
and draw a function g; according to the distribution p;.

@ Predict with a function drawn according to the uniform
distribution on {go, ..., gn}-
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The algorithm and its risk bound

Its generalization error bound

Main theorem

Let = be uniform on g finite. B
Let Ax(9,9) £ Epazyva(Z,9,9') forge Gand g’ € G.
The expected risk of the generic algorithm satisfies

ER(G) < R(@) + EA(G, 9) + 2,

where E denotes the expectation w.r.t. the training data
distribution and the randomizing distributions.
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Application to general loss function

Symmetrization trick on prediction functions:

Let z € Z and a(g', 9) = A[L(z,9') — L(z,g)]. We have

_ gg)
E (") E(0g) €299 <1

@ Whatever L, P and G are, we can take

n(2.0.9)= 3lLz0) - Lz ad i) =p

Corollary of the main theorem

Let V(9,9') = Ep(az){[L(Z,9) — L(Z,9')]?}. Our generic
algorithm applied with v\(Z,9,9’) = A\[L(Z,g) — L(Z,9)]?/2
and 7 (p) = p satisfies

ER(Q) < R(@) + 3EV(3, ) + 225}
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Application to general loss function

Symmetrization trick on prediction functions:

Let z € Z and a(g', 9) = A[L(z,9') — L(z,g)]. We have

_ gg)
E (") E(0g) €299 <1

@ Whatever L, P and G are, we can take

n(2.0.9)= 3lLz0) - Lz ad i) =p

Corollary of the main theorem

Let V(9,9') = Ep(az){[L(Z,9) — L(Z,9')]?}. Our generic
algorithm applied with v\(Z,9,9’) = A\[L(Z,g) — L(Z,9)]?/2
and 7 (p) = p satisfies

ER(9) < R(@) + 3EV(3,§) + 224}




ER(9) < R(3) + 3EV(3,0) + w22

Generalized Mammen and Tsybakov’s assumption

There exist 0 < v < 1 and a prediction function g* (not necessarily in
G) such that V(g,g*) < c[R(g) — R(g*)]” forany g € G

@ When~ =1, U
ER(9) - R(g*) < 12 [R(@) — R(g)] + ok

In particular, for A = 1/2¢, when g* belongs to G, we get
ER(@) < R(@) + 55

n+1

@ When v < 1,forany 0 < 3 < 1and for R 2 R(g) — R(g"),

)
BA(9) - Alg") < {3 (1A-+ oxr) + 5)} v (:25) ™
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Application to general loss function

Making the bound more explicit

ER(G) < R(3) + 3EV(§,8) + 229,

Generalized Mammen and Tsybakov’s assumption

There exist 0 < v < 1 and a prediction function g* (not necessarily in
G) such that V(g,g*) < c[R(g) — R(g*)]” forany g € G

@ When~ =1, ll
ER(G) - R(g*) < 2 [R(9) - R(g")] + r=adsiken

In particular, for A = 1/2¢, when g* belongs to G, we get
ER(9) < R(@) + *49.
@ When~ < 1,forany 0 < 8 < 1 and for R £ R(g) — (g)
ER(9) - R(g") < {5 (1R + oA+ 3895 ) } v (25

A(n+1
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Application to general loss function

Comparaison with standard-style risk bounds

Recall V(g,9') = Epaz){[L(Z,9) — L(Z,9")]?}
@ Symmetrization on the prediction functions space leads to g

such that ER(9) < R(g) + 5EV(3,0) + Eg’\ﬂ)
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Application to general loss function

Comparaison with standard-style risk bounds

Recall V(g,9') = Epaz){[L(Z,9) — L(Z,9")]?}
@ Symmetrization on the prediction functions space leads to g

such that ER(9) < R(g) + 5EV(3,0) + Eg’\ﬂ)

@ Vapnik-Cervonenkis’ symmetrization (i.e. use of a second
sample) leads to germ such that

ER(Germ) < R(G) + NEV(§, Oerm) + 29(EI9D
+HAEL Y74 [L(Z,§) — L(Z, Ger)?
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Application to general loss function

Comparaison with standard-style risk bounds

Recall V(g,d') = Exaz){[L(Z.9) — L(Z,9")}-
@ Symmetrization on the prediction functions space leads to g
suchthat  ER(3) < R(J) + 5EV(3,9) + ff,’,ﬁ')
@ Vapnik-Cervonenkis’ symmetrization (i.e. use of a second
sample) leads to germ such that

ER(Germ) < R(G) + NEV(§, Oerm) + 29(EI9D
+HAEL Y74 [L(Z,§) — L(Z, Ger)?

@ Straightforward approach without symmetrizing but requiring
SUPyeg geg|L(Z,9") — L(Z,9)[ < A
leads to germ such that

ER(Germ) < R(G) + Ap(MA)EV(F, 9erm) + Iog(}iang\)7

where o(t) 2 €=1=! and ¢(0) = } by continuity.
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Application to least square loss

Study of the influence of the tail distribution

Framework:
° L(Z,9)=1]Y—g(X)
@ 3B>0 Vgegd |gll«<B
@ Predict as well as the best function in G

Three cases:
@ Bounded output: |Y| < B a.s.
@ Output with finite exponential moments :
Ja,M>0 VYxeXx E[e!|X=x]<M
@ Output with finite moments :
E|YS<A forsomes>2and A>0

Contributions
0000008000
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Application to least square loss

Bounded output : |Y| < B a.s.

The variance function (recall):

Vy:ZxGxG— Riss.t VpprobaonG,3#(p) probaon G,VP € P,

Er () 05y Er(az) 100 E oy & (L2971 L20)-1209)] < g

Theorem

One can choose vy op2) = 0. The corresponding generic algorithm
satisfies
log |G|

A = 2
R(g9) < R(9) + 2B P
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Application to least square loss

Bounded output : |Y| < B a.s.

The variance function (recall):

Vy:ZxGxG— Riss.t VpprobaonG,3#(p) probaon G,VP € P,

Er () 05y Er(az) 100 E oy & (L2971 L20)-1209)] < g

Theorem

One can choose vy op2) = 0. The corresponding generic algorithm
satisfies
log |G|

n+1
V1(282) Can be associated with #(p) = dn,, where h,, € G is taken s.t.

R(9) < R(g) + 2B

V(x,y)€Z [y—h,(x)]* < -2B%log Ep(dg)e‘[y‘g(")]z/(zsz).
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Output with finite exponential moments:
Jo,M>0 Vxex E[eM|X=x]<M

The variance function (recall):
Va:ZxGxG— Riss.t VpprobaonG,37(p) probaon G, VP € P,

E#(o)(0g')Ep(02) 109 E 5(ag) € ) <0

Theorem

For an appropriate A = C(«, M, B), we can choose v, = 0.
The corresponding generic algorithm satisfies

R(8) < R(G) + 12214
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Output with finite exponential moments:
Jo,M>0 Vxex E[eM|X=x]<M

The variance function (recall):

Va:ZxGxG— Riss.t VpprobaonG,37(p) probaon G, VP € P,

E#(o)(0g')Ep(02) 109 E 5(ag) € ) <0

Theorem

For an appropriate A = C(«, M, B), we can choose v, = 0.
The corresponding generic algorithm satisfies

R(8) < R(G) + 12214

v\ can be associated with #(p) = dg,, 4, g-
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Application to least square loss

Output with finite moments:
E|lYF <A forsomes>2and A>0

2
Let N = |0’é+|‘g|. For A = £N~=2, we can choose

/I 7% 2
vx(2,9,9') = C[B|y|1|y|zcslvs57 +N7=2y 103Nﬁg\y|<CBN$]

The corresponding generic algorithm satisfies

R(9) < R(g) + CB2N~s+=.
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Output with finite moments:
E|lYF <A forsomes>2and A>0

Theorem

2
Let N = |0’é+|‘g|. For A = £N~=2, we can choose

/1 s 2
v,\(z,g,g)—C[BIyI ||>CBNST2+N +2y 1CBN% \y|<CBN%}

The corresponding generic algorithm satisfies

R(9) < R(g) + CB2N~s+=.

v, can be associated with 7#(p) = OF 00"
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Conclusion

@ Define the concept of variance function
@ Obtain a randomized algorithm that
e allows to recover recent model selection type results from
Juditsky, Rigollet and Tsybakov (2005)
e benefits from worst-case analysis type arguments
@ Propose a new symmetrization trick on the prediction
function space that improves
e a standard-style statistical bound
e bounds in heavy noise setting
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.
For Further Reading

More details in ...

@ D. Haussler, J. Kivinen and M. K. Warmuth,

Sequential prediction of individual sequences under general loss
functions,
IEEE Trans. on Information Theory, 44(5):1906—1925, 1998.

@ J. Kivinen and M. K. Warmuth,
Averaging Expert Predictions,
Lecture Notes in Computer Science, 1572:153—-167, 1999.

@ A. Juditsky, P. Rigollet and A. B. Tsybakov,
Learning by mirror averaging,
Technical report available from ArXiv website, 2005.

[ J.-Y. Audibert,
Model selection type aggregation with better variance control,
Technical report available from my webpage, 2006.
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