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Optimisation de Champs de Markov via Décomposition Duale

Résumé : Dans cet article, nous proposons un nouveau schéma de propagation de messages pour
l’optimisation de champs de Markov. Ce schéma hérite de meilleures propriétés théoriques que toute
autre méthode de propagation de messages décrite dans l’état de l’art. En pratique, notre schéma
a au moins d’aussi bon résultats que ces méthodes, sinon meilleurs. Il est basé sur la technique
puissante de la décomposition duale et mène à un cadre élégant et général pour la compréhension et la
conception d’algorithmes de propagation de messages qui peuvent fournir de nouvelles perspectives
pour les techniques existantes. Les résultats expérimentaux prometteurs et les comparaisons avec
l’état de l’art démontrent le potentiel théorique et pratique extrême de notre approche.

Mots-clés : Champs de Markov, Décomposition duale, Programmation linéaire, Optimisation.
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1 Introduction

Discrete MRF optimization is of fundamental importance to computer vision. Given a graphG =
(V, E) with nodesV and edgesE , the goal is to assign a labellp (from a discrete label setL) to each
p ∈ V, so that the MRF energy is minimized. This means solving the following problem:

min
∑

p∈V
θp(lp) +

∑

pq∈E
θpq(lp, lq). (1)

Here,θp(·), θpq(·, ·) represent the unary and pairwise MRF potential functions respectively.
Currently, two classes of methods are the most prominent ones in MRF optimization: those based

on graph-cuts [5, 2], and those based on message-passing. Regarding the latter class, a significant
advance took place recently with the introduction of the so-called tree-reweighted message passing
(TRW) algorithms [7, 3, 8]. Although they appear similar to the max-product Belief Propagation
(BP) algorithm [6] on the surface, these methods are in fact quite different, as well as far more
powerful. They rely on the following integer linear programming formulation of (1):

min
x

E(θ,x) = θ ·x =
∑

p∈V

θp ·xp +
∑

pq∈E

θpq ·xpq

s.t. x ∈ X G
(2)

Here, the vectorθ={{θp}, {θpq}} of MRF-parameters consists of all unaryθp={θp(·)} and pairwise
θpq={θpq(·, ·)} vectorized potential functions, whereasx = {{xp}, {xpq}} is the vector of MRF-
variables consisting of all unary subvectorsxp = {xp(·)} and pairwise subvectorsxpq = {xpq(·, ·)}.
The MRF-variables are{0, 1}-variables that satisfy:xp(l) = 1 ⇔ label l is assigned top, while
xpq(l, l

′) = 1 ⇔ labelsl, l′ are assigned top, q. To enforce these conditions, it suffices that vector
x lies in the setX G . For any graphG = (V, E), that set is defined as follows:

X G =







x

∣

∣

∣

∣

∣

∣

∑

l∈L xp(l) = 1, ∀ p ∈ V
∑

l′∈L xpq(l, l
′) = xp(l), ∀ (pq, l) ∈ E×L

xp(l) ∈ {0, 1}, xpq(l, l
′) ∈ {0, 1}







The first constraints simply ensure that a unique label is assigned to eachp, while the second con-
straints enforce consistency betweenxp(·), xq(·) andxpq(·, ·), since they ensure that ifxp(l) =
xq(l

′) = 1, thenxpq(l, l
′) = 1 as well.

However, despite that TRW algorithms rely on formulation (2) in order to optimize an MRF, the
key property that characterizes all these methods is that they do not actually attempt to minimize the
energy of that MRF directly. Instead, their goal is to maximize a lower bound on this energy. To
be more rigorous, instead of directly addressing the MRF problem, i.e. problem (2), these methods
try to solve a dual problem. Specifically, the key idea behindthem is to solve the dual to the LP
relaxation of (2). Any feasible solution to this dual is a lower bound on the MRF energy, and so,
by solving the dual, these methods aim to maximize this bound. Based on how good the resulting
lower bound from the dual is, a solution to the primal, i.e. the MRF problem (2), is then extracted.
To our surprise, however, we found out that, although the keyto success of all TRW algorithms is
solving that dual, none of them can actually guarantee that.In fact, as shown in [3], there are cases
for which this is not true.
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original 
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Fig. 1: The original (possibly difficult) optimization problem decomposes into easier subproblems (called the
slaves) that are coordinated by amasterproblem via message exchanging.

Motivated by this fact, we propose here a new message-passing MRF-optimization scheme,
called DD-MRF (Dual Decomposition MRF). To the best of our knowledge, DD-MRF is the first
such scheme that can also solve the above mentioned dual LP (i.e. , maximize the lower bound),
which is the driving force behind all TRW algorithms. It enjoys better theoretical properties than
TRW methods, thus providing new insights into these techniques, while it has given very good exper-
imental results on a variety of computer vision tasks. Moreover, it is derived based on very general
principles, and thus leads to a simple, powerful and elegantframework for understanding/designing
message-passing algorithms, that revisits some of the choices of previous methods, which we con-
sider as another important contribution of this work. In particular, the theoretical setting of our
method rests on the technique ofdual decomposition[1]. This is an extremely powerful and gen-
eral technique, well known to people in optimization. As a result of introducing this technique, we
manage to reduce MRF optimization to a simple projected-subgradient method. This connection can
prove to be of great benefit, since it could motivate new research and pave the way for better MRF
optimization methods in the future.

The remainder of the paper is organized as follows: we brieflyreview dual decomposition in§2.
The DD-MRF algorithm is then presented in§3, while some of its theoretical properties are analyzed
in §4. Experimental results are shown in§5, while we finally conclude in§6.

2 Dual decomposition

The main idea behind decomposition is surprisingly simple:first decompose your original complex
problem into smaller solvable subproblems and then extracta solution by cleverly combining the so-
lutions from these subproblems. Although simple as a concept, decomposition is extremely general
and powerful, and has been used for solving many large or complex optimization problems. Typi-
cally, during decomposition one has to define 2 things: what the subproblems will be (also referred
to asslaveproblems), as well as a so-calledmasterproblem that will act as a coordinator between
the slave problems (see Fig. 1). In addition, one can either decompose the original problem (primal
decomposition) or its Lagrangian dual (dual decomposition).

Laboratoire MAS



Optimization of Discrete Markov Random Fields via Dual Decomposition 5

Here, we will only consider the latter type and give a simple example just to illustrate how it
works. To this end, consider the following problem (wherex denotes a vector):

minx

∑

i f i(x)
s.t. x ∈ C

We assume that separately minimizing eachf i(·) over vectorx is easy, but minimizing
∑

i f i(·) is
hard. Using auxiliary variables{xi}, we thus transform our problem into:

min{xi},x

∑

i f i(xi)
s.t. x

i ∈ C, x
i = x

If the coupling constraintsxi = x were absent, the problem would decouple. We therefore relax
them(via multipliers{λi}) and form the following Lagrangian dual function:

g({λi}) = min{xi∈C},x

∑

i f i(xi) +
∑

i λ
i · (xi − x)

= min{xi∈C},x

∑

i[f
i(xi) + λ

i · xi]− (
∑

i λ
i)x

We next eliminatex from g({λi}) by minimizing over that variable. This just implies{λi}∈Λ =
{

{λi}|
∑

i λ
i =0

}

(it is easy to check that if{λi} /∈ Λ then g({λi}) = −∞). Therefore, the
resulting dual function becomes equal to:

g({λi}) = min
{xi∈C}

∑

i
[f i(xi) + λ

i · xi]

We can now setup a Lagrangian dual problem, i.e. maximizeg({λi}) over the feasible setΛ, or

max{λi}∈Λ g({λi}) =
∑

i gi(λi), (3)

where this dual problem (also called the master) has now decoupled into the following slave prob-
lems (one pergi(λi)):

gi(λi) = minxi f i(xi) + λ
i · xi

s.t. x
i ∈ C

(4)

Problem (3) is always convex and can be solved with the projected subgradient method (sinceg(·) is
typically not differentiable). According to that method, at each iteration the dual variables{λi} are
updated asλi ←

[

λ
i + αt∇gi(λi)

]

Λ
. Here,αt denotes a positive multiplier (for thet-th iteration),

[ · ]Λ denotes projection onto the setΛ, while ∇gi(λi) denotes the subgradient ofgi(·). It thus
remains to compute this subgradient, for which we can use thefollowing well-known lemma:

Lemma. Let q(λ) = mini∈I{di · λ + bi}. Anydi with i ∈ Iλ = {i|di · λ + bi = q(λ)} is a
subgradient ofq(·).

Therefore,∇gi(λi) = x̄
i, wherex̄

i is any optimal solution to thei-th slave problem (4). To
summarize, what happens in essence is that a solution to the dual is obtained by operating at two
levels. At the higher level, the master problem (3) coordinates the slaves simply by updating{λi}
based on the currently extracted optimal solutions{x̄i}. And then, at the lower level, based on the
updated{λi} each of the decoupled slave problems (4) is again solved independently to generate a
newx̄

i for the next iteration.
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6 N. Komodakis, N. Paragios, G. Tziritas

3 MRF optimization via Dual Decomposition

In this section, we will describe how we can apply the dual decomposition method to the case of
the MRF optimization problem. To prepare the reader, our goal will be to decompose our original
MRF problem, which is NP-hard since it is defined on a general graphG, into a set of easier MRF
subproblems defined on treesT ⊂ G. To this end, we will first need to transform our problem into a
more appropriate form by introducing a set of auxiliary variables.

In particular, letT be a set of subtrees of graphG. The only requirement forT is that its trees
cover (at least once) every node and edge of graphG. For each treeT ∈ T we will then imagine
that there is a smaller MRF defined just on the nodes and edges of tree T , and we will associate
to it a vector of MRF-parametersθT , as well as a vector of MRF-variablesxT (these have similar
form to vectorsθ andx of the original MRF, except that they are smaller in size). MRF-variables
contained in vectorxT will be redundant, since we will initially assume that they are all equal to
the corresponding MRF-variables in vectorx, i.e. it will hold x

T = x|T , wherex|T represents the
subvector ofx containing MRF-variables only for nodes and edges of treeT . In addition, all the
vectors{θT } will be defined so that they satisfy the following conditions:

∑

T∈T (p)

θ
T
p = θp,

∑

T∈T (pq)

θ
T
pq = θpq. (5)

Here,T (p) andT (pq) denote all trees ofT that contain nodep and edgepq respectively. E.g. ,
to ensure (5), one can simply set:θ

T
p =

θp

|T (p)| andθ
T
pq =

θpq

|T (pq)| . Due to (5) and the fact that

x
T = x|T , energyE(θ,x) thus decomposes into the energiesE(θT ,xT ) = θ

T · xT , or

E(θ,x) =
∑

T∈T

E(θT ,xT ) (6)

Also, by using the auxiliary variablesxT , it is trivial to see that our original constraintsx ∈ X G

reduce to:
x

T ∈ X T , x
T = x|T , ∀T ∈ T (7)

Hence, our original MRF problem becomes equivalent to:

min
{xT },x

∑

T∈T E(θT ,xT )

s.t. x
T ∈ X T , ∀T ∈ T

x
T = x|T , ∀T ∈ T

(8)

It is clear that without constraintsxT = x|T , this problem would decouple into a series of smaller
MRF problems (one per treeT ). Therefore, it is natural to relax these coupling constraints (by
introducing Lagrange multipliersλT = {{λT

p }, {λ
T
pq}}) and form the Lagrangian dual function as:

g({λT })= min
{xT ∈XT },x

∑

T∈T

E(θT ,xT ) +
∑

T∈T

λ
T ·(xT − x|T )

= min
{xT ∈XT },x

∑

T∈T

E(θT+λ
T ,xT )−

∑

T∈T

λ
T ·x|T

Laboratoire MAS
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Vectorx can be eliminated fromg({λT }) by directly minimizing over it, which simply imposes the
constraint{λT }∈Λ,1 where the feasible setΛ is now defined as:

Λ =

{

{λT }
∣

∣

∑

T∈T (p)

λ
T
p = 0,

∑

T∈T (pq)

λ
T
pq = 0

}

,

while the resulting Lagrangian dual function simplifies to:

g({λT }) = min
{xT ∈XT }

∑

T∈T

E(θT+λ
T ,xT )

We can now setup a dual problem, i.e. maximize the above dual functiong({λT }) over its feasible
setΛ, or

max
{λT }∈Λ

g({λT }) =
∑

T∈T

gT (λT ), (9)

where each functiongT (·) is defined as:

gT (λT ) = min
x

T
E(θT+λ

T ,xT )

s.t. x
T ∈ X T .

(10)

Problem (9) has thus become our master problem, and each slave problem (10) simply amounts
to optimizing an MRF over a treeT ⊂ G, i.e. a much easier problem. For optimizing the master,
we will use the projected subgradient method. As explained in §2, at each iteration of this method
the dual variablesλT must first be updated asλT ← λ

T + αt∇gT (λT ). Based on lemma 2, the
subgradient ofgT (·) equals∇gT (λT ) = x̄

T , wherex̄
T represents any optimal solution to slave

MRF (10), and so the above update amounts to settingλ
T ← λ

T + αtx̄
T . It then only remains

to project the resulting{λT } onto the feasible setΛ. Due to the definition ofΛ, this projection

reduces to subtracting the average vector
∑

T∈T (p) λT
p

|T (p)| from eachλT
p (so that

∑

T∈T (p) λ
T
p = 0), as

well as subtracting the average vector
∑

T∈T (pq) λT
pq

|T (pq)| from eachλT
pq (so that

∑

T∈T (pq) λ
T
pq = 0). By

aggregating all of the above operations, a projected subgradient update is easily seen to reduce to
λ

T
p += ∆λ

T
p , λ

T
pq += ∆λ

T
pqwhere:

∆λ
T
p = αt·

(

x̄
T
p −

∑

T ′∈T (p) x̄
T ′

p

|T (p)|

)

(11)

∆λ
T
pq = αt·

(

x̄
T
pq −

∑

T ′∈T (pq) x̄
T ′

pq

|T (pq)|

)

(12)

Of course, eachλT is only used for defining the MRF-parametersθ
T + λ

T of the slave MRF in
(10). Hence, instead of updating the Lagrange multipliers{λT } at each iteration, one can choose to
directly update the MRF-parameters{θT }, i.e. , setθT

p += ∆λ
T
p , θ

T
pq += ∆λ

T
pq. In this manner,

the need for storing the dual variables{λT } is avoided. This is actually how the pseudocode in Fig.
2 was formed, describing one basic update during the resulting subgradient algorithm.

1It is easy to see that if{λT } /∈Λ, theng({λT }) = −∞.

RR n° 0705



8 N. Komodakis, N. Paragios, G. Tziritas

− Solve slave MRFs using max-product BP, i.e.:
∀T ∈ T , compute x̄

T = argmin
x

T ∈XT

E(θT ,xT )

− Update parameters for slave MRFs using {x̄T }, i.e.:
∀T ∈ T , θ

T
p += ∆λ

T
p , θ

T
pq += ∆λ

T
pq

Fig. 2: A basic update during the projected subgradient algorithm.

mastermaster

…T1

mastermaster

…T2 Tn T1 T2 Tn

slave MRFs slave MRFs

Pricing stage Resource allocation stage

1Tθ
2Tθ

nTθ 1Tx
2Tx nTx

Fig. 3: Dual decomposition scheme for MRF optimizationLeft: Based on the current optimal solutions{x̄T }

(i.e. the current resource allocation), the master assigns new MRF potentials{θT } (i.e. new prices) to the slave
MRFs. Right: Based on these new potentials, the slave MRFs immediately respond to the master by sending
to him new optimal solutions{x̄T } (i.e. by readjusting their resource allocation).

3.1 Analysis of the algorithm

Let us now briefly summarize how the algorithm in Fig. 2 works.Like most other dual decompo-
sition techniques, it operates on two levels (see Fig. 3). Atthe lower level, it has to solve each one
of the decoupled slave problems (10). In this case, the slaveproblems turn out to be MRF optimiza-
tion problems for tree-structured graphs. There exists onesuch MRF for each treeT ∈ T , and its
MRF-parameters are specified by the vectorθ

T . Since the underlying graphs for all slave MRFs are
tree-structured, these are easy problems to solve. E.g. , one can use the max-product algorithm to
estimate an exact optimal solution̄xT for eachT ∈ T . At the higher level, on the other hand, there
exists the master problem, whose sole mission is to coordinate the slave problems so that the dual
function in (9) is maximized. To this end, it thus has to update the MRF-parameters{θT } of all slave
MRFs, based on the optimal solutions{x̄T } that have been estimated previously at the current iter-
ation (strictly speaking, the master is responsible for updating the dual variables, i.e. the Lagrange
multipliers{λT }, but, as already explained, this is equivalent to updating the MRF-parameters{θT }
instead).

To gain a better understanding of how the master problem tries to coordinate the slave MRFs,
let us now consider a nodep in our original graphG and let us also assume that, during the current
iteration, nodep is assigned the same label, saylp, by all slave MRFs. This means that, for each

Laboratoire MAS



Optimization of Discrete Markov Random Fields via Dual Decomposition 9

T ∈ T (p), the vector̄xT
p will have the following form:x̄T

p (l) = 1 if l = lp, whereas̄xT
p (l) = 0 if

l 6= lp. All these vectors will therefore coincide with each other and so∆λ
T
p = 0. Any vectorθT

p

will thus remain untouched during the current iteration, which, in other words, means that if all slave
MRFs agree on a nodep, then the master problem does not modify the unary potentials associated
to that node.

On the other hand, let us assume that not all slave MRFs assignthe same label top. For simplic-
ity, let us assume thatp belongs just to two trees, sayT1, T2, and let the corresponding slave MRFs
assign labelsl1, l2 to that node (withl1 6= l2). It is then easy to check that the following update of
the vectorsθT1

p , θ
T2
p will take place:

θT1
p (l) +=







+αt

2 if l = l1
−αt

2 if l = l2
0 otherwise

, θT2
p (l) +=







−αt

2 if l = l1
+αt

2 if l = l2
0 otherwise

As can be seen, what happens is that the master tries to readjust the unary potentials for nodep at
T1, T2, so that a common label assignment to that node (by both slaveMRFs) has higher chances
during the next iteration, i.e. the master encourages slaveMRFs to agree on a common label forp.
As a result, all slave MRFs will agree on more and more nodes, as the algorithm progresses. Note,
however, that this agreement is not enforced explicitly by the algorithm.

The above behavior is typical in dual decomposition schemes. In fact, due to an economic
interpretation, dual decomposition corresponds to what isalso known as resource allocation via
pricing. According to this interpretation, we can think of the primal variables{xT } as amounts of
resources consumed by the slave problems, with variablesx

T representing the amount of resources
consumed by the MRF problem for treeT . In dual decomposition, the master algorithm never sets
these amounts explicitly. Instead, it just sets the prices,i.e. the variables{θT } in our case, for the
resources. Then, based on these prices, each slave MRF has toindependently decide how many
resources it will use. Of course, the prices do not remain static, but are adjusted at every iteration by
the master algorithm. This adjustment is naturally done as follows: prices for overutilized resources
are increased, whereas prices for underutilized resourcesare decreased.

At this point, it is also worth noting some of the resulting differences between DD-MRF and
existing TRW algorithms. These differences are useful, since they reveal some of the algorithmic
choices of TRW algorithms that are revisited by DD-MRF. E.g., all TRW algorithms use the tree
min-marginals in order to update the dual variables{θT }. DD-MRF, however, relies solely on the
optimal solutions̄xT for that task. This also implies that no tree min-marginals have to be explicitly
computed by DD-MRF. Furthermore, contrary to TRW algorithms, which modify all dual variables
(either sequentially or in parallel) at each iteration, DD-MRF modifies a vector, e.g. ,θT

p of dual
variables at a nodep only if the slave MRFs disagree about that node’s label, which is another
important difference.

Before proceeding, we should also note that, since no Lagrange multipliers{λT } need to be
stored (as{θT } can be updated directly), DD-MRF has similar memory requirements to the belief
propagation algorithm. In fact, any of the recently proposed techniques for improving the memory
usage of BP, apply here as well [3].

RR n° 0705



10 N. Komodakis, N. Paragios, G. Tziritas

3.2 Obtaining primal solutions

Let us now briefly recapitulate what we have accomplished so far. We wanted to find a solution
to our original MRF problem (2), or equivalently to the primal problem (8). To this end, we have
opted to relax some of the complicating constraints in (8) and solve the resulting Lagrangian dual, by
decomposing it into easier subproblems (in fact, as we shallprove in the next section, the resulting
Lagrangian dual is equivalent to the linear programming relaxation of the original MRF problem,
i.e. it is the same problem that all TRW algorithms are attempting to solve). What still remains to
be done is to obtain a feasible primal solution to our initialproblem, i.e. to the MRF problem, based
on the estimated solution from the Lagrangian dual.

The above situation is typical for schemes with Lagrangian relaxation. The Lagrangian solutions
will in general be infeasible with respect to the original primal, i.e. the one without relaxed con-
straints. Yet, they will usually be nearly feasible, since large constraints violations got penalized.
Hence, one may construct feasible solutions by, e.g. , correcting the minor infeasibilities of the
Lagrangian solutions, which implies that the cost of the resulting solutions will not be far from the
optimum. In fact, one usually constructs many feasible solutions in this manner (the more the better)
and chooses the best one at the end.

In our case, for instance, we can take advantage of the optimal solutions{x̄T } that were gen-
erated for the slave problems. Recall that eachx̄

T is a{0, 1} vector, which essentially specifies an
optimal labeling for a slave MRF at treeT . As explained in§3.1, these labelings will typically agree
on all but a few of the MRF nodes (if they agree everywhere, they are equal to the MRF optimal
solution). Due to this fact, many good primal solutions are expected to be constructed by using these
labelings. Moreover, this can be done very easily. E.g. , if everyT ∈ T is a spanning tree, then each
x̄

T directly specifies a feasible solution to the MRF problem.
Of course, there are many other possible ways of getting goodfeasible primal solutions. One

such way, that we found to work well in practice, was to use themessages exchanged during the
max-product algorithms (for the slave MRFs), since these messages contain valuable information.
E.g. , a heuristic similar to the one proposed in [3] can be used for this purpose.

4 Theoretical properties

As already explained, our method tries to solve problem (9),which is the Lagrangian relaxation of
problem (8). The subject of the next theorem is to show that this is equivalent to trying to solve the
Linear Programming (LP) relaxation of problem (2).

Theorem 1. Lagrangian relaxation(9) is equivalent to the LP relaxation of(2), i.e. the LP relax-
ation of the original integer programming formulation for the MRF problem.

Sketch of proof. To form the Lagrangian relaxation, we relaxed constraintsx
T
p =xp of (8), but we

kept constraintsxT ∈ X T . The Lagrangian dual is then known to be equivalent to the following
relaxation of (8):

min
{xT },x

{E(x,θ) | xT
p = xp, x

T ∈ CONVEXHULL(X T )}

Laboratoire MAS
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For a treeT , however, the set CONVEXHULL(X T ) will not change if we modifyX T by replacing
the{0, 1} constraints withxT ≥ 0. Based on this fact, the theorem follows trivially.

The above theorem certifies that our method tries to solve exactly the same problem as all state-
of-the-art tree-reweighted message-passing algorithms,such as TRW-T, TRW-E or TRW-S. How-
ever, unlike those algorithms, which can only guarantee a local optimum in general, an important
advantage of our method is that it can provably compute the global optimum of that problem. This
is an immediate result of the fact that we are using the subgradient algorithm, which is a very well
studied technique in optimization, with a vast literature devoted to it. Here, we simply state two of
the simplest theorems related to it [1].

Theorem 2. If the sequence of multiplies{αt} satisfiesαt ≥ 0, limt→∞ αt = 0,
∑∞

t=0 αt = ∞,
then the subgradient algorithm converges to the optimal solution of (9).

In fact, one can even make the following statement:

Theorem 3. The distance of the current solution{θT } to the optimal solution, say,{θ̄T } decreases
at every iteration.

State-of-the-art tree-reweighted (TRW) max-product algorithms can also provide certain correct-
ness guarantees regarding their fixed points. One such example is the strongtree agreement(TA)
condition that was first introduced in [7]. If a TRW fixed point, say{θ̄T }, satisfies TA, an optimal
solution to the original MRF problem can then be extracted. Amuch more general condition was
later introduced in [3], called theweak tree agreement(WTA). This condition has also been used to
provide further optimality results for TRW algorithms [4].We next show that our method provides
a generalization of the WTA condition (and hence of TA as well), in the sense that any solution of
our algorithm satisfies the WTA condition (but, as we shall seein §5, the converse is not true, i.e.
, a solution{θ̄T } satisfying WTA is not necessarily optimal with respect to theLagrangian dual
problem (9)).

Theorem 4. Any solution obtained by our method satisfies the WTA condition.

Sketch of proof. Let {θ̄T } be a solution generated by our algorithm. Let us suppose it does not
satisfy WTA. One can then show that{θ̄T } can be perturbed to give a solution that achieves a higher
objective value for the Lagrangian dual (9). This is impossible, however, since, by theorem 2 above,
{θ̄T } is already an optimal solution to (9)

The above theorem implies that all optimality results related to WTA carry over to our algorithm.
Here we simply state just one of them [4]:

Theorem 5. For binary MRFs with submodular energies, our method computes a globally optimal
solution.
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Fig. 4: Plots for the binary segmentation problem. Solid curves represent the MRF energy per iteration (these
curves thus form an upper bound on the minimum MRF energy), whereas dashed curves represent the cost of
the Lagrangian dual (9) (i.e. form lower bounds on that energy).

5 Experimental results

Here we will present some experimental results produced by our method. We will also compare
DD-MRF to existing TRW algorithms. These are the TRW-T and TRW-E algorithms presented in
[7], as well the TRW-S algorithm presented in [3]. The only difference between TRW-E and TRW-
S is that the former algorithm updates its messages in parallel, whereas TRW-S updates messages
in a sequential order. Furthermore, since TRW-E did worse than the other TRW algorithms in our
experiments, no results for TRW-E will be shown, so as to alsokeep the plots cleaner.

We have first tested our method on the task of interactive binary image segmentation. In this
case, the unary MRF potentials were set according to the log-likelihood of a pixel belonging either
to foreground or background (these likelihoods were learned based on user specified masks), whereas
the pairwise potentials were set using a standard Potts model. According to theorem 5, DD-MRF
should be able to find the global optimum in this case and so themain goal of this experiment was to
confirm this fact. 10 natural images were thus segmented and Fig. 4 shows a typical plot of how the
MRF energy (i.e. the cost of the primal problem) varies during a segmentation test. We have also
plotted the cost of the dual problem (9), since this cost forms a lower bound on the minimum MRF
energy. As can be seen, DD-MRF manages to extract the global optimum, since the primal-dual gap
(i.e. the difference between the primal cost and the dual cost) reaches 0 at the end. Another way to
verify this, is by using the max-flow algorithm to compute theoptimal solution.

We have also tested our method on stereo matching. In Fig. 5(a), we show the disparity produced
by DD-MRF for the case of the well-knownTsukubastereo pair. In this example, the truncated
linear distanceθpq(xp, xq) = wpq · min(|xp − xq|, θmax) (with wpq = 20, θmax = 2) has been
used as the MRF pairwise potential function. Fig. 5(b) contains the corresponding plot that shows
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(a) Estimated disparity
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(b) Energy and lower bound plots

Fig. 5: Tsukubaresults.

how the costs of the primal and the dual problem (i.e. the MRF energy and the lower bound) vary
during the execution of the algorithm. As in all other examples, here as well we have included the
corresponding plots for the TRW-T and TRW-S algorithms. It is worth noting that, in this example,
TRW-T did not manage to reduce the MRF energy (or increase thelower bound) as effectively as
the DD-MRF algorithm. This is despite the fact that, as in allof this paper’s experiments, exactly
the same set of spanning trees has been used by both algorithms (we recall here that TRW-T uses a
set of spanning trees for doing its message-passing).

Another issue that we investigated was how to set the positive multipliers{αt}. These multipliers
are used for updating the dual variables during the subgradient method. Theorem 2 describes just
one of the simplest methods that can be used for this task. We have also experimented with a few
other schemes as well, but we still intend to experiment withmany more in the future, since there is
a large literature on this subject [1]. E.g. , one of the schemes that we found to work well in practice
was to update the multipliers{αt} using the following formula:

αt = γ
BESTPRIMAL t − DUAL t

‖∇gt‖2
. (13)

Here, BESTPRIMAL t denotes the MRF energy of the best primal solution up to iteration t, DUAL t

denotes the current value of the dual function at thet-th iteration, while∇gt denotes the subgradient
of the dual function at timet. Also,γ denotes a constant taking values in(0, 2]. The intuition behind
this formula is that, initially, when the primal-dual gap (and hence the quantity BESTPRIMAL t −
DUAL t) is large,{αt}will take large values. This means that large changes will beinitially applied to
the dual variables (and hence to the primal variables as well), which makes sense since we are still far
from the optimum. During the last iterations, however, as the primal-dual gap will be smaller,{αt}
will be assigned smaller values and hence the dual variableswill be modified using finer updates.
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(a) Estimated disparity
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(b) Energy and lower bound plots

Fig. 6: Results for theMapstereo pair.

(a) Estimated disparity
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(b) Energy and lower bound plots

Fig. 7: Results for theSRI treestereo pair.

Another thing we have experimented with was using an incremental subgradient method [1] (instead
of a standard subgradient algorithm). By doing so, we found that this method can give improved
results in some cases.

Figures 6, 7 contain further results on stereo matching. Specifically, Fig. 6(a) displays the
produced disparity for theMap stereo pair, while Fig. 6(b) contains the corresponding energy plots
generated during the algorithm’s execution. Similarly, the corresponding results for theSRI-tree
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(a) Estimated optical flow
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Fig. 8: Optical flow for theYosemiteimage sequence.

stereo pair are displayed in Figures 7(a) and 7(b). For the case of theMap stereo pair, the MRF
pairwise potentials were set equal toθpq(xp, xq) = 4 ·min(|xp−xq|, 3), whereas for the case of the
SRI-treeexample the pairwise potentials were defined using the following truncated linear distance
θpq(xp, xq) = 6 ·min(|xp − xq|, 5).

As a further test, we have also applied our method to the optical flow estimation problem. In this
case, labels correspond to 2D displacement vectors, while the unary potential, for assigning vector
xp = (ux, uy) to pixel p = (px, py), equalsθp(xp) = |Inext(px +ux, py +uy) − Icur(px, py)|,
whereIcur, Inext denote the current and next image frame. Also, the pairwise potential between
labelsxp = (ux, uy), xq = (vx, vy) equals the following truncated squared Euclidean distance
θpq(xp, xq) = wpq min(‖(ux−vx, uy−vy)‖2, θmax). An optical flow result, generated by applying
DD-MRF to the well-known Yosemite sequence (withwpq = 10, θmax = 20), is shown in Fig. 8,
along with plots for the corresponding upper and lower bounds. Note again that, contrary to our
method, TRW-T has not managed to effectively reduce the MRF energy in this case.

Also, note that DD-MRF has been able to find very low MRF energyin all of the examples. In
fact, based on the lower bounds estimated from the plots in Figures 5-8, one can actually show that
the generated energy is extremely close to the minimum MRF energy. E.g. , based on these bounds,
the energy found by DD-MRF is within relative distance0.0094, 0.0081, 0.00042, 0.00012 from
the minimum energy corresponding toTsukuba, map, SRI-treeandYosemiterespectively (relative
distance is measured asENERGY−LOWER_BOUND

LOWER_BOUND
). Also, the corresponding running times (per iteration)

of the algorithm were0.32, 0.34, 0.17, 0.41 secs respectively (measured on a 2GHz CPU). Regard-
ing the choice of the trees that are associated with the slaveMRFs, we found that, in practice, the
smaller these trees are, the slower the convergence of the algorithm was. For this reason, each slave
MRF was usually associated with a separate spanning tree of the original graph. Furthermore, the
following termination criterion has been used: the algorithm stops when either the primal-dual gap
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Fig. 9: (a)A simple graph that can be used for showing that TRW algorithms cannot maximize the lower bound
on the MRF energy. The graph shown here is decomposed into 2 treesT1 = (a, b, d, e, g), T2 = (a, c, d, f, g).
(b) A plot of the lower bounds produced by Dual-DT and TRW algorithms for the graph in Fig. 9(a), when
κ = 1000 (see text). Notice the large gap between these 2 bounds. In fact, the valueof this gap can be made
arbitrarily large by, e.g. , increasingκ.

has not decreased significantly for a certain number of iterations, or a maximum number of iterations
has been exceeded.

We finally borrow an example from [3] to illustrate that DD-MRF can maximize the dual problem
(9) (i.e. the lower bound on the MRF energy), even in cases where the TRW algorithms fail to do
so. In fact, as this example shows, TRW algorithms may get stuck to a lower bound, which can be
arbitrarily far from the maximum lower bound. The graph for this example is shown in Fig. 9(a),
where we assume that nodesa, b, c, e, f , g, have two possible labels, while noded has three possible
labels. The following two treesT1 = (a, b, d, e, g), T2 = (a, c, d, f, g) are used in this case, both of
which are supposed to have zero unary potentials, i.e.θ

T1
p = 0 ∀p ∈ T1,θ

T2
p = 0 ∀p ∈ T2. Also,

the pairwise potentials for these trees are set as follows:

θ
T1

ab=

[

κ 0
0 κ

]

,θT1

bd=

[

0 κ κ
κ 0 0

]

,θT1

de=





κ 0
0 κ
κ 0



 ,θT1
eg=

[

0 κ
κ 0

]

,

θ
T2
ac=

[

κ 0
0 κ

]

,θT2

cd=

[

κ 0 0
0 κ κ

]

,θT2

df =





κ 0
κ 0
0 κ



 ,θT2

fg=

[

κ 0
0 κ

]

,

whereκ denotes a positive constant. As it was shown in [3], the abovedual variablesθT1 , θ
T2

form a fixed point for all TRW algorithms (asθT1 ,θT2 satisfy the WTA condition). Hence, in this
case, these algorithms will get stuck to a lower bound of value zero, i.e. arbitrarily far from the true
maximum lower bound that can grow indefinitely by increasingparameterκ. On the contrary, as
shown in Fig. 9(b), DD-MRF does not get stuck to such a bad lower bound when starting fromθT1 ,
θ

T2 .
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6 Extensions and conclusions

By being based on the technique of dual decomposition, i.e. one of the most powerful and widely
used techniques in optimization, the proposed framework gains extreme generality and flexibility.

• For instance, instead of using tree-structured MRFs as slave problems, one can very well use
MRFs with any other structure for which inference is relatively efficient. Exactly the same
framework can be applied in this case as well, but with the resulting algorithm being able to
maximize an even stronger lower bound on the MRF energy, thusleading to even better primal
solutions for difficult MRF problems.

• Another extension that we also plan to explore in the futureis to use exactly the same frame-
work, but for optimizing MRFs with higher order cliques. A similar subgradient algorithm
will result in this case, which can again provably maximize alower bound on the energy. The
only difference will be that, instead of the standard max-product, a factor graph max-product
algorithm will have to be used for computing the subgradients.

• On another note, an additional advantage is that our framework reduces MRF optimization to
a projected subgradient algorithm. This connection can motivate new research, while it can
also prove to be of great benefit, since subgradient methods form a very well studied topic in
optimization, with a vast literature devoted to it. In fact,exploring some of the existing, but
more advanced subgradient optimization techniques is one very interesting avenue of future
research, that could potentially lead to even more powerfulMRF optimization techniques in
the future.

To conclude, a novel and very general message-passing framework for MRF optimization has
been presented, which possesses stronger theoretical properties (compared to existing message-
passing methods), while also giving very good results in practice.
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