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Optimisation de Champs de Markov via Décomposition Duale

Résumé : Dans cet article, nous proposons un nouveau schéma de ptipprade messages pour
I'optimisation de champs de Markov. Ce schéma hérite ddeneds propriétés théoriques que toute
autre méthode de propagation de messages décrite dangiéfart. En pratique, notre schéma
a au moins d’aussi bon résultats que ces méthodes, sinoteungil Il est basé sur la technique
puissante de la décomposition duale et méne a un cadre Bétgg@méral pour la compréhension et la
conception d’algorithmes de propagation de messages guepefournir de nouvelles perspectives
pour les techniques existantes. Les résultats expérimmep@metteurs et les comparaisons avec
I'état de I'art démontrent le potentiel théorique et pratiggextréme de notre approche.

Mots-clés : Champs de Markov, Décomposition duale, ProgrammatiomilieOptimisation.
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1 Introduction

Discrete MRF optimization is of fundamental importance ¢onputer vision. Given a graph =
(v, £) with nodesy and edgeg, the goal is to assign a labgl (from a discrete label set) to each
p € V, so that the MRF energy is minimized. This means solving dliewing problem:

min ZpEV Op(lp) + quef Opq(lp;lq)- 1)

Here,0,(-), 6,4(-, -) represent the unary and pairwise MRF potential functioapeetively.

Currently, two classes of methods are the most prominergtiondRF optimization: those based
on graph-cuts [5, 2], and those based on message-passiggrditey the latter class, a significant
advance took place recently with the introduction of thealtbed tree-reweighted message passing
(TRW) algorithms|[7, 3, 8]. Although they appear similar t@ thnax-product Belief Propagation
(BP) algorithm [6] on the surface, these methods are in fagedglifferent, as well as far more
powerful. They rely on the following integer linear prognanimg formulation of[(1):

min E(0,x) =0-x= ) 0,-x,+ Y Opq-Xp,
x peV Pace 2
st. xe XY

Here, the vectof={{0,}, {6,,}} of MRF-parameters consists of all unaty={6,(-) } and pairwise
0,,={6,4(-, )} vectorized potential functions, wheremas= {{x,}, {x,,}} is the vector of MRF-
variables consisting of all unary subvectars= {z,(-)} and pairwise subvectoss,, = {zpq(-,")}.
The MRF-variables ar¢0, 1}-variables that satisfyz,(l) = 1 < labell is assigned te, while
zpq(1,1") = 1 & labelsl, !’ are assigned tp, q. To enforce these conditions, it suffices that vector
x lies in the sett9. For any graplg = (V, &), that set is defined as follows:

ZZGL zp(l)=1, YpeV
X9 =0x | Ypep o) =2,(1), V(pg,l) € EXL
x,(1) € {0,1}, xp,(1,1') € {0,1}

The first constraints simply ensure that a unique label igaed to eactp, while the second con-
straints enforce consistency betwees(-), z,(-) andz,,(-,-), since they ensure that if,(l) =
zq(l') =1, thenz,,(1,1") = 1 as well.

However, despite that TRW algorithms rely on formulatiopitRorder to optimize an MRF, the
key property that characterizes all these methods is thgtdh not actually attempt to minimize the
energy of that MRF directly. Instead, their goal is to maxena lower bound on this energy. To
be more rigorous, instead of directly addressing the MRBlprn, i.e. problem (2), these methods
try to solve a dual problem. Specifically, the key idea behhmem is to solve the dual to the LP
relaxation of [(2). Any feasible solution to this dual is a Evbound on the MRF energy, and so,
by solving the dual, these methods aim to maximize this bolased on how good the resulting
lower bound from the dual is, a solution to the primal, i.ee MRF problem/(R), is then extracted.
To our surprise, however, we found out that, although thetkesuccess of all TRW algorithms is
solving that dual, none of them can actually guarantee thdtct, as shown in [3], there are cases
for which this is not true.
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" TEBIET coordinating
decomposition .

// \ 4~ meSssages

slave 1| » « « Slave NI

Fig. 1: The original (possibly difficult) optimization problem decomposes into easieproblems (called the
slave$ that are coordinated byraasterproblem via message exchanging.

original
problem

Motivated by this fact, we propose here a new message-gad4iRi--optimization scheme,
called DD-MRF (Dual Decomposition MRF). To the best of ouokitedge, DD-MREF is the first
such scheme that can also solve the above mentioned dualelP, (haximize the lower bound),
which is the driving force behind all TRW algorithms. It epgobetter theoretical properties than
TRW methods, thus providing new insights into these teagsgwhile it has given very good exper-
imental results on a variety of computer vision tasks. Mueggit is derived based on very general
principles, and thus leads to a simple, powerful and elefyantework for understanding/designing
message-passing algorithms, that revisits some of theehaif previous methods, which we con-
sider as another important contribution of this work. Intgatar, the theoretical setting of our
method rests on the techniquedfal decompositiofil]. This is an extremely powerful and gen-
eral technique, well known to people in optimization. As suleof introducing this technique, we
manage to reduce MRF optimization to a simple projectedpsadient method. This connection can
prove to be of great benefit, since it could motivate new meteand pave the way for better MRF
optimization methods in the future.

The remainder of the paper is organized as follows: we brieffiew dual decomposition i§2.
The DD-MRF algorithm is then presented®, while some of its theoretical properties are analyzed
in §4. Experimental results are showngsi, while we finally conclude if6l.

2 Dual decomposition

The main idea behind decomposition is surprisingly simfitet decompose your original complex
problem into smaller solvable subproblems and then exéraotution by cleverly combining the so-
lutions from these subproblems. Although simple as a candegomposition is extremely general
and powerful, and has been used for solving many large or lngptimization problems. Typi-
cally, during decomposition one has to define 2 things: winasubproblems will be (also referred
to asslaveproblems), as well as a so-calletasterproblem that will act as a coordinator between
the slave problems (see Fig. 1). In addition, one can eitbeomipose the original problem (primal
decomposition) or its Lagrangian dual (dual decomposijtion

Laboratoire MAS



Optimization of Discrete Markov Random Fields via Dual Daposition 5

Here, we will only consider the latter type and give a simptamaple just to illustrate how it
works. To this end, consider the following problem (wherdenotes a vector):

min, Y., fi(x)

S.t. xeC

We assume that separately minimizing egéh) over vectorz is easy, but minimizing_, f(-) is
hard. Using auxiliary variablegx’}, we thus transform our problem into:

Min{zi} o ZZ f’(:vl)
s.t. zreC, xt==x

If the coupling constraints:’ = x were absent, the problem would decouple. We therefore relax
them(via multipliers{\*}) and form the following Lagrangian dual function:

g({)‘l}) = min{m’ieC},w Zz fl(wl) + Zl )\l (:132 — :13)
— mingoiecy m SLfi () + N 2] — (5, Az

We next eliminater from g({A’}) by minimizing over that variable. This just implia\i} € A =
{{A} 32, AP=0} (it is easy to check that ifA"} ¢ A theng({A'}) = —oc). Therefore, the
resulting dual function becomes equal to:

g({A%}) min [fi(x") + A ']

- {xzieC} i
We can now setup a Lagrangian dual problem, i.e. maximifa‘}) over the feasible set, or

maxgaiyen 9({A}) =2, 9' (), 3)

where this dual problem (also called the master) has nowugéed into the following slave prob-
lems (one pepi(A?)):
g'(AY) = ming: fi(z?) + A" - 2!
st. xtel

“4)

Problem((3) is always convex and can be solved with the pi@jiesubgradient method (singé) is
typically not differentiable). According to that method emch iteration the dual variabléa®} are
updated as\’ — [A" + a,Vg'(A")] . Here,o, denotes a positive multiplier (for theth iteration),
[-]a denotes projection onto the s&t while Vgi(A\?) denotes the subgradient gf(-). It thus
remains to compute this subgradient, for which we can uséottmeving well-known lemma:

Lemma. Letg(A) = min;ez{d; - A + b;}. Anyd; withi € 7, = {i|d; - A+ b; = g(A)} isa
subgradient ofy(-).

Therefore,Vgi(A\') = ', wherez' is any optimal solution to the-th slave problem[ (4). To
summarize, what happens in essence is that a solution tautildsdobtained by operating at two
levels. At the higher level, the master problem (3) coorttinahe slaves simply by updatid\‘}
based on the currently extracted optimal soluti¢@s}. And then, at the lower level, based on the
updated{\‘} each of the decoupled slave problems (4) is again solveghéraiently to generate a
newz’ for the next iteration.
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6 N. Komodakis, N. Paragios, G. Tziritas

3 MRF optimization via Dual Decomposition

In this section, we will describe how we can apply the dualodggosition method to the case of
the MRF optimization problem. To prepare the reader, out gilabe to decompose our original
MRF problem, which is NP-hard since it is defined on a gena@lyG, into a set of easier MRF
subproblems defined on tre€scC G. To this end, we will first need to transform our problem into a
more appropriate form by introducing a set of auxiliary abfes.

In particular, letZ be a set of subtrees of gragh The only requirement fof is that its trees
cover (at least once) every node and edge of gapkor each tred” € 7 we will then imagine
that there is a smaller MRF defined just on the nodes and edgesed’, and we will associate
to it a vector of MRF-paramete’, as well as a vector of MRF-variables’ (these have similar
form to vectorsd andx of the original MRF, except that they are smaller in size). BARriables
contained in vectox” will be redundant, since we will initially assume that the all equal to
the corresponding MRF-variables in vectari.e. it will hold x” = x|r, Wherex | represents the
subvector ofx containing MRF-variables only for nodes and edges of fredn addition, all the
vectors{87'} will be defined so that they satisfy the following conditions

Z HT P Z OZq = Oy (5)
TET (p) T€T (pq)
Here, 7 (p) and 7 (pq) denote all trees o‘T that contain node and edgepg respectively. E.g. ,
to ensuref(5), one can simply seﬂg = \T(p)\ and OT = %. Due to [(5) and the fact that
xT = xr, energyE (0, x) thus decomposes into the energ@(#ﬂ xT) =07 .xT or

x)= > E@O"x") (6)

TeT

Also, by using the auxiliary variables”, it is trivial to see that our original constraintsc X9
reduce to:
x' e x?, XT:x|T, vI'eT 7
Hence, our original MRF problem becomes equivalent to:
{H}ifl Yorer BT, x")
s.t. xTeXxT, vrert (8)
xT = xr, VI'eT

It is clear that without constraints” = x|, this problem would decouple into a series of smaller
MRF problems (one per tre€). Therefore, it is natural to relax these coupling constsiby
introducing Lagrange multipliera” = {{AT}, {A] }}) and form the Lagrangian dual function as:

g({AT}H)= min ZE 07, x") +Z)\T *X\T)

T T

bfexthx g TeT

= min g E 0T+)\T,XT — g AT “X|T
TcxT

e e TeT

Laboratoire MAS



Optimization of Discrete Markov Random Fields via Dual Daposition 7

Vectorx can be eliminated from({\”'}) by directly minimizing over it, which simply imposes the
constraint{ A } € A|* where the feasible set is now defined as:

A:{{AT} > AT =0, > Ag”q:o},

TeT (p) T€T (pq)
while the resulting Lagrangian dual function simplifies to:
T : T T T
g({A = min E@ +X)x
(N7 = i, 5 5 )
We can now setup a dual problem, i.e. maximize the above duatibng({\”}) over its feasible

setA, or
max AT = (T, 9
{AT}GAQ({ 1) Ee g (A7) ©)

where each functiop” () is defined as:
gt (AT = min E(OT+ AT xT)
st. xTeal.

Problem|[(9) has thus become our master problem, and eaehsiablem[(10) simply amounts
to optimizing an MRF over a tre€ C G, i.e. a much easier problem. For optimizing the master,
we will use the projected subgradient method. As explaingf2j at each iteration of this method
the dual variable™ must first be updated as” «— A” 4 o, Vg7 (AT). Based on lemma 2, the
subgradient ofy”(-) equalsVg” (AT) = %7, wherex” represents any optimal solution to slave
MRF (10), and so the above update amounts to seifig— A7 + «,%”. It then only remains
to project the resulting A’} onto the feasible sek. Due to the definition of\, this projection

T
reduces to subtracting the average ve&é{% from each)\g (so thatZTeT(p) A=), as

P

(10)

T
well as subtracting the average vecg%q))‘)‘” from eachAZq (so thatZTeT(pq) )\gq =0). By
aggregating all of the above operations, a projected sdimgraupdate is easily seen to reduce to
AT += AN, AL += AX] where:

et %y
AAT — ST ET(p) P 11
p = (Xp o) -
et o) Xoa
AN — o, | %7 — €7 (pq) P4 12
S (Xm 7 (pg)| 12

Of course, eac”\” is only used for defining the MRF-paramet&% + A’ of the slave MRF in
(10). Hence, instead of updating the Lagrange multip{ex§} at each iteration, one can choose to
directly update the MRF-parametei@” }, i.e. , setd] += AXT, 6 += AL . In this manner,
the need for storing the dual variables” } is avoided. This is actually how the pseudocode in Fig.
[2 was formed, describing one basic update during the ragudtibgradient algorithm.

litis easy to see that AT} ¢ A, theng({AT'}) = —oo.

RR n° 0705



8 N. Komodakis, N. Paragios, G. Tziritas

— Solve slave MRFs using max-product BP, i.e.:
VT € T, compute X7 = argmin F(07,x7)
xTexT
— Update parameters for slave MRFs using {X” }, i.e..

VT €T, 0) += AX], 0, += AX],

Fig. 2: A basic update during the projected subgradient algorithm.

Pricing stage Resource allocation stage
master | master |
T o 0 I —T /,V IIA V\\
0 J QT AN X’ ’l’ Y. /7 YTZ \\ XTn
'3 A Pid ' AN
Tl I T2 I L I I ] Tn I Tl 2 I | I I ) Tn
: 2|l —
—~ —~
slave MRFs slave MRFs

Fig. 3: Dual decomposition scheme for MRF optimizatioeft: Based on the current optimal solutiofs” }
(i.e. the current resource allocation), the master assigns new MRitiadtg0” } (i.e. new prices) to the slave
MRFs. Right: Based on these new potentials, the slave MRFs immediately respond to ttes masending
to him new optimal solution§x” } (i.e. by readjusting their resource allocation).

3.1 Analysis of the algorithm

Let us now briefly summarize how the algorithm in Fig. 2 workéke most other dual decompo-
sition techniques, it operates on two levels (see Fig. 3xhAtower level, it has to solve each one
of the decoupled slave problems (10). In this case, the gialdems turn out to be MRF optimiza-
tion problems for tree-structured graphs. There existssoiod MRF for each tre@ € 7, and its
MRF-parameters are specified by the ve@br Since the underlying graphs for all slave MRFs are
tree-structured, these are easy problems to solve. E.ge ¢amuse the max-product algorithm to
estimate an exact optimal soluti&f' for eachT” € 7. At the higher level, on the other hand, there
exists the master problem, whose sole mission is to codrlitha slave problems so that the dual
function in (9) is maximized. To this end, it thus has to updae MRF-parametef®’ } of all slave
MRFs, based on the optimal solutiofig” } that have been estimated previously at the current iter-
ation (strictly speaking, the master is responsible foratipd the dual variables, i.e. the Lagrange
multipliers{A\T'}, but, as already explained, this is equivalent to updatiegMRF-parameter®9”'}
instead).

To gain a better understanding of how the master problers toeoordinate the slave MRFs,
let us now consider a nogein our original graphy and let us also assume that, during the current
iteration, nodep is assigned the same label, ggyby all slave MRFs. This means that, for each

Laboratoire MAS



Optimization of Discrete Markov Random Fields via Dual Daposition 9

T € T (p), the vectox will have the following form:z] (1) = 1if I = [,,, whereasz' () = 0 if

I # 1,. All these vectors will therefore coincide with each othed &OAAZ = 0. Any vectoreg
will thus remain untouched during the current iterationjalhin other words, means that if all slave
MRFs agree on a node then the master problem does not modify the unary potsrdisdociated
to that node.

On the other hand, let us assume that not all slave MRFs atbsgrame label tp. For simplic-
ity, let us assume thatbelongs just to two trees, s&Yy, T», and let the corresponding slave MRFs
assign label$,, [5 to that node (with; # [5). It is then easy to check that the following update of
the vector®!", 67> will take place:

+Sifl=10 - ifl=10
01?1(1) +=4-% ifl:llg , 01?2(1) +=4+% ifl:llz
0 otherwise 0 otherwise

As can be seen, what happens is that the master tries to se#tguunary potentials for nogeat
T1,T5, so that a common label assignment to that node (by both 8i&fes) has higher chances
during the next iteration, i.e. the master encourages $HREs to agree on a common label far
As a result, all slave MRFs will agree on more and more nodethealgorithm progresses. Note,
however, that this agreement is not enforced explicitlyHgyalgorithm.

The above behavior is typical in dual decomposition schemasfact, due to an economic
interpretation, dual decomposition corresponds to whatlse known as resource allocation via
pricing. According to this interpretation, we can think bétprimal variablegx”} as amounts of
resources consumed by the slave problems, with variaflegpresenting the amount of resources
consumed by the MRF problem for trée In dual decomposition, the master algorithm never sets
these amounts explicitly. Instead, it just sets the pricesthe variable§67'} in our case, for the
resources. Then, based on these prices, each slave MRF hatependently decide how many
resources it will use. Of course, the prices do not rematicstaut are adjusted at every iteration by
the master algorithm. This adjustment is naturally don@ta\is: prices for overutilized resources
are increased, whereas prices for underutilized resoareedecreased.

At this point, it is also worth noting some of the resultindfeliences between DD-MRF and
existing TRW algorithms. These differences are usefulesihey reveal some of the algorithmic
choices of TRW algorithms that are revisited by DD-MRF. E.@ll TRW algorithms use the tree
min-marginals in order to update the dual variabl@$}. DD-MRF, however, relies solely on the
optimal solutions” for that task. This also implies that no tree min-marginalgento be explicitly
computed by DD-MRF. Furthermore, contrary to TRW algorishavhich modify all dual variables
(either sequentially or in parallel) at each iteration, MRF modifies a vector, e.g. QZ of dual
variables at a nodg only if the slave MRFs disagree about that node’s label, wtiécanother
important difference.

Before proceeding, we should also note that, since no Lagranultipliers{\”} need to be
stored (ag0?'} can be updated directly), DD-MRF has similar memory requésts to the belief
propagation algorithm. In fact, any of the recently progbtxhniques for improving the memory
usage of BP, apply here as well [3].

RR n° 0705
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3.2 Obtaining primal solutions

Let us now briefly recapitulate what we have accomplishedaso We wanted to find a solution
to our original MRF problem (2), or equivalently to the prinpioblem (8). To this end, we have
opted to relax some of the complicating constraints in (8)soive the resulting Lagrangian dual, by
decomposing it into easier subproblems (in fact, as we gihalle in the next section, the resulting
Lagrangian dual is equivalent to the linear programmingxafion of the original MRF problem,
i.e. it is the same problem that all TRW algorithms are attimgpto solve). What still remains to
be done is to obtain a feasible primal solution to our injiedblem, i.e. to the MRF problem, based
on the estimated solution from the Lagrangian dual.

The above situation is typical for schemes with Lagrangéaxation. The Lagrangian solutions
will in general be infeasible with respect to the originaihpal, i.e. the one without relaxed con-
straints. Yet, they will usually be nearly feasible, sinaggk constraints violations got penalized.
Hence, one may construct feasible solutions by, e.g. , cimgethe minor infeasibilities of the
Lagrangian solutions, which implies that the cost of theilitesy solutions will not be far from the
optimum. In fact, one usually constructs many feasibletgmis in this manner (the more the better)
and chooses the best one at the end.

In our case, for instance, we can take advantage of the dpiphations{x”} that were gen-
erated for the slave problems. Recall that e@éhs a{0, 1} vector, which essentially specifies an
optimal labeling for a slave MRF at tré& As explained irf3.1, these labelings will typically agree
on all but a few of the MRF nodes (if they agree everywherey #re equal to the MRF optimal
solution). Due to this fact, many good primal solutions aqeeeted to be constructed by using these
labelings. Moreover, this can be done very easily. E.g.vefeT € 7 is a spanning tree, then each
%1 directly specifies a feasible solution to the MRF problem.

Of course, there are many other possible ways of getting geaslble primal solutions. One
such way, that we found to work well in practice, was to usertfessages exchanged during the
max-product algorithms (for the slave MRFs), since thesesages contain valuable information.
E.g. , a heuristic similar to the one proposed in [3] can bel digethis purpose.

4 Theoretical properties

As already explained, our method tries to solve problemv@)jch is the Lagrangian relaxation of
problem[(8). The subject of the next theorem is to show thatishequivalent to trying to solve the
Linear Programming (LP) relaxation of problem (2).

Theorem 1. Lagrangian relaxation(9) is equivalent to the LP relaxation qR), i.e. the LP relax-
ation of the original integer programming formulation fdre MRF problem.

Sketch of proof. To form the Lagrangian relaxation, we relaxed constra!trit& x,, of (8), but we
kept constraint” € X7. The Lagrangian dual is then known to be equivalent to thiewahg
relaxation of|(8):

min {E(x,0) | x] = x,, x" € CONVEXHULL(X")}

{xT}x

Laboratoire MAS
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For a tre€T’, however, the set GNVEXHULL (XT) will not change if we modifyx” by replacing
the {0, 1} constraints withx” > 0. Based on this fact, the theorem follows trivially. O

The above theorem certifies that our method tries to solvetigxie same problem as all state-
of-the-art tree-reweighted message-passing algoritsod) as TRW-T, TRW-E or TRW-S. How-
ever, unlike those algorithms, which can only guaranteecal loptimum in general, an important
advantage of our method is that it can provably compute thlealoptimum of that problem. This
is an immediate result of the fact that we are using the sulgmaalgorithm, which is a very well
studied technigue in optimization, with a vast literatuexated to it. Here, we simply state two of
the simplest theorems related ta it [1].

Theorem 2. If the sequence of multipliegy, } satisfiesa; > 0, limy oo oy = 0, Doy = 00,
then the subgradient algorithm converges to the optimaltami of (9).

In fact, one can even make the following statement:

Theorem 3. The distance of the current solutigf”'} to the optimal solution, say#”'} decreases
at every iteration.

State-of-the-art tree-reweighted (TRW) max-product atgors can also provide certain correct-
ness guarantees regarding their fixed points. One such éxasnihe strongree agreemen{TA)
condition that was first introduced in [7]. If a TRW fixed paisay {67}, satisfies TA, an optimal
solution to the original MRF problem can then be extractednéch more general condition was
later introduced in [3], called theeak tree agreemei?VTA). This condition has also been used to
provide further optimality results for TRW algorithms [4)Ve next show that our method provides
a generalization of the WTA condition (and hence of TA as wallthe sense that any solution of
our algorithm satisfies the WTA condition (but, as we shallige§b, the converse is not true, i.e.
, a solution{@7'} satisfying WTA is not necessarily optimal with respect to tegrangian dual
problem[(9)).

Theorem 4. Any solution obtained by our method satisfies the WTA comditi

Sketch of proof. Let {87} be a solution generated by our algorithm. Let us supposeeis diot
satisfy WTA. One can then show th@@”'} can be perturbed to give a solution that achieves a higher
objective value for the Lagrangian dual (9). This is impblksihowever, since, by theorem 2 above,
{67} is already an optimal solution to(9) O

The above theorem implies that all optimality results edab WTA carry over to our algorithm.
Here we simply state just one of them [4]:

Theorem 5. For binary MRFs with submodular energies, our method coegpatglobally optimal
solution.

RR n° 0705
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Fig. 4: Plots for the binary segmentation problem. Solid curves represent tieeviBrgy per iteration (these
curves thus form an upper bound on the minimum MRF energy), whetashed curves represent the cost of
the Lagrangian dual (9) (i.e. form lower bounds on that energy).

5 Experimental results

Here we will present some experimental results producedupyneethod. We will also compare
DD-MRF to existing TRW algorithms. These are the TRW-T andMFR algorithms presented in
[7], as well the TRW-S algorithm presented|in [3]. The onlffatence between TRW-E and TRW-
S is that the former algorithm updates its messages in pgralhereas TRW-S updates messages
in a sequential order. Furthermore, since TRW-E did worae the other TRW algorithms in our
experiments, no results for TRW-E will be shown, so as to késp the plots cleaner.

We have first tested our method on the task of interactiverpiimage segmentation. In this
case, the unary MRF potentials were set according to théiketirood of a pixel belonging either
to foreground or background (these likelihoods were ledib@sed on user specified masks), whereas
the pairwise potentials were set using a standard Potts ImAdeording to theorem 5, DD-MRF
should be able to find the global optimum in this case and sm#ie goal of this experiment was to
confirm this fact. 10 natural images were thus segmented ind Bhows a typical plot of how the
MRF energy (i.e. the cost of the primal problem) varies dy@nsegmentation test. We have also
plotted the cost of the dual problem (9), since this cost foantower bound on the minimum MRF
energy. As can be seen, DD-MRF manages to extract the glpkiaiam, since the primal-dual gap
(i.e. the difference between the primal cost and the dud) ceaches 0 at the end. Another way to
verify this, is by using the max-flow algorithm to compute tptimal solution.

We have also tested our method on stereo matching. In Fijj.vé¢ashow the disparity produced
by DD-MRF for the case of the well-knowhsukubastereo pair. In this example, the truncated
linear distance,,(z,, T4) = wpq - min(|z, — 4], Omax) With wyy = 20, Oax = 2) has been
used as the MRF pairwise potential function. Fig. 5(b) cimstéhe corresponding plot that shows
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Fig. 5: Tsukubaesults.

how the costs of the primal and the dual problem (i.e. the MR&rgy and the lower bound) vary
during the execution of the algorithm. As in all other exaesplhere as well we have included the
corresponding plots for the TRW-T and TRW-S algorithmss lvorth noting that, in this example,
TRW-T did not manage to reduce the MRF energy (or increaséother bound) as effectively as
the DD-MRF algorithm. This is despite the fact that, as inadithis paper’'s experiments, exactly
the same set of spanning trees has been used by both algofittemecall here that TRW-T uses a
set of spanning trees for doing its message-passing).

Another issue that we investigated was how to set the pestiivitipliers{«; }. These multipliers
are used for updating the dual variables during the subgnadiethod. Theorem 2 describes just
one of the simplest methods that can be used for this task. ake &lso experimented with a few
other schemes as well, but we still intend to experiment wigmy more in the future, since there is
a large literature on this subject [1]. E.g. , one of the sathat we found to work well in practice
was to update the multipliefgy; } using the following formula:

BESTPRIMAL; — DUAL,
Vg2

Here, BESTPRIMAL ; denotes the MRF energy of the best primal solution up totitera, DUAL,
denotes the current value of the dual function attttieiteration, whileV g, denotes the subgradient
of the dual function at time. Also,~ denotes a constant taking valueg(n2]. The intuition behind
this formula is that, initially, when the primal-dual gam¢ahence the quantity BSTPRIMAL ; —
DuAL,)is large {a; } will take large values. This means that large changes witiitially applied to
the dual variables (and hence to the primal variables a3, wdlich makes sense since we are still far
from the optimum. During the last iterations, however, asghimal-dual gap will be smallefo; }

will be assigned smaller values and hence the dual variatilebe modified using finer updates.

(13)

ay =7
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Fig. 6: Results for theVlap stereo pair.

x 10"
2.22
. r TRW-S
m— TRW-T
" 2.2y — DD-MRF
‘TH 218 -
| W
2.16 ' ' '
0 5 10 15
(a) Estimated disparity (b) Energy and lower bound plots

Fig. 7: Results for theSRI treestereo pair.

Another thing we have experimented with was using an increatsubgradient method [1] (instead
of a standard subgradient algorithm). By doing so, we fourad this method can give improved
results in some cases.

Figures 6, 7 contain further results on stereo matching.ci8gally, Fig. [6(a) displays the
produced disparity for th®lap stereo pair, while Fig. 6(b) contains the correspondinggngplots
generated during the algorithm’s execution. Similarle ttorresponding results for ti&RI-tree
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Fig. 8: Optical flow for theYosemitémage sequence.

stereo pair are displayed in Figures 7(a) and|7(b). For tee oatheMap stereo pair, the MRF
pairwise potentials were set equabtg (z,, z,) = 4- min(|x, — 24, 3), whereas for the case of the
SRI-treeexample the pairwise potentials were defined using theviiig truncated linear distance
Opq(2p, T4) = 6 - min(|zp — 74, 5).

As a further test, we have also applied our method to the algtamv estimation problem. In this
case, labels correspond to 2D displacement vectors, wieleary potential, for assigning vector
zp = (Ug,uy) 10 pixelp = (pz,py), €QUalsty(z,) = |Znext (Pe + Uz, Dy +Uy) — Zeur Py Py)|s
whereZ..,, Z.ext denote the current and next image frame. Also, the pairwigenpial between
labelsz, = (ug,uy), rq = (vz,vy) equals the following truncated squared Euclidean distance
Opq(Tp, Tq) = Wpg min(|| (g — va, uy —vy)||%, Omax)- An optical flow result, generated by applying
DD-MRF to the well-known Yosemite sequence (with, = 10, f1,ax = 20), is shown in Fig! 8,
along with plots for the corresponding upper and lower beundote again that, contrary to our
method, TRW-T has not managed to effectively reduce the Mgy in this case.

Also, note that DD-MRF has been able to find very low MRF enenggll of the examples. In
fact, based on the lower bounds estimated from the plotsgarEg 5-8, one can actually show that
the generated energy is extremely close to the minimum MRFggNE.g. , based on these bounds,
the energy found by DD-MRF is within relative distan@®094, 0.0081, 0.00042, 0.00012 from
the minimum energy corresponding Teukuba map SRI-treeand Yosemiteespectively (relative
distance is measured 85=RSLOWERBOUND) - Also, the corresponding running times (per iteration)
of the algorithm werd.32, 0.34, 0.17, 0.41 secs respectively (measured on a 2GHz CPU). Regard-
ing the choice of the trees that are associated with the siiR#Es, we found that, in practice, the
smaller these trees are, the slower the convergence ofghataim was. For this reason, each slave
MRF was usually associated with a separate spanning tréeariginal graph. Furthermore, the
following termination criterion has been used: the aldwonitstops when either the primal-dual gap
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Fig. 9: (a) A simple graph that can be used for showing that TRW algorithms canaxitmze the lower bound
on the MRF energy. The graph shown here is decomposed into 2ltreeqa, b,d, e, g), T> = (a,c,d, f, g).
(b) A plot of the lower bounds produced by Dual-DT and TRW algorithms ferghaph in Fig. 9(a), when
x = 1000 (see text). Notice the large gap between these 2 bounds. In fact, theo¥dhie gap can be made
arbitrarily large by, e.g. , increasing

has not decreased significantly for a certain number oftitars, or a maximum number of iterations
has been exceeded.

We finally borrow an example from [3] to illustrate that DD-MRan maximize the dual problem
(9) (i.e. the lower bound on the MRF energy), even in casesamiee TRW algorithms fail to do
so. In fact, as this example shows, TRW algorithms may gekstwa lower bound, which can be
arbitrarily far from the maximum lower bound. The graph foistexample is shown in Fig. 9(a),
where we assume that node9, ¢, e, f, g, have two possible labels, while nodéas three possible
labels. The following two tree®; = (a,b,d, e, g), To = (a,c¢,d, f, g) are used in this case, both of
which are supposed to have zero unary potentialsﬂﬁe.: 0Vp e Ty, 01?2 = 0Vp € Ts. Also,
the pairwise potentials for these trees are set as follows:

aTl_,%O oTl_O/ﬁn 0T1_KO 0T1_OI€
ab_0H7bd_‘,€OO7de_ 7eg_/£ ’

Ty |K 0
Oy

where denotes a positive constant. As it was shown in [3], the alumad variables9™:, 97>
form a fixed point for all TRW algorithms (a8”*, 87> satisfy the WTA condition). Hence, in this
case, these algorithms will get stuck to a lower bound ofevakro, i.e. arbitrarily far from the true
maximum lower bound that can grow indefinitely by increagisgameter:. On the contrary, as
shown in Fig| 9(b), DD-MRF does not get stuck to such a bad idwend when starting fror6’:,
0Tz,

=
o =

0k kK

Ty k 0 Ty |F 00 Ty
eac_|:0 I{:| 70cd_|: :| ’edf_

S =
Iz O O
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6 Extensions and conclusions

By being based on the technique of dual decomposition, ne.ad the most powerful and widely
used techniques in optimization, the proposed framewairisgaxtreme generality and flexibility.

 For instance, instead of using tree-structured MRFs ag gleoblems, one can very well use
MRFs with any other structure for which inference is relefyvefficient. Exactly the same
framework can be applied in this case as well, but with thaltieg algorithm being able to
maximize an even stronger lower bound on the MRF energy/#aaing to even better primal
solutions for difficult MRF problems.

¢ Another extension that we also plan to explore in the futsite use exactly the same frame-
work, but for optimizing MRFs with higher order cliques. Anslar subgradient algorithm
will result in this case, which can again provably maximidzewaer bound on the energy. The
only difference will be that, instead of the standard masepict, a factor graph max-product
algorithm will have to be used for computing the subgradient

« On another note, an additional advantage is that our framemeduces MRF optimization to
a projected subgradient algorithm. This connection carnvatet new research, while it can
also prove to be of great benefit, since subgradient mettwdsd very well studied topic in
optimization, with a vast literature devoted to it. In fagxploring some of the existing, but
more advanced subgradient optimization techniques is eneimteresting avenue of future
research, that could potentially lead to even more powéifRF optimization techniques in
the future.

To conclude, a novel and very general message-passingvilaiéor MRF optimization has
been presented, which possesses stronger theoreticariiegp(compared to existing message-
passing methods), while also giving very good results icire.
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