
� � ���� ��
c� Kluwer Academic Publishers� Boston� Manufactured in The Netherlands�

Static and Dynamic Program Compilation

by Interpreter Specialization

SCOTT THIBAULT� � CHARLES CONSEL thibault�gmvhdl�com� consel�irisa�fr

COMPOSE group� IRISA�INRIA� Campus de Beaulieu� ����� Rennes Cedex� France

JULIA L� LAWALL �� jll�cs�bu�edu

Computer Science Deptartment� Boston University� ��� Cummington St�� Boston� MA ������
USA

RENAUD MARLET� GILLES MULLER fmarlet�mullerg�irisa�fr

COMPOSE group� IRISA�INRIA� Campus de Beaulieu� ����� Rennes Cedex� France

Abstract� Interpretation and run�time compilation techniques are increasingly important
because they can support heterogeneous architectures� evolving programming languages� and
dynamically�loaded code� Interpretation is simple to implement� but yields poor performance�
Run�time compilation yields better performance� but is costly to implement� One way to preserve
simplicity but obtain good performance is to apply program specialization to an interpreter in
order to generate an e�cient implementation of the program automatically� Such specialization
can be carried out at both compile time and run time�
Recent advances in program�specialization technology have signi	cantly improved the perfor�

mance of specialized interpreters� This paper presents and assesses experiments applying program
specialization to both bytecode and structured�language interpreters� The results show that for
some general�purpose bytecode languages� specialization of an interpreter can yield speedups of
up to a factor of four� while specializing certain structured�language interpreters can yield perfor�
mance comparable to that of an implementation in a general�purpose language� compiled using
an optimizing compiler�

Keywords� partial evaluation� compilation� compiler design� Just�In�Time compilation� run�time
code generation� domain�speci	c languages� bytecode languages�

�� Introduction

Modern computing environments are characterized by heterogeneous architectures�
evolving programming languages� and dynamically�loaded code� Domain�speci�c
languages� for example� may evolve rapidly� Similarly� mobile computing appli�
cations typically require that dynamically�loaded code be kept at a high enough
level to allow portability and veri�cation� Traditional compilers� which perform
complex� machine�speci�c optimizations and have a high development cost� are not
well�suited to such environments�
These problems have stimulated renewed interest in interpretation as a realistic

language�implementation technique� Interpreters provide portability� ease of mod�
i�cation� and rapid deployment of dynamically�loaded code� Nevertheless� inter�


 Author�s current address� Green Mountain Computing Systems� Inc� So� Burlington� VT��
USA


 Supported in part by NSF Grant EIA�������



�

pretation carries a signi�cant performance penalty� To eliminate this performance
penalty� one solution is to systematically transform an interpreter into a code gen�
erator� i�e� a compiler ���� �	
� Various techniques have been proposed to achieve
this goal�

Run�time code generation� The run�time code generation language �C provides
a high�level notation� based on C� in which to write programs that generate ex�
ecutable code at run time� An interpreter written in C can thus be translated
into �C and slightly modi�ed to generate code rather than executing it� Never�
theless� this approach is error�prone� since little or no veri�cation of the code
generation process is performed� Other run�time code generation languages�
such as MetaML ��
� Modal�ML �	�
� and Cyclone ��
� provide type systems
that ensure the correctness of the code generation process� Directly using such
a language� however� still implies that the code�generating program is written
by hand��

Ad�hoc bytecode interpreter optimization� Piumarta and Riccardi have pro�
posed to improve the performance of bytecode programs by selective inlining�
i�e�� replacing each bytecode by the corresponding fragment of the compiled
code of the interpreter ���
� This approach is e�ective� obtaining up to ��� of
the performance of C� and safe� because the translator is speci�ed in terms of
the original interpreter� The main limitation of this technique is that an inliner
has to be explicitly constructed from each interpreter�

Directive�driven specialization� Specialization optimizes a program by precom�
puting expressions that depend only on early�known inputs� In particular� spe�
cialization of an interpreter with respect to a statically�known program replaces
each term of the program with its �possibly also specialized� implementation�
thus acting as a compiler� Using the directive�driven specialization approach ��
�
the programmer instruments the original interpreter with annotations that help
drive the specializer� While this approach automates the process of code gen�
eration� the correctness of specialization depends on the annotations� Thus� it
is still error prone�

Automatic specialization� Automatic specialization ��� ��
 replaces the manual
annotations of directive�driven specialization by automatically inferred annota�
tions based only on a description of the known inputs� This approach to gener�
ating a compiler is more reliable� because it requires little or no modi�cation of
the interpreter� Specialization can also give better results� e�g�� if the analysis
provides multiple� context�sensitive annotations of individual source�program
constructs�

Compilation by automatic specialization of an interpreter has a long history �	� �
��� ��� ��� ��
� Program specialization has been shown to automatically process the
static semantics of the languages� including scope resolution� storage calculation�
and type checking� Such experiments� however� have been done in the context of
languages subsets� using restricted implementation languages� such as a functional



�

subset of Scheme� Coding an interpreter in such a high�level language prevents
lower�level optimizations from being expressed in the interpreter� and thus limits
the performance of the compiled code�
When an interpreter is written in an e�cient language� such as C� specializing

the interpreter with respect to a program can generate an e�cient implementation
of the program� Recent advances in automatic program specialization have allowed
the development of program specializers for C� including C�Mix ��
� developed at
DIKU� and Tempo ��
� developed at IRISA� Unlike C�Mix and earlier specializers
for functional languages� Tempo enables programs to be specialized both at compile
time and at run time� Run�time specialization is necessary when the specialization
values are not available until run time� as is the case for dynamically�loaded code�
Specialization of an interpreter to the source program at run time achieves Just�
In�Time compilation�
In this paper� we show that interpreter specialization �both at compile time and at

run time�� using Tempo� can generate e�cient compiled code for realistic languages
ranging from Objective Caml� a byte�coded general�purpose language� to PLAN�P�
a domain�speci�c language for implementing active�network protocols� We �nd
that specializing a bytecode interpreter can increase performance by up to a factor
of 	� and that specializing an interpreter for a high�level domain�speci�c language
can increase performance by up to a factor of ��� In the case of domain�speci�c
languages� we �nd that interpreter specialization yields performance comparable to
that of an equivalent program written in a general�purpose language and compiled
with an optimizing compiler� The results of our experiments clearly demonstrate
that program specialization can be a key tool in the development and e�cient
implementation of new languages�

The rest of the paper is organized as follows� Section � gives a short overview
of the Tempo specializer� Section � presents experiments in specializing bytecode
interpreters� while Section 	 presents experiments in specializing structured code
interpreters� We conclude in Section � by assessing the perspectives o�ered by
interpreter specialization�

�� A Specializer for C programs� Tempo

Tempo is an o��line specializer for C programs ��
� An o��line specializer is di�
vided into two phases� analysis and specialization� The input to the analysis phase
consists of a program and a description of which inputs will be known during spe�
cialization� Based on this information� the analysis phase produces an annotated
program� indicating how each program construct should be transformed during
specialization� Because C is an imperative language including pointers� the analy�
sis phase performs alias� side�e�ect� and dependency analyses� These analyses keep
track of known values across procedures� data structures� and pointers ���� ��
� Fol�
lowing the analysis phase� the specialization phase generates a specialized program
based on the annotated program and the values of the known inputs�
Tempo can uniformly perform compile�time and run�time specialization ��
� The

implementation of run�time specialization is divided into compile�time and run�time



�

phases� At compile time� Tempo generates both a dedicated run�time specializer
and binary�code templates that represent the building blocks of all possible special�
ized programs� At run time� the specializer performs the computations that rely
on the actual input values� selects templates� and instantiates these templates with
computed values ���� ��
� Because this approach to run�time specialization has low
overhead� it is suitable for implementing run�time compilation�
Tempo has been successfully used for a variety of applications such as operat�

ing systems �Sun Remote Procedure Call � RPC ��� ��
� Chorus Inter�Process
Communication � IPC �	�
�� and scienti�c programs �e�g�� convolution �lters ���
�
FFT ���
�� These applications have demonstrated two key features of Tempo� ���
it can process realistic programs that have not been carefully crafted for special�
ization ��� it can generate an e�cient implementation from generic software �e�g��
the specialized layer of the Sun RPC runs ��� times faster than the original one��
In this paper� we show that Tempo is an e�ective tool for specializing interpreters
for both low�level bytecode languages and high�level domain�speci�c languages�

�� Bytecode Interpreters

We �rst examine the specialization of bytecode ��at� linearized code� interpreters�
Typically� bytecode instructions correspond closely to machine instructions� but
without being tied to a particular architecture� Thus� bytecode is often used in the
context of a virtual machine� Because bytecode interpreters both provide dynamic
program loading and allow heterogeneity� they are increasingly used in operating
systems and embedded systems� Having the ability to generate e�cient compiled
code for various platforms from an existing interpreter is thus a promising technique�
We investigate the specialization of three bytecode interpreters� the Java Virtual
Machine �JVM�� Objective Caml �O�Caml�� and the Berkeley Packet Filter �BPF��
We �rst examine issues common to most bytecode interpreters� and then consider
the interpreters individually�

���� Specialization of bytecode interpreters

Most bytecode interpreters have a similar structure� as illustrated by the fragment
of a bytecode interpreter displayed in Figure ��a� The inputs to a bytecode inter�
preter are typically the bytecode program and a stack� Specialization should fully
eliminate the dispatch on the bytecode instructions� producing a specialized pro�
gram that only manipulates the stack� The specialized program is thus essentially
a concatenation of the implementations of the program instructions� To achieve
this e�ect� we need to ensure that the program counter�s value is statically known
at every program point in the interpreter�
After executing most instructions� the program counter is simply set to the next

instruction� In this case� the value of the program counter depends only on the
structure of the interpreted program� and is thus statically known� When there
is a conditional branch in the bytecode� however� the choice of whether to branch
or continue with the next instruction can depend on the values of the inputs to



�

Val execVM�Prog pg� Stack sp�

�

Index pc � ��

while�TRUE�

�

switch�pg	pc
�

�

ADD� �

int v� � POP�sp��

int v � POP�sp��

PUSH�sp�v��v��

pc �� NEXT�pg	pc
��

break�

�

���

IFZERO�

if�POP�sp� �� ��

pc �� JMP�OFFSET�pg	pc
��

else

pc �� NEXT�pg	pc
��

break�

���

�

�

a� Original interpreter

Val execVM�Prog pg� Stack sp� Index pc�

�

while�TRUE�

�

switch�pg	pc
�

�

ADD� �

int v� � POP�sp��

int v � POP�sp��

PUSH�sp�v��v��

pc �� NEXT�pg	pc
��

break�

�

���

IFZERO�

if�POP�sp� �� ��

return execVM�pg� sp�

pc�JMP�OFFSET�pg	pc
���

else

return execVM�pg� sp�

pc�NEXT�pg	pc
���

���

�

�

b� Rewritten interpreter

Figure �� Fragment of bytecode interpreter �known constructs are underlined�

the bytecode program� which are not known during specialization� This situation
is illustrated by the interpretation of the IFZERO instruction in Figure ��a� which
tests whether the value at the top of the stack is zero� and sets the program counter
accordingly� Because the value of the condition is unknown� it is impossible to
know whether the program counter will be assigned the address of the destination
or the next instruction� and thus its value cannot be statically known after the
conditional branch instruction� Subsequently� all references to the program counter
are considered to be unknown� and no specialization occurs�

To solve the problem� we use the following observation about the if�statement
used to implement a conditional branch instruction� Within the branches of this
if�statement the value of the program counter is still known� It is not until after
the if�statement that the program counter becomes unknown� when the analysis
merges the two possibilities because of the unknown test� Thus� one approach that
avoids the need to merge the two possible values of the program counter is for the
specializer to systematically duplicate the specialization of all of the code that is
executed after every if�statement �including the subsequent iterations of the inter�
pretation loop� within each branch of the if�statement� This approach is known
as continuation�passing style specialization ��� �
� Nevertheless� while continuation�



�

passing style specialization avoids the need to manually alter the source program�
it can lead to code explosion�

To avoid unnecessary code growth� we instead modify the source program to sim�
ulate continuation�passing style specialization only when needed� In particular� we
manually duplicate the continuation of an if�statement in its branches only when
the duplication is necessary to allow the program counter to remain known� The
main di�culty is to make the entire continuation� including subsequent iterations
of the interpretation loop� explicit in the interpreter� To this end� we extract the in�
terpretation loop into a separate procedure� parameterized by the program counter�
Now at any point we can continue interpretation either implicitly by reaching the
end of the loop� or explicitly by making a recursive call�

Concretely� the program is manually rewritten by �rst extracting the interpreta�
tion loop into a separate procedure� as described above� Then� each if�statement
implementing a bytecode conditional branch is rewritten as follows� First� code
explicitly following the if�statement� if any� is simply copied into the branches�
Next� a recursive call is added to the end of each branch� to model the subsequent
iterations of the interpretation loop� The result of each such call is then immedi�
ately returned� using a return�statement� This use of a return�statement re�ects
the fact that the recursive call performs the entire remaining computation� It also
has a bene�cial e�ect on the binding times� Because the analyses of Tempo do not
propagate values over a return�statement� the program counter is not considered
unknown after the transformed if�statement� The result of this transformation is
illustrated in Figure ��b� Note that the applicability of this transformation relies
on the fact that the interpreter is structured� and is independent of the structure
of the interpreted program�

We apply this rewriting to each of the bytecode interpreters considered� In the
case of the O�Caml and BPF interpreters� we perform other language�speci�c mod�
i�cations to improve the performance of the specialized code� as described below�
While these transformations are only necessary if the interpreter is intended for
specialization� the changes are systematic� localized� and do not compromise the
readability and the maintainability of the interpreter�

���� The Java Virtual Machine �JVM�

Java bytecode is a perfect target for specialization� it is designed to be executed on
a bytecode interpreter� Nevertheless� hand�written run�time �JIT� or o��line com�
pilers are often used to improve performance� For our specialization experiment� we
target the Harissa system ���
� Harissa is a �exible environment for Java execution
that permits mixing both compiled and interpreted code� Harissa�s compiler �Hac�
generates among the most e�cient code for Java programs ���
� while the inter�
preter �Hi� is slightly faster than the Sun JDK ����� interpreter� Hi is a �����line
hand�optimized C program�



�

Applying Specialization The Java language is designed to support dynamically�
loaded bytecode� In this context� an e�cient and e�ective compiler that can be
invoked at run time �i�e� a Just�In�Time compiler� is essential� Run�time spe�
cialization of a bytecode interpreter with respect to the dynamically�loaded code
provides such compilation� by replacing each bytecode instruction by its native
implementation�

Beyond simply replacing instructions by their implementation� specialization of
Java bytecode can optimize the generated code with respect to constants explicit
in the bytecode instructions� In particular� dynamically�loaded Java code depends
on the constant pool of the environment into which it is loaded� Specializing the
dynamically�loaded code to the constant pool eliminates references to this informa�
tion during execution� Indeed� this functionality was anticipated by the designers
of the Java bytecode language ��	
� When a bytecode instruction �rst refers to an
element of the constant pool� it must resolve the entry� Subsequent invocations of
the same instruction� however� need not resolve the entry again� Thus� the virtual
machine can replace such an instruction by a �quick� instruction� which does not
perform the resolution step� Essentially� specialization of the interpreter with re�
spect to the dynamically�loaded code automatically generates �quick� instructions�

Performance We evaluate the performance of the specialized Java bytecode in�
terpreter using the Ca�eine ��� benchmarks� Each Ca�eine micro�benchmark tests
one feature of the Java machine� and produces numbers� in Ca�eineMarks �higher
is faster�� that allow one to compare heterogeneous architectures and Java imple�
mentations directly� Among them� we consider three tests �Loop� Sieve� Float� that
are included in the �embedded� test suite��

Table �� Results of the Ca�eine ��� Java benchmark �in Ca�eineMarks� higher is faster�

JDK JDK Hi Hi Ka�e Run�time Hac Compile�time
����� ����� �no quick inst� spec� of Hi spec� of Hi

Sieve �� ��� ��� �� ��� ��� ���� ��
Loop � ��� ��� �� ���� ��� ��� ���
Float ��� ��� ��� �� ���� � ��� ���

The tests were performed on a Sun Ultra������Mhz by comparing three inter�
preters �JDK ������ JDK ����� Hi�� a public domain JIT compiler �Ka�e�� and the
Harissa compiler �Hac�� as well as the compile�time and run�time specializations
of the Hi interpreter� The results are shown in Table �� The �rst four columns
compare the performance of the interpreters� Due to the many manual optimiza�
tions implemented by Sun� the JDK ���� interpreter is about twice as fast as the
older JDK ����� interpreter� As expected� Hi performs better than JDK ������ To
illustrate the impact of the �quick� instructions� we also test the Hi interpreter with



�

the �quick� instructions disabled� With this modi�cation� its performance declines
by a factor of up to ���

By specializing Hi with �quick� instructions disabled� we get an average speedup
of �� for compile�time specialization and �� for run�time specialization�� This
speedup is mainly derived from the elimination of the program counter and by
the specialization of generic instructions into instructions having the functionality
of �quick� instructions� The last four columns of Table � compare the perfor�
mance of run�time and compile�time specialized code with the code generated by
hand�optimized JIT and o��line compilers� respectively� The optimized JIT ka�e
produces code that is up to 	 times faster than that produced by run�time special�
ization� while the optimized o��line compiler Hac produces code that is up to ��
times faster than that produced by compile�time specialization� We elaborate on
the reasons for this gap in Section ���� Nevertheless� the specialized code is up to
four times faster than the Hi interpreter implementing the �quick� instructions�

���� The Objective Caml Abstract Machine �O�Caml�

Our second bytecode interpreter is the O�Caml abstract machine� The O�Caml
bytecode language is signi�cantly di�erent from that of the JVM because it is the
target of a functional language� For example� the O�Caml bytecode interpreter
implements closures to handle higher�order functions�

In PLDI ���� Piumarta and Riccardi used the same O�Caml bytecode interpreter
to demonstrate how selective inlining can optimize direct threaded code ���
� We
obtain performance comparable to their results� However� unlike selective inlining�
specialization is a general tool that can be applied to a larger class of applications�

Applying Specialization As for bytecode interpreters in general� the goal of spe�
cializing the O�Caml bytecode interpreter is to eliminate instruction decoding and
dispatch� However� because the O�Caml bytecode language supports higher�order
functions� the program counter is not statically known� When a closure that is
the value of an arbitrary expression is applied� it is not possible to determine the
address of the entry point of the called function based on the bytecode program
alone� Nevertheless� although the number of di�erent closures that can be created
during the execution of a program is potentially unbounded� the set of code frag�
ments associated with these closures is bounded by the number of closure�creating
instructions �closure and closurerec� in the bytecode program� Thus� we simply
specialize the interpreter with respect to all of the possible code fragments indi�
vidually� and store the specialized code in a table� indexed by the address of each
unspecialized fragment� At run time� a function call is implemented by using the
code pointer of the invoked closure to extract the specialized de�nition from this ta�
ble� This modi�cation is crucial for obtaining signi�cant bene�t from specialization
of an interpreter for a language with higher�order functions�



�

0

5

10

15

20

25

ex
ec

ut
io

n 
ti

m
e 

(s
ec

)
Interpreter
Specialized (run-time)
Specialized (compile-time)
Compiled

1.6

2.6
1.7

1.1

1.9
1.9

1.2
1.8

1.61.8

3.9
1.8

1.1

2.4
2.3

1.3
1.8

1.8
10.3 53.8 18.0

16.9
13.3 18.0 4.0 14.8 3.8

fib1 fib2 qsort fft takc taku sieve soli boyer

Figure �� Results on O�Caml benchmark suite �execution times and speedups�

Performance To measure the performance of the specialized interpreter� we used
a standard O�Caml benchmark suite� The programs in the benchmark suite range
in size from �� lines �takc and taku� to ��� lines �boyer�� Figure � compares
the performance of these benchmarks when interpreted by the standard optimizing
interpreter� when compiled by specializing this interpreter �at compile time and
at run time�� and when compiled using the standard native�code compiler� The
heights of the bars represent the relative run times� The number on each bar
indicates the speedup as compared to the run time of the interpreted code� In
the graph� fib� represents the recursive �b in the standard benchmarks and fib�

represents an iterative version not in the original benchmark suite� We use fib�

assess the speci�c bene�ts of specialization in Section ���� All measurements were
taken on a Sun Ultra������Mhz�

In all of these benchmarks� run�time specialization achieves results that are equiv�
alent to or slightly better than the results reported for the selective inlining tech�
nique ���
� It is not surprising that the specialized version is not signi�cantly faster
than the inlining approach because the O�Caml bytecode language is already op�
timized with many specialized instructions� Thus� the ability to evaluate some of
the instruction calculations is not needed and specialization only selects and inlines
the implementation of each instruction �dispatch elimination��

��	� The Berkeley Packet Filter �BPF�

A packet �lter is a piece of code that is used to identify network packets belong�
ing to a given application� Packet �lters are written using a dedicated bytecode
language� and are loaded into the kernel where they are traditionally interpreted
at the expense of high computational cost ���
� The BPF ��	
 is considered as a
reference implementation for many optimization techniques ���� ��
�



�	

Table �� BPF benchmarks �time in seconds�

Interpreter CT Spec� CT Speedup RT Spec� RT Speedup

Pentium ���� ��� ���� ���� ����
Sparc �original� ���� ��� ��� ���� ����
Sparc �modi	ed� � ���� ���� ���� ����

�� Load ��bit value ��

case BPF�LD�BPF�W�BPF�ABS�

k � pc��k�

if �k � sizeof�int�� � buflen�

return ��

A���u�int�����u�char ��p�k�������

�u�int�����u�char ��p�k��������

�u�int�����u�char ��p�k������

�u�int�����u�char ��p�k��������

continue�

a� Original interpreter

�� Load ��bit value ��

case BPF�LD�BPF�W�BPF�ABS�

k � pc��k�

if �k � sizeof�int�� � buflen�

return ��

�� p is always aligned� ��

if ���p�k���x������

A����u�int� ���p�k���

else

A���u�int�����u�char ��p�k�������

�u�int�����u�char ��p�k��������

�u�int�����u�char ��p�k������

�u�int�����u�char ��p�k��������

continue�

b� Modi	ed for specialization

Figure �� Fragment of BPF interpreter

Applying Specialization As for the other bytecode languages� specializing the BPF
interpreter eliminates instruction dispatch� Additionally� we take advantage of the
fact that the interpreter will be specialized� by manually coding optimizations into
the interpreter� Figure ��a shows the original interpreter code for a packet load
instruction on a big�endian machine� This instruction loads the ���bit value stored
at a �xed o�set from the beginning of the packet� Due to alignment requirements
on the SPARC� these load instructions access the values one byte at a time� in
case the address is not aligned� Figure ��b shows an implementation of these
instructions that is intended to be specialized� This version chooses between two
implementations for each instruction� If the address is aligned the value is loaded
all at once� otherwise the value is loaded one byte at a time� While this test
might make the original interpreter slower� it results in faster specialized programs
because the condition of the added if�statement is known statically and evaluated
at specialization time�

Performance Table � shows the execution time for a simple ���instruction �lter
program applied to ���� packets� Results are given for the PC Pentium�Pro ���



��

Mhz and for a Sun Ultra������Mhz� with and without the optimization for aligned
loads� For the Sparc version with alignment optimization� the speedups are relative
to the original interpreter� since the modi�ed interpreter includes a test that one
might not implement for ordinary interpretation�

��
� Discussion

In this section� we have presented performance results for both run�time and compile�
time specialization of three di�erent kinds of bytecode interpreters� While the
speedup obtained by specialization is signi�cant� it does not compete with results
obtained with hand�written o��line or run�time compilers� There are two main rea�
sons for the limited speedup� bytecode languages often already contain specialized
instructions� and there are other optimizations such as stack elimination that are
typically performed by compilers but that are not achieved by specialization�
Both the JVM and O�Caml bytecode languages include many specialized instruc�

tions to improve performance� For example� both bytecode languages include an
instruction of the form LOAD n� which loads the nth item on the stack� However�
for small values of n� the bytecode languages also include instructions with a �xed
value for n� i�e�� LOAD �� LOAD �� LOAD �� etc� In the JVM there are� additionally�
the �quick� instructions� which are specialized versions of generic instructions�
Additional speedups obtained by compilers are due to transformations like stack

elimination� To determine the cause of the di�erence between the specialized
O�Caml bytecode interpreter and the native compiler� we have measured the ef�
fects of various transformations on the results of compile�time specialization� We
performed two main transformations� by hand� on a compile�time specialized ver�
sion of the fib� program� Since some of the looping within the interpreter is
implemented using recursive calls� as described in Section ���� the specialized code
is a set of recursive functions� So that the state of the interpreter is accessible to all
of these functions� it must be maintained in global variables� As a result� the com�
piler does not perform register allocation or any optimizations on these variables�
Thus� we �rst inline the specialized functions into a single function� and declare the
state variables locally within this function� Second� we convert stack elements to lo�
cal variables� This transformation permits register allocation and eliminates many
memory references� After applying both transformations� the resulting program is
almost identical to the program generated by the native O�Caml compiler� The
only signi�cant remaining di�erence is due to the fact that the O�Caml compiler
uses Unix signals to implement signals� whereas the bytecode interpreter performs
frequent checks to poll for pending signals�

�� Structured Code Interpreters

An emerging trend in software development consists of designing languages speci�c
to a particular domain� This approach is actively studied in both academia ���
 and
industry ��� ��� ��
� These languages� called Domain�Speci�c Languages �DSLs��
consist of notations� abstractions� and values that are speci�c to a particular family



��

of problems� Associated with a DSL is a set of properties that can be statically
veri�ed� ensuring the safety of a DSL program� Both languages studied in this
section are DSLs� PLAN�P is a language aimed at developing network application
protocols and GAL is a language for specifying video card device drivers�

	��� Specialization of DSL interpreters

In assessing the bene�ts of compilation via program specialization for high�level lan�
guages� it is important to di�erentiate between general�purpose languages �GPLs�
and DSLs� The design of a GPL is typically stable� and� if the language is an in�
dustry standard� high�quality compilers are often available for many di�erent plat�
forms� Compilation by specialization of an interpreter does not generally achieve
the performance of such compilers� Nevertheless� because DSLs may have a limited
audience or evolve frequently� it is often not feasible to develop optimizing compilers
for them�
Furthermore� DSLs do o�er some features that allow compilation via specializa�

tion to generate e�cient code� First� a DSL often simply amounts to a glue language
whose interpreter mainly invokes domain�speci�c building blocks� These building
blocks may be coded in a GPL� and thus can be compiled using a traditional�
highly optimizing compiler� In this case� eliminating the interpretive overhead by
specialization yields code comparable to a highly optimized GPL implementation�
Second� the properties associated with a DSL can allow optimizations in the inter�
preter that are not possible for a GPL� For example� a Java execution environment
must implement run�time array�bounds checks to ensure safe memory access� If the
restricted nature of a DSL prevents the programmer from expressing out�of�bounds
array accesses� the interpreter need not perform such run�time tests� and yet can
still provide the same level of safety as Java� When code is compiled by interpreter
specialization� this optimization is naturally implemented in the compiled code� For
these reasons� specialization of the PLAN�P and GAL interpreters produces code
that is comparable to that generated by a GPL compiler on equivalent programs�
Specialization of an interpreter of a high�level language gives a more dramatic

performance improvement than the specialization of an interpreter for a bytecode
language� because a high�level language contains more complex syntactic constructs
that can be processed in more complicated ways at compile time �e�g� type check�
ing� scope resolution� etc��� We �nd that DSL programs compiled using program
specialization can run between �� and �� times faster than interpreted programs�

	��� PLAN�P

The PLAN�P language allows the programmer to de�ne network protocols that
manipulate packets associated with a speci�c application ���� ��
� Because the net�
work is a shared resource� each router needs to verify that downloaded PLAN�P
programs satisfy its safety and security constraints� Furthermore� a network is of�
ten heterogeneous� Thus� to facilitate veri�cation and allow portability� PLAN�P
programs are downloaded as source code� Because new applications may be de�



��

ployed on the network at any time� PLAN�P programs must be downloaded and
checked dynamically� In this context� traditional o��line compilation would be too
time�consuming� Thus� PLAN�P can either be interpreted or compiled using a JIT�

The PLAN�P language was originally based on PLAN� a Programming Language
for Active Networks ���
� which is dedicated to network diagnostics� Nevertheless�
the semantics of PLAN�P is signi�cantly di�erent in order to treat a larger scope
of applications� such as the adaptation of distributed applications and services ���
�
While PLAN is interpreted� our PLAN�P interpreter is specialized at run time using
Tempo� thus achieving the same functionality as a JIT� Our previous experiments
have shown that PLAN�P protocols can yield the same throughput as equivalent
hand�crafted C versions ���
�

Performance We assess the performance of PLAN�P on a performance�demanding
application� a learning bridge� A bridge is a network node that is connected between
multiple LANs to form one logical LAN� A learning bridge keeps track of the source
of each packet in order to determine the LAN to which a host is connected� so that
packets for the host are only repeated on its LAN� We implement the learning bridge
using a hash table to record the source address and the LAN of each received packet�
The implementation in the PLAN�P language is 	� lines long�

We have done two types of benchmarks� ��� micro�benchmarks that measure
the pure computation time of the learning bridge� without including the run�time
system� ��� a real benchmark that measures the throughput of the system� The
micro�benchmarks evaluate the comparative performance of specialization vs com�
pilation� while real benchmarks measure the impact of specialization on the real
system taking into account input�output� cache accesses� etc�

Table �� Ethernet bridge micro�benchmark �time per packet� in micro�seconds�

Embedded C PLAN�P Java PLAN�P
specd� at run time compiled with Hac interpreted

Sun Ultra�� � �� �� ���
PC�Pentium Pro � �� � ���

The micro�benchmarks measure the time spent to treat a single packet on a PC
Pentium�Pro ��� Mhz and a Sun Ultra������Mhz �see Table ��� On the Sun� while
the run�time specialized PLAN�P bridge is � times slower than a hand�crafted
embedded C version� it is ��� faster than a Java version compiled and optimized
by Hac� On the PC� the run�time specialized code is much less e�cient� mainly
because Tempo is currently less optimized for the Pentium than for the Sparc� In
particular� for the Pentium� function inlining is not performed at run time� We
expect to have the same level of performance for the PC as for the Sun when this
optimization is implemented�



��

0

5

10

15

20

25

30

35

40

45

32 512 1024 2048 4096 8192

th
ro

ug
hp

ut
 (

M
b/

s)

packet size (bytes)

C learning bridge
PLAN-P specialized

JVM - learning bridge
PLAN-P interpreter

Figure �� TCP bandwidth of the Ethernet learning Bridge

To assess the impact of specialization on the performance of the entire system� we
considered a network consisting of two hosts connected to a bridge via ��� Mbps
Ethernet� Both the hosts and the bridge were Sun Ultra ����� Mhz� Throughput
was measured using ttcp with packet sizes varying from �� to ���� bytes� As shown
in Figure 	� the PLAN�P interpreter has the lowest throughput� The Java version
interpreted using the Sun JDK ����� has greater throughput than the PLAN�P in�
terpreter� but still has considerable interpretive overhead� Since specialization of
the PLAN�P interpreter eliminates the interpretation layer� it achieves higher band�
width than either source�code interpretation or bytecode interpretation� Finally�
the throughput of the hand�written C code is only 	� greater than the throughput
of the code automatically produced by specialization�

	��� GAL

GAL is a language for the speci�cation of graphic adaptors for the purpose of
generating device drivers ���
� Using GAL allows the program to remain at a
high level of abstraction� thus eliminating error�prone low�level code such as bit
manipulation� GAL speci�cations are up to �� times smaller than the corresponding
C drivers� Additionally� the language allows speci�cations to be automatically
checked for certain errors� such as the speci�cation of registers that overlap�

GAL was implemented using an interpreter simply to minimize the implementa�
tion time� The interpreter also allows rapid driver development� since the compi�



��

lation phases are eliminated� Once the speci�cation is fully tested� however� it is
desirable to generate compiled code� Since device drivers can be compiled o��line�
compiled code can be generated by applying compile�time specialization to the GAL
interpreter� Because the compiler is generated automatically from the interpreter�
we are guaranteed that the functionality is preserved�

The GAL language is a glue language� connecting generic building blocks� These
building blocks can also be specialized to remove the interpretation of their param�
eters�

Performance The GAL interpreter has been developed for the publicly available
XFree� X�� server� The X server can be linked with the GAL interpreter or
a driver generated by specializing the interpreter for a given GAL program� We
evaluate the performance of the specialized code using the standard XBench X
server benchmarks� Although XBench reports several measures of performance� we
are only concerned with the lines�second and rectangles�second measures� because
these are the only operations that use the device driver�

Table 	 reports the XBench results obtained on a PC Pentium�Pro ��� Mhz for
three versions of an S� device driver� The �rst server� S� XAA� was built with the
standard hand�coded C device driver included in the XFree� distribution� The
second server� S� AM� was built using the GAL interpreter where the interpreta�
tion layer has been specialized and only the basic �unspecialized� building blocks
remain� Finally� the S� PE server was built using the GAL interpreter where both
the interpretation layer and the building blocks have been specialized� The per�
centage column gives the percentage of the performance obtained as compared to
the performance of the hand�coded driver in C� As is clearly shown by these results�
there is no loss in performance due to the use of GAL� and yet GAL provides an
easier and more reliable method to develop device drivers�

Table �� XBench results with GAL

Server lines�s percent rectangles�s percent

S� XAA �standard server� ������ � ������� �
S� AM �interpretation eliminated� ������� �� ������� �
S� PE �completely specialized� ������� ��� ������� ���

�� Conclusion

Interpretation is reemerging as a signi�cant programming�language implementa�
tion technique� both for portability and to enable rapid prototyping of evolving
languages� Nevertheless� interpretation carries a signi�cant performance penalty�
when compared to traditional compilation� We have shown that specialization can



��

help bridge this gap� generating compiled code safely and e�ciently based on an
interpreter� The experiments described in this paper show the following�

� It is now possible to specialize existing interpreters for real languages and
achieve acceptable performance� Earlier work on specializing interpreters fo�
cused on toy languages implemented using functional languages�

� Although specialization of the Java interpreter achieves good speedup �	 times
faster than the unmodi�ed Hi and �� times faster than Hi modi�ed to eliminate
the quick instructions�� the performance is far from that produced by an opti�
mizing compiler� because specialization does not perform low�level optimizations
such as stack elimination�

� In the case of O�Caml� we get same or better results than Piumarta and Ric�
cardi as reported in PLDI���� Moreover� specialization is a much more general
technique�

� Compilation by interpreter specialization gives good performance for DSLs�
Since it is not practical to manually develop a traditional optimizing compiler for
domain�speci�c languages that rapidly evolve� specialization provides a needed
alternative�

Our experiments show that program specialization is entering relative maturity�
Thus� we can expect that software engineers will soon have specializers� just as
they now have parallelizers� that will help the design and prototyping of compilers�
With the increasing need for dynamic code loading and heterogeneity support in
many embedded systems �mobile phones� smartcards� active networks� etc��� the
combination of domain�speci�c languages� interpreters� and specialization o�ers an
appealing solution for the design and implementation of run�time environments�

Availability The systems described in this paper are available at the following
URLs�

� Tempo is available at http���www�irisa�fr�compose�tempo

� Harissa is available at http���www�irisa�fr�compose�harissa

� The Ca�eine benchmarks Ca�eineMark ��� are available from Pendragon Soft�
ware at
http���www�webfayre�com�pendragon�cm��index�html

� The O�Caml benchmark suite is available at
ftp���ftp�inria�fr�INRIA�Projects�cristal�Xavier�Leroy�benchmarks�objcaml�tar�gz

� GAL is available at http���www�irisa�fr�compose�gal

� The XFree� X�� server is available at http���www�xfree�	�org

� A prototype of the PLAN�P run�time system is available at
http���www�irisa�fr�compose�plan
p



��

Acknowledgments We would like to thank Luke Hornof� Ulrik Pagh Schultz� and
the anonymous referees for helpful comments on a draft of this paper�

Notes

�� Cyclone can also be used in the back end of the Tempo specializer described below �����

�� The other tests are not relevant for this experiment since they primarily measure the e��
ciency of features of the JVM that are not related to compilation� such as graphics or memory
allocation�

�� Speedup is calculated by dividing the execution time of the unspecialized code by the execution
time of the specialized code� Here� and subsequently in the paper� the time for specialization
is not included in the performance measurements�

References

�� L�O� Andersen� Program Analysis and Specialization for the C Programming Language�
PhD thesis� Computer Science Department� University of Copenhagen� May ����� DIKU
Technical Report ������

�� B�R�T� Arnold� A� van Deursen� and M� Res� An algebraic speci	cation of a language for
describing 	nancial products� In ICSE	�
 Workshop on Formal Methods Application in
Software Engineering� pages ����� April �����

�� J� Auslander� M� Philipose� C� Chambers� S� Eggers� and B�N� Bershad� Fast� e�ective
dynamic compilation� In Proceedings of the ACM SIGPLAN �� Conference on Programming
Language Design and Implementation� pages �������� Philadelphia� PA� May ����� ACM
SIGPLAN Notices� ������

�� A� Bondorf and J� Palsberg� Generating action compilers by partial evaluation� Journal of
Functional Programming� ������������ �����

�� C� Consel and O� Danvy� For a better support of static data �ow� In J� Hughes� editor� Func	
tional Programming Languages and Computer Architecture� volume ��� of Lecture Notes in
Computer Science� pages �������� Cambridge� MA� USA� August ����� Springer�Verlag�

�� C� Consel and O� Danvy� Static and dynamic semantics processing� In Conference Record of
the Eighteenth Annual ACM SIGPLAN	SIGACT Symposium on Principles Of Programming
Languages� Orlando� FL� USA� January ����� ACM Press�

�� C� Consel and O� Danvy� Tutorial notes on partial evaluation� In Conference Record of the
Twentieth Annual ACM SIGPLAN	SIGACT Symposium on Principles Of Programming
Languages� pages �������� Charleston� SC� USA� January ����� ACM Press�

� C� Consel� L� Hornof� J� Lawall� R� Marlet� G� Muller� J� Noy�e� S� Thibault� and N� Volan�
schi� Tempo� Specializing systems applications and beyond� ACM Computing Surveys�
Symposium on Partial Evaluation� ������ ����

�� C� Consel� L� Hornof� F� No�el� J� Noy�e� and E�N� Volanschi� A uniform approach for compile�
time and run�time specialization� In O� Danvy� R� Gl�uck� and P� Thiemann� editors� Partial
Evaluation� International Seminar� Dagstuhl Castle� number ���� in Lecture Notes in Com�
puter Science� pages ������ February �����

��� C� Consel and S�C� Khoo� Semantics�directed generation of a Prolog compiler� In
J� Maluszy�nski and M� Wirsing� editors� Proceedings of the �rd International Symposium
on Programming Language Implementation and Logic Programming� number �� in Lecture
Notes in Computer Science� pages �������� Passau� Germany� August ����� Springer�Verlag�

��� C� Consel and F� No�el� A general approach for run�time specialization and its application
to C� In Conference Record of the ��rd Annual ACM SIGPLAN	SIGACT Symposium on
Principles Of Programming Languages� pages �������� St� Petersburg Beach� FL� USA�
January ����� ACM Press�

��� Conference on Domain Speci�c Languages� Santa Barbara� CA� October ����� Usenix�



��

��� D�R� Engler and M�F� Kaashoek� DPF� Fast� �exible message demultiplexing using dynamic
code generation� In SIGCOMM Symposium on Communications Architectures and Protocols�
pages ������ Stanford University� CA� August ����� ACM Press�

��� J� Gosling� B� Joy� and G� Steele� The Java Language Speci�cation� Addison�Wesley� �����
ISBN ��������������

��� M� Hicks� P� Kakkar� J�T� Moore� C�A� Gunter� and S� Nettles� PLAN� A Packet Language
for Active Networks� In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming Languages� volume ����� of ACM SIGPLAN Notices� pages
����� ACM� June ����

��� L� Hornof and T� Jim� Certifying compilation and run�time code generation� Higher	Order
and Symbolic Computation� �������������� December �����

��� L� Hornof and J� Noy�e� Accurate binding�time analysis for imperative languages� Flow�
context� and return sensitivity� In ACM SIGPLAN Symposium on Partial Evaluation and
Semantics	Based Program Manipulation� pages ������ Amsterdam� The Netherlands� June
����� ACM Press�

�� L� Hornof� J� Noy�e� and C� Consel� E�ective specialization of realistic programs via use
sensitivity� In P� Van Hentenryck� editor� Proceedings of the Fourth International Symposium
on Static Analysis� SAS��
� volume ���� of Lecture Notes in Computer Science� pages ����
���� Paris� France� September ����� Springer�Verlag�

��� N�D� Jones� Automatic program specialization� A re�examination from basic principles� In
D� Bj�rner� A�P� Ershov� and N�D� Jones� editors� Partial Evaluation and Mixed Computa	
tion� pages ������� North�Holland� ���

��� N�D� Jones� C� Gomard� and P� Sestoft� Partial Evaluation and Automatic Program Gener	
ation� International Series in Computer Science� Prentice�Hall� June �����

��� S�C� Khoo and R�S� Sundaresh� Compiling inheritance using partial evaluation� In Partial
Evaluation and Semantics	Based Program Manipulation� pages �������� New Haven� CT�
USA� September ����� ACM SIGPLAN Notices� ������

��� D� Ladd and C� Ramming� Two application languages in software production� In USENIX
Symposium on Very High Level Languages� New Mexico� October �����

��� D� A� Ladd and J� C� Ramming� Programming the Web� An application�oriented language
for hypermedia service programming� In Fourth International World Wide Web Conference�
Boston� Massachusetts� December �����

��� S� McCanne and V� Jacobson� The BSD packet 	lter� A new architecture for user�level
packet capture� In Proceedings of the Winter ���� USENIX Conference� pages �������� San
Diego� California� USA� January ����� USENIX�

��� J�C� Mogul� R�F� Rashid� and M�J� Accetta� The Packet Filter� an E�cient Mechanism for
User�level Network Code� In The Proceedings of the ��th Symposium on Operating System
Principles� November ����

��� G� Muller� R� Marlet� and E�N� Volanschi� Accurate program analyses for successful special�
ization of legacy system software� Theoretical Computer Science� �������� ����� To appear
in TCS Volume �������

��� G� Muller� R� Marlet� E�N� Volanschi� C� Consel� C� Pu� and A� Goel� Fast� optimized Sun
RPC using automatic program specialization� In Proceedings of the ��th International Con	
ference on Distributed Computing Systems� pages �������� Amsterdam� The Netherlands�
May ���� IEEE Computer Society Press�

�� G� Muller� B� Moura� F� Bellard� and C� Consel� Harissa� A �exible and e�cient Java
environment mixing bytecode and compiled code� In Proceedings of the �rd Conference on
Object	Oriented Technologies and Systems� pages ����� Portland �Oregon�� USA� June �����
Usenix�

��� G� Muller and U� Schultz� Harissa� A hybrid approach to Java execution� IEEE Software�
pages ������ March �����

��� G� Necula and P� Lee� Safe kernel extensions without run�time checking� In Proceedings of
the Second Symposium on Operating Systems Design and Implementation� pages ��������
Seattle� Washington� October �����

��� F� No�el� L� Hornof� C� Consel� and J� Lawall� Automatic� template�based run�time special�
ization � Implementation and experimental study� In International Conference on Computer
Languages� pages �������� Chicago� IL� May ���� IEEE Computer Society Press� Also
available as IRISA report PI������



��

��� I� Piumarta and F� Riccardi� Optimizing directed threaded code by selective inlining� In
PLDI�� ����� pages ��������

��� Proceedings of the ACM SIGPLAN��� Conference on Programming Language Design and
Implementation� Montreal� Canada� ����� June ����

��� D�A� Schmidt� Denotational Semantics� a Methodology for Language Development� Allyn
and Bacon� Inc�� ����

��� U� Schultz� J� Lawall� C� Consel� and G� Muller� Towards automatic specialization of Java
programs� In Proceedings of the European Conference on Object	oriented Programming
�ECOOP����� volume ��� of Lecture Notes in Computer Science� pages �������� Lisbon�
Portugal� June �����

��� W� Taha� W� Benaissa� and T� Sheard� Multi�stage programming� Axiomatization and
type safety� In Automata� Languages and Programming� ��th International Colloquium
�ICALP����� volume ���� of Lecture Notes in Computer Science� pages ������� Aalborg�
Denmark� July ����

��� S� Thibault� C� Consel� and G� Muller� Safe and e�cient active network programming� In �
th
IEEE Symposium on Reliable Distributed Systems� pages �������� West Lafayette� Indiana�
October ����

�� S� Thibault� J� Marant� and G� Muller� Adapting distributed applications using extensible
networks� In Proceedings of the ��th International Conference on Distributed Computing
Systems� pages �������� Austin� Texas� May ����� IEEE Computer Society Press�

��� S� Thibault� R� Marlet� and C� Consel� Domain�speci	c languages� from design to imple�
mentation � application to video device drivers generation� IEEE Transactions on Software
Engineering� �������������� May�June �����

��� E� N� Volanschi� An Automatic Approach to Specializing System Components� PhD thesis�
Universit�e de Rennes I� February ����

��� P� Wickline� P� Lee� and F� Pfenning� Run�time code generation and Modal�ML� In PLDI��
����� pages ��������


