
E�cient Incremental Run�Time Specialization for Free

Renaud Marlet Charles Consel Philippe Boinot

IRISA� INRIA �Universit de Rennes �
Compose project

Campus universitaire de Beaulieu
����� Rennes cedex� France

�marlet�consel�pboinot��irisa�fr

Abstract

Availability of data in a program determines compu�
tation stages� Incremental partial evaluation exploit
these stages for optimization� it allows further special�
ization to be performed as data become available at
later stages� The fundamental advantage of incremental
specialization is to factorize the specialization process�
As a result� specializing a program at a given stage costs
considerably less than specializing it once all the data
are available�

We present a realistic and �exible approach to
achieve e�cient incremental run�time specialization�
Rather than developing speci�c techniques� as previous�
ly proposed� we are able to re�use existing technology
by iterating a specialization process� Moreover� in do�
ing so� we do not lose any specialization opportunities�
This approach makes it possible to exploit nested quasi�
invariants and to speed up the run�time specialization
process�

Our approach has been implemented in Tempo� a
specializer for C programs that is publicly available� A
preliminary experiment con�rms that incremental spe�
cialization can greatly speed up the specialization pro�
cess�

� Introduction

Di�erent stages of computation can be identi�ed in a
program� depending on the availability of data� Code
corresponding to later stages can often be optimized by
performing in advance the computations depending on
data available at earlier stages� i�e�� by factorizing some
computations from late stages into earlier stages�

To appear in the proceedings of the ACM SIGPLAN
conference on Programming Language Design and
Implementation� May �			� Atlanta� Georgia�

��� Staging in Partial Evaluation

Staging is the essence of partial evaluation� it tradition�
ally makes explicit two stages
binding times�� namely
static
early stage� and dynamic
late stage��

Consider� a program p which normally computes a
result out in one stage from input ins and ind�

out �

p�� ins ind

Given a binding�time division of p�s input� a program
specializer spec splits computations into two stages�

p�res �

spec�� p �SD� ins

out �

p�res�� ind

In the �rst stage� when building the residual
i�e�� spe�
cialized� program p�res� computations depending only
on input data ins are performed� Remaining computa�
tions needed to obtain out are performed in a second
stage�

��� Staging in Loop Nests

Staging also arises in nested loops� The deeper is the
nesting� the later is the stage
and the more frequent the
execution�� Consider for example the program below�

for i � ��� �stage ��
for j � ��� �stage ��

for k � ��� �stage ��
f�i�j�k� �stage ��

end �stage ��
end �stage ��

end �stage ��

Variable i does not vary inside the body of the �rst�
outmost loop� It is called a quasi�invariant� Any com�
putation in f depending only on i can be performed
before the second� middle loop is executed� thus avoid�
ing being recomputed at each iteration of variables j

and k� Similarly� any computation depending only on
�Notations are borrowed or adapted from ���� ���� In addition� we

note �SiDj� a binding�time sequence consisting of i occurrences of S

�static	 and j occurrences of D �dynamic	�

�

i and j can be performed before the third� innermost
loop is executed� Informally� this factorization could be
obtained with the following specializations�

for i � ���
f�i � spec�f�i�
for j � ���

f�i�j � spec�f�i�j�
for k � ���

f�i�j�k�
end

end
end

This corresponds to an incremental specialization pro�
cess� further specialization are performed as data for
later stages become available�

��� Bene�ts of Incremental Specialization

Just as ordinary specialization� incremental specializa�
tion is bene�cial only if specialized functions are used
enough times to amortize the time to construct them�

Specialization can be performed at compile time as a
source�to�source transformation� For example� a gener�
ic microprocessor simulator can be �rst specialized with
respect to a given instruction set� yielding a simulator
dedicated to a processor� and then be further special�
ized with respect to a program to speed up its simula�
tion time� Similarly� a generic program�analysis engine

e�g�� Z�
���� BANE
��� could be specialized with re�
spect to a language
abstract interpreter or equation
generator� and an analysis
precision and abstract do�
mains�� Other applications include meta�interpreters
taking as successive input a language de�nition� a pro�
gram and its data� and the generation of a compiler
generator capable of supercompilation from a two�level
driving interpreter
��� ����

However� compile�time specialization� whether or
not incremental� is limited� For example� it cannot be
applied to the above loop nest because of the compila�
tion overhead at each stage would make it impractical�
To eliminate this overhead� we must resort to run�time
specialization� i�e�� run�time code generation� In the
loop nest example� the bene�t of incremental special�
ization varies according to the amount of computations
depending on the quasi�invariants
i�e�� the execution
cost of pre�computed static expressions�� the number
of loop iterations
i�e�� the amount of re�use� and the
time taken for code generation� Besides loop nests� in�
cremental run�time specialization can be used to speed
up staged computations that are inherently dynamic
such as con�guring a system with respect to run�time
parameters�

In fact� the Synthetix project has been advocating
the use of incremental specialization to optimize oper�
ating systems
��� They used the technique successfully
to optimize the HP�UX �le system by exploiting staged
invariants of this subsystem
�	��

Also� a combination of compile�time and run�time
specialization was used by Volanschi to optimize the
Chorus IPC
����

��� This paper

In this paper� we study how a practical multi�level spe�
cialization process can be derived from a simple two�
level model� In particular we show how Tempo� a two�
level run�time specializer for C� can be turned into an
e�cient incremental partial evaluator� Our contribu�
tions are the following�

� We present a realistic and �exible approach to
achieve e�cient incremental run�time specializa�
tion�

� This provides some practical insight into the na�
ture of incremental partial evaluation�

� Our approach is simpler than existing techniques
and relies on well�known and available technology�

� It is implemented in an existing program special�
izer named Tempo and a preliminary experiment
con�rm that it can considerably speed up the spe�
cialization process�

The paper is organized as follows� Section � presents
two approaches for achieving incremental partial eval�
uation� namely �native� multi�level specialization and
iterated two�level specialization� Section � describes our
implementation of the latter approach in Tempo� Sec�
tion � analyzes our iterative specialization approach and
Section � compares it with related work� Section � lists
ongoing and future work� Section � concludes�

� Incremental Partial Evaluation

Most o�ine partial evaluators rely on the concept
of generating extension
���� A generating extension
p�gen is a generator of specialized p programs�

p�res �

p�gen�� ins

out �

p�res�� ind

A generating extension is generally obtained using a
compiler generator cogen given a binding�time speci��
cation�

p�gen �

cogen�� p �SD�

A compiler generator provides a specializer�

spec�� p �SD� ins
def
�

cogen�� p �SD��� ins

The question is� how can this two�level staging of com�
putations be extended to n levels in the case of a pro�
gram p with n arguments�

out �

p�� in� � � � inn

�

Without loss of generality� we assume that p has ex�
actly n inputs� provided in the staging order in�� � � � �
inn��

There exists basically two main approaches to
achieve incremental partial evaluation
���� These ap�
proaches extend the concept of generating extensions to
multi�level specialization�

��� Multi�Level Generating Extension

The idea of multi�level o�ine specialization
��� ��� can
be described as follows�

An n�level generating extension is a program
that produces
n����level generating exten�
sions�

The base case is a two�level generating extension� which
corresponds to the classic de�nition of p�gen given
above�

An n�level generating extension p�mgenn for pro�
gram p is used as follows�

p�mgenn�� �

p�mgenn�� in�

���

p�mgen� �

p�mgen��� inn��

out �

p�mgen��� inn

At step i� when computing the
n�i��level generating
extension p�mgenn�i� only computations of p that de�
pend on stages i and before
i�e�� on arguments in�� � � � �
ini� are performed�

As an example� consider the loop nest pattern p�
resented in the introduction� A three�level generating
extension f�mgen� for function f can be used as follows�

for i � ���
f�mgen� � f�mgen��i�
for j � ���

f�mgen� � f�mgen��j�
for k � ���

f�mgen��k�
end

end
end

The fact that some computations at a given stage do
not vary in deeper stages in now made explicit�

��� Multi�Level Compiler Generator

To construct multi�level generating extensions� Glck
and Jrgensen
��� propose to extend the two�point
binding�time domain fS� Dg to a domain f�� � � � � ng of
cardinality n� A multi�level binding time i in this do�
main corresponds to input that is available only at
stage i and subsequently� Two�level binding�time anal�
yses
BTA� can be extended to multi�level binding�time

analyses
MBTA� in order to treat n stages� For exam�
ple� �t� in the �S � D� lattice becomes �max� in the
�� � � � � � n� lattice�

A multi�level compiler generator mcogen can then be
de�ned to exploit this multi�level binding�time analysis
and produce multi�level generating extensions�

p�mgenn �

mcogen�� p �� � � �n�

However� de�ning an mcogen is not a trivial task
����

��� Iterated Two�Level Specialization

Instead of speci�cally developing a multi�level binding�
time analysis and a multi�level compiler generator
mcogen� we consider an alternative construction called
incremental self�application
��� ��� or incremental gen�
eration
����

To �rst get some intuition� consider again the loop
nest case� given only a two�level generating extension�

for i � ���
for j � ���

f�res � f�gen�i�j�
for k � ���

f�res�k�
end

end
end

To further factorize computations depending only on
i inside the j loop� the function f�gen itself could be
specialized�

for i � ���
f�gen�res � f�gen�gen�i�
for j � ���

f�res � f�gen�res�j�
for k � ���

f�res�k�
end

end
end

Specialization is advantageous only if the residual code
is used enough times to compensate for the building
cost� In our example� whether to further specialize
f�gen or not depends on the number of iterations on
j� the amount of computations depending only on i in
f�gen� and the time required for generating f�gen�res�

This re�specialization further stages computations
that were previously declared as static� It suggests an
alternative to n�level generating extensions�

p�igenn �
p�igenn����gen

More precisely� given a two�level cogen and a pro�
gram p� we de�ne�

p�igen� � p

p�igen� �

cogen�� p�igen� �

n��
z �� �

S � � � SD�

���

p�igenn �

cogen�� p�igenn�� �SD�

�

Program p�igenn achieves multi�level specialization in
the sense that�

p�igenn is an n�level generating extension

This statement says that iterated applications of
p�igenn to the sequence of inputs in�� � � � � inn yields
the result out� The proof is by induction on the level n�
the induction hypothesis is applied to program p�igen��

Another way to understand p�igenn is the following�
Let spec be the specializer de�ned from cogen� Then�
for all � � i � n�

� � �

p�igenn�� in� � � ��� ini �

spec�� p�igenn�i �S

iD� in� � � � ini

The proof is by induction on i�
These facts are important to capture the nature of

this iterated generating extension� each additional level
in the construction merely consists in specializing the
preceding level� In particular� compared to traditional
two�level specialization� incremental specialization does
not discover more specialization� Indeed� consider the
case where i�n�� and compare it with the two�level
specialization of p with binding times �Sn��D��

� � �

p�igenn�� in� � � ��� inn�� �

spec�� p �Sn��D� in� � � �inn��

Thus� given a two�level specialization� further staging
the static inputs does not alter �nal the specialized pro�
gram� What incremental specialization does is just to
optimize the specialization process itself� Incrementali�
ty may thus lower the specialization break�even point�
which is the number of times that the specialized pro�
gram must be executed to amortize the cost of special�
ization� This is especially useful at run time
as opposed
to compile time� because specialization must be as fast
as possible�

� Implementation

This iterated approach for incremental specialization
has been implemented using Tempo�

Tempo is an o�ine partial evaluator for C program�
s
�� ��� It allows programs to be specialized both at
compile time and run time� It has been applied in vari�
ous domains� including operating system and network�
ing
���� domain�speci�c languages
��� ���� software ar�
chitectures
���� and numerical computation
���� Tem�
po is publicly available��

In this section� we describe how Tempo can be ap�
plied multiple times to the run�time generating exten�
sions that it generates� thus yielding incremental run�
time specialization� The basic concepts and implemen�
tation of the run�time specializer have been described

�Tempo
s home page� http���www�irisa�fr�compose�tempo

int dotprod�int size� int u	
� int v	
�
�

int i� res � �

for�i � �
 i � size
 i���
�
res �� u	i
 � v	i

�
return res

�

Figure �� Inner product function dotprod

int dotprod�int size� int u	
� int v	
�
�

int i� res � �

for�i � �
 i � size
 i���
�
res �� u	i
 � v	i

�
return res

�

Figure ��

bta�� dotprod �SSD�

elsewhere
�� ��� ���� Still� we mention here speci�c
features of Tempo that make incremental specialization
particularly fast�

We explain the process of incremental specialization
only through an example� the function dotprod given
in Figure ��

��� Binding�Time Analysis

Assume arguments size and u�� of function dotprod

are static� The result of the corresponding binding�
time analysis is shown in Figure �� Dynamic expressions
and statements are underlined� the other constructs are
assumed static�
Tempo displays similarly the results
of its BTA� using colors for di�erent binding times��

A compile�time generating extension based on this
binding�time division would� look like the function Fig�
ure �� The static slice of function dotprod determines
the control of the specialization process� the dynamic
slice is printed into some specialization output stream�
Dynamic code may contain holes
denoted with �d� to
be �lled by the result of static expressions� these frag�
ments are called templates�

Note that� even though 	 is a static constant� the ini�
tial de�nition of res
i�e�� the assignment�res
 	���
has to be residualized because the variable becomes dy�
namic in the body of the loop
���� In fact� rather than
assigning the binding time �res
 	�� as one would
expect since 	 is static� Tempo treats it a fully dynamic
statement� �res
 	��� The reason is that it is useless
to consider literal constants as static when they are in
a dynamic context� they cannot be exploited for any

�Tempo
s compile�time specializer does not rely on a generating
extension technology
 it interprets specialization actions�

�

dotprod�ctgen�int size� int u	
�
�

int i

printf��int dotprod�res�int v	
���

printf�����

printf��int res � �
��

for�i � �
 i � size
 i���
�

printf��res �� �d � v	�d

��u	i
�i�

�
printf��return res
��

printf�����

�

Figure �� Compile�time generating extension

int dotprod�res�int v	
�
�

int res � �

res �� � � v	�

res �� � � v	�

res �� � � v	�

return res

�

Figure �� Compile�time specialization

static computation� Furthermore� for the generation
process � which must be as fast as possible at run time
�� it is less expensive to directly produce �res
 	��
in the specialized code rather than �rst lift the value
�
i�e�� turn it into text in the �template language��
and then insert it in the hole of template �res
 ����
Because the constant is present at template compilation
time rather than specialization time� the resulting bina�
ry code can also be more e�cient
e�g�� multiplication of
a dynamic value by a literal integer can be turned into
bit shifts�� This binding�time feature will be used lat�
er when Tempo is applied iteratively
cf� Section �����
More features
not shown in this example� related to
static pointer lifting and modular specialization will al�
so be necessary�

An example of a specialized version of dotprod pro�
duced by dotprod�ctgen and invoked with actual val�
ues size�� and u����
����� is shown in Figure ��

��� Two�Level Run�Time Specialization

Tempo�s strategy for run�time specialization relies on
generating extensions� The di�erence with compile�
time generating extensions is that templates are now
binary rather than textual
source code�� For this�
source templates are pre�compiled into binary tem�
plates� The resulting fragments are assembled at spe�
cialization time� Holes in the binary code are patched

i�e�� �lled� similarly�

To obtain those binary templates� Tempo generates
an extra �le which de�nes the function dotprod�temp

given in Figure �� The code of this function is struc�

int dotprod�temp�int v	
�
�

int res � �

T�

for�
dummy test
� �

res �� H� � v	H�

 T��H��H��

�

return res

�

T�

Figure �� Templates

dotprod�gen�int size� int u	
�
�

char �buf� �bufp

int i

bufp � buf � rts�buf�alloc��

dump�template�bufp�t�t� �s��

bufp �� s�

for�i � �
 i � size
 i���
�
dump�template�bufp�t�t� �s��

patch�hole�bufp�h��u	i
�

patch�hole�bufp�h��i�

bufp �� s�

�
dump�template�bufp�t�t� �s��

bufp �� s�

return buf

�

Figure �� Run�time generating extension

tured so that a standard C compiler can process the
templates� This strategy contrasts with other approach�
es to run�time specialization which require a special�
purpose compiler to be developed
�� �	��

For example� there are three templates in function
dotprod�temp which correspond to code regions T�� T�

and T�� Template T� contains two holes H� and H��
that can be patched later at specialization time� A dum�
my loop has been inserted to instruct the compiler that
code fragment T� can be executed many times� Com�
piling this function and performing some surgery on the
binary code gives access to binary template delimitation
and hole locations�
See
��� ��� for implementation de�
tails��

Tempo then builds a run�time generating extension
dotprod�gen that manipulates these code templates� as
shown in Figure �� In this �gure� the symbol t stand�
s for the function pointer dotprod�temp
an address
known at load time�� ti is the o�set of template Ti in t

a known integer constant�� si is the size of the corre�
sponding Ti templates
a known integer constant�� hj
symbols are o�sets of holes inside the templates
known
integer constants�� Operation dump�template
actual�
ly memcpy� copies the template into the specialization

�

dotprod�gen�int size� int u	
�
�

char �buf� �bufp

int i

bufp � buf � rts�buf�alloc��

dump�template�bufp�t�t��s��

bufp �� s�

for�i � �
 i � size
 i���
�

dump�template�bufp�t�t��s��

patch�hole�bufp�h��u	i
�

patch�hole�bufp�h��i�

bufp �� s�

�
dump�template�bufp�t�t��s��

bufp �� s�

return buf

�

Figure �� BTA with dynamic bu�er allocation
��

bu�er� Operation patch�hole
actually a macro� s�
tores a value in the bu�er at a speci�c hole o�set� this
operation is processor�dependent�

Running dotprod�gen with actual values size��
and u����
����� allocates the bu�er buf and �lls it
as follows�
Filling a hole in a template T with the
result v of a static expression is noted T
v���

buf � T� T�
�� �� T�
�� �� T�
�� �� T�

At the end� the function returns a pointer to the be�
ginning of the bu�er where binary templates have been
assembled�

��� Iterated Run�Time Specialization

Now assume that arguments size� u�� and v�� of func�
tion dotprod are available in this order at successive
stages� We want �rst to specialize with respect to
the size� and then with respect to a given vector� As
seen in Section �� such an incremental specialization
can be obtained by specializing the generating exten�
sion dotprod�gen with respect to argument size� This
requires running the binding�time analysis on the gen�
erating extension� the resulting binding times are pre�
sented in Figure ��

As was the case for the static value 	 in the dynamic
assignment �res
 	�� of Figure �� the analysis does
not treat the literal integers hi and si as static because
they are in a dynamic context� Without this optimiza�
tion� incremental specialization would incur the cost of
a useless hole�patching for each code generation oper�
ation
template dumping and hole �lling� in the �rst
generating extension�

Tempo�s BTA also has a special treatment of static
pointers� It considers static the pointer expressions t�ti
because t is an address known at load time and integers
ti are literal constants� However� these expressions oc�
cur in a dynamic context
i�e�� a call to dump�template��

dotprod�gen�temp��int u	
�
�

char �buf� �bufp

bufp � buf � rts�buf�alloc��

dump�template�bufp�H�

�
�s��

bufp �� s�

T �

�
�H�

�
�

for�
dummy test
� �

dump�template�bufp�H�

�
�s��

patch�hole�bufp�h��u	H
�

�

�

patch�hole�bufp�h��H
�

�
�

bufp �� s�

T �

�
�H�

�
�H�

�
�H�

�
�

�

dump�template�bufp�H�

�
�s��

bufp �� s�

return buf

�

T �

�
�H�

�
�

Figure �� Multi�level templates
��

In the case of compile�time specialization� static point�
er values cannot be lifted
i�e�� translated into a textual
representation in the specialized code� when they are
in a dynamic context� Indeed� pointer values can vary
from one execution to another� moreover� pointed val�
ues might have to be lifted as well� Thus� such pointer
expressions are usually turned into dynamic by the B�
TA
���� As mentioned above� because there is no need
to consider literal constants as static when they are in
a dynamic context� this would actually result in the
binding time �dump�template�bufp�t�ti�si����

Fortunately� there is no such constraint in the con�
text of run�time specialization� Indeed� lifting a static
pointer is just like lifting an integer� i�e�� the identity
function� However� the lifetime of the pointed memory
space should be considered carefully� not only should
it exist at specialization time but it should also ex�
ist at execution time� This condition is not guaran�
teed for pointers to heap�allocated memory
that can
be freed� nor stack�allocated memory
that becomes in�
valid when the corresponding function returns� more�
over� the address of local variables can vary from one
call to another�� In order for pointer lifting to be safe�
it is enough to restrict this operation to global loca�
tions� Tempo implements such a feature� and thus may
produce di�erent binding�time annotations depending
on the type of specialization chosen
compile�time or
run�time�� In our example� the BTA produces the an�
notation �dump�template�bufp�t�ti�si���� The im�
provement over a traditional BTA is small in this case�
size�� additions are now performed at specialization
time rather than execution time� However� this feature
will be crucial when further optimizing the incremental
specialization process
cf� Section �����

The binding�time analyzed version of the generat�

�

dotprod�gen�gen��int size�
�

char �buf�� �bufp�

int i

bufp� � buf� � rts�buf�alloc��

dump�template�bufp��t��t�

�
�s�

�
�

patch�hole�bufp��h�

�
�t�t��

bufp� �� s�

�

for�i � �
 i � size
 i���
�

dump�template�bufp��t��t�
�
�s�

�
�

patch�hole�bufp��h�

�
�t�t��

patch�hole�bufp��h�

�
�i�

patch�hole�bufp��h�

�
�i�

bufp� �� s�

�

�
dump�template�bufp��t��t�

�
�s�

�
�

patch�hole�bufp��h�

�
�t�t��

bufp� �� s�

�

return buf�

�

Figure 	� Multi�level run�time generating extension
��

ing extension leads to templates shown in Figure ��
These templates contain operations depending on the
data available at this stage� e�g�� u�H �

��� They also con�
tain template management of the previous stage� From
this binding�time analysis is also produced the three�
level generating extension shown in Figure 	�

The overall behavior is the following� Running the
function dotprod�gen�gen� with the actual value � for
size allocates a �rst bu�er for the intermediate spe�
cialization� it then loads it with templates T �

i and �lls
them�

buf � � T �

�
t�t�� T �

�
t�t�� �� �� T �

�
t�t�� �� ��

T �

�
t�t�� �� �� T �

�
t�t��

Then� running the function at address buf � on a given
u�� produces the same e�ect as dotprod�gen as de�
scribed earlier in Section ����

Note that each time the code at buf � is run� a new
bu�er buf is allocated� Hence� many specializations
with respect to size and u�� may coexist� However�
there are cases where this is not needed� For example�
in the case of our loop nest program� the uses of func�
tion f�gen�res are not simultaneous but successive
for
each j�� If we know that coexisting specializations are
not needed at a given stage� further optimization can
be achieved� as described in the next section�

��� Optimized Iterated Specialization

Assuming that coexisting specializations with respect
to u�� are not needed� we may allocate a single spe�
cialization bu�er for each given size� This amounts to
considering the allocation of the specialization bu�er in
dotprod�gen as static rather than dynamic� This infor�

dotprod�gen�int size� int u	
�
�

char �buf� �bufp

int i

bufp � buf � rts�buf�alloc��

dump�template�bufp�t�t� �s��

bufp �� s�

for�i � �
 i � size
 i���
�
dump�template�bufp�t�t� �s��

patch�hole�bufp�h��u	i
�

patch�hole�bufp�h��i�

bufp �� s�

�
dump�template�bufp�t�t� �s��

bufp �� s�

return buf

�

Figure ��� BTA with static bu�er allocation
��

mation can be exploited to further factorize the special�
ization process� In particular� calls to dump�template

can now be performed at the �rst specialization stage�
The resulting binding�time analyzed program is shown
in Figure ��� As can be noticed� compared to the an�
alyzed program in Figure �� many more computations
have been made static�

It must be noted that expression bufp�h� is a stat�
ic pointer in a dynamic context� as was the case for
expressions t�ti in Section ���� If static pointers in dy�
namic contexts could not be lifted� they would have to
be dynamic� Then the initial bu�er allocation as well
as calls to dump�template would have to be residual�
ized� This would lead to binding times similar to those
in Figure �� Thus� it would not be possible to exploit
the static bu�er allocation�

To specify that the bu�er allocation should be static�
we rely on Tempo�s support for modular specialization�
i�e�� the ability to specialize only a part of a program�
In Tempo� a model of the operational behavior can be
speci�ed for all external functions� In our case� we mod�
el rts�buf�alloc as a function returning a constant
global pointer� It is also possible to specify if external
functions can be called at specialization time� provided
they do not contain any dynamic fragment� We thus
declare function rts�buf�alloc as executable at spe�
cialization time�

The combination of all these features are required
to obtain the binding times in Figure ��� The only
dynamic action is the patch of the values u�i� at giv�
en addresses� Compared to the dynamic bu�er allo�
cation case� corresponding templates are much smaller
and simpler� as shown in Figure ��� The resulting three�
level generating extension is shown in Figure ���

The overall behavior is the following� Running the
function dotprod�gen�gen�� with the actual value � for
size generates two specialization bu�ers in a row and

�

dotprod�gen�temp���int u	
�
�

T ��

�

for�
dummy test
� �

patch�hole�H��

�
�u	H��

�

�
 T ��

�
�H��

�
�H��

�
�

�

return H��

�

�
T ��

�
�H��

�
�

Figure ��� Multi�level templates
��

dotprod�gen�gen���int size�
�

char �buf��� �bufp��

char �buf� �bufp

int i

bufp�� � buf�� � rts�buf�alloc��

dump�template�bufp���t���t��

�
�s��

�
�

bufp�� �� s��

�

bufp � buf � rts�buf�alloc��

dump�template�bufp�t�t��s��

bufp �� s�

for�i � �
 i � size
 i���
�

dump�template�bufp�t�t� �s��

dump�template�bufp���t���t��

�
�s��

�
�

patch�hole�bufp���h��

�
�bufp�h��

patch�hole�bufp���h��

�
�i�

bufp�� �� s��

�

patch�hole�bufp�h��i�

bufp �� s�

�
dump�template�bufp�t�t��s��

bufp �� s�

dump�template�bufp���t���t��

�
�s��

�
�

patch�hole�bufp���h��

�
�buf�

bufp�� �� s��

�

return buf��

�

Figure ��� Multi�level run�time generating extension

��

loads them both with pre��lled templates Ti and T ��

i �
Values ai are pre�computed addresses buf � s� � i �
s� � h�� they are the addresses of the three holes in buf

denoted by �����

buf � T� T�
�� �� T�
�� �� T�
�� �� T�

buf �� � T ��

� T ��

�
a�� �� T ��

�
a�� �� T ��

�
a�� �� T ��

�
buf �

This completes the �rst specialization stage� Then� run�
ning the function at address buf �� merely amounts to
�lling the three holes of buf at address ai with u�i�

values� the function at address buf is then ready for
execution�

Function Time

dotprod ����
dotprod�res �compile�time� ����
dotprod�res �run�time� ����
dotprod�gen �RT dyn alloc� ����
dotprod�gen �RT stat alloc� ����

Table �� Traditional specialization of dotprod

Dynamic Static
Function allocation allocation

dotprod�res ���� ����
dotprod�gen�res ���� ��	�
dotprod�gen�gen ���� 	���

Table �� Incremental specialization of dotprod

��� Experiment

We ran a preliminary experiment with incremental run�
time specialization on our dotprod example� For this�
we used a Sparc Ultra � � ���MHz running SunOS����
All �les were compiled by gcc with optimization op�
tion �O�� Execution times for traditional
run�time and
compile�time� and incremental specialization are pro�
vided respectively in Table � and Table �� All times
are given in seconds for one million of calls� for a vector
size of �� and any known vector u���
Actual values of
u�� have no impact except� possibly� at compile time��
Figures are given for both static and dynamic bu�er
allocations� When memory allocation is involved� the
time also includes freeing the allocated memory� Due to
the very small running time of all the tested functions�
the �gures should be considered with caution�

These results show that all versions of dotprod�res
have the same execution time� That is coherent with
the fact that they are all identical�

For traditional specialization� the specialized func�
tion is twice as fast as the original code when the bu�er
allocation is dynamic� and �� executions are needed for
specialization to pay o�� When the bu�er is static� the
specialized function is � times faster and specialization
is amortized after �� executions�

In the incremental case� as soon as the vector size is
known� only ��� to ���� uses of the specialized function

whether the specialization bu�er is static or not� are
required to make it pro�table� It is important to note
that� in the static bu�er case� incrementality makes the
specialization break�even point 	 times smaller than for
traditional specialization� As can be expected� static
bu�er allocation is better than dynamic allocation as
soon as the �rst use�

�

� Discussion

In this section� we analyze our iterative specialization
approach� The following section compares it with relat�
ed work�

��� Degree of Specialization

An important issue about incremental specialization is
whether the iterated approach has an impact on the
degree of specialization� Since �native� multi�level spe�
cialization is specially de�ned to achieve incremental
specialization� the question actually is� does iterated
specialization lose any specialization opportunity�

It is di�cult to make a general statement on this is�
sue because an answer requires thoroughly formalizing
the two models
for a given language� a given BTA pre�
cision� a given code generation mechanism� etc��� What
we try here is to provide informal evidence that� given
some assumptions� the two approaches are equivalent
as far as the exploitation of data available at each stage
is concerned�

Obviously� to achieve iterated specialization� a par�
tial evaluator must �rst of all be able to handle the lan�
guage constructs that are used by the generating exten�
sions that it produces� Then comes the issue of binding
times� which express the degree of specialization� As
illustrated by the examples in Figures � and �� a gener�
ating extension contains two intertwined pieces of code�
one that is a copy of the static slice of the original pro�
gram
it also de�nes the overall control of the special�
ization�� and one that manages code generation
bu�er
allocation� template assembling� hole �lling�� When fur�
ther staging the static arguments� the BTA must exploit
the specialization opportunities o�ered by the availabil�
ity of more data without being disrupted by code gener�
ation� Since template management does not a�ect the
control �ow and operates on separate memory states�
the only possible interference is through the data that
is exchanged with the static slice� i�e�� the computed
values that are put into template holes� In our case�
this corresponds to the last argument of patch�hole�
There are four cases to examine� whether this argumen�
t is static or dynamic in the new binding�time division
of the previous static stage
e�g�� expressions �i� and
�u�i���� and whether the hole �lling operation is forced
to dynamic or can be static
e�g�� see Figures � and ����
The only possible impact is when the hole �lling oper�
ation is dynamic whereas the value to put into the hole
is static
e�g�� �patch�hole�bufp�h��i����� because it
is in a dynamic context� the static expression should be
turned dynamic by the BTA if it cannot be lifted� Yet�
we know that this expression must necessarily be liftable
since it is the argument of a hole �lling operation� this
means that it was already a static expression in a dy�
namic context in the previous binding�time stage� which

thus resulted in a template with a hole to be �lled�
From this informal reasoning� we can conclude that

there is no interference between multi�level static com�
putations and code generation� Iterated specialization
exploits as much specialization opportunities as multi�
level specialization�

��� Engineering E�ort

Iterated run�time specialization is simple� As can be
seen in Section �� there is no need to turn the �rst tem�
plate object �le and corresponding pointers into textual
data in order to apply specialization a second time� The
actual values of template addresses are determined at
load time and thus available at run time� All template
object �les� as well as the second�iteration generating
extension are linked together into a single �le�

We implemented our incremental specialization pro�
cess in Tempo almost �for free�� We only had to make
very minor changes� mainly to prevent name clashes and
multiple de�nitions when building a second�iteration
generating extension of an already produced generating
extension� All the other features that we used
modular
specialization� static pointers lifting and dynamic liter�
al constants� had already been implemented in Tempo
for other applications�

Iterated specialization requires applying partial eval�
uation n � � times if n stages are required� This can
be laborious although part of it could be automated�
However� besides loop nests� for all applications we have
considered so far� the number of levels of incremental
specialization is actually equal to three� thus requiring
only two applications of a partial evaluator� Yet� in
principle� a multi�level BTA should be able to process
a program more e�ciently than our iterated process
because of its global knowledge of the stages� The iter�
ated process only processes two levels at a time� There
are redundancies in the determination of binding times
at each stepwise re�nement� although staged later in
following iterations� computations are �rst determined
static as a whole�

Besides� iterated specialization allows incremental
partial evaluation to be tuned for each stage
e�g�� stat�
ic or dynamic bu�er allocation�� Even if a similar
functionality could easily be de�ned for multi�level spe�
cialization� developing a multi�level specializer� when a
two�level specializer is already available� does not seem
worth the e�ort� this is even more so at run time because
run�time code generation requires complex back�ends�

� Related Work

There is an obvious relationship between incremental
partial evaluation in loop nests and code motion of
loop invariants as found in optimizing compilers
�� ����

	

The di�erence is that incremental partial evaluation can
handle any type of invariants
structures� arrays� point�
ers�� not only scalars� Moreover� incremental partial
evaluation factorizes computations inter�procedurally�
whereas code motion in compilers is usually only intra�
procedural� Autrey and Wolfe proposed a staging anal�
ysis� named glacial variable analysis� aimed at detecting
variables in loop nests that are good candidate for in�
cremental run�time specialization
���

There exists a variety of code generation strategies�
depending on the target language and the specialization
time
before compiling or while running the program��
Since incremental specialization only amounts to opti�
mizing the specialization process� the speed of the code
generation process is a crucial issue for realistic appli�
cations�

Incremental specialization has been proposed for
functional languages
��� ���� Because this work is lim�
ited to compile time� a comparison with our approach
is di�cult� Indeed� when performing compile�time spe�
cialization� the code generation process is not optimized
for speed�

There exist other run�time code generation systems�
but reports on these systems do not mention any sup�
port for incremental specialization� The Fabius system
compiles a pure� �rst�order subset of ML into native
MIPS code
�	�� Some issues like register allocation are
decided at compile time whereas instruction selection is
performed at run time� The Tick C compiler generates
code at run time from a C program where computations
are explicitly staged using Lisp�like backquote notation�
s
	� ���� The DyC system compiles partially annotated
C programs� Like Tempo� it produces templates which
are compiled by the DEC Alpha compiler
�� ���� Un�
like Tempo� it performs additional optimizations that
can exploit template instantiation values and template
assembly� Data are not yet available to assess the im�
pact of these optimizations�

ML� performs incremental run�time code generation
but do not produce native code� It compiles a subset
of ML augmented with speci�c code generation con�
structs into the CCAM� an extension of the Categorical
Abstract Machine
���� The consistency of the code
generation constructs are checked by the compiler� In
contrast� Tempo o�ers automatic staging based on an�
notations produced by a binding�time analysis� Bench�
marks on ML� are reported in terms of a number of re�
ductions steps in the CCAM� Besides ML�� a run�time
code generation system for Scheme has been construct�
ed by composing a partial evaluator and a bytecode
compiler
���� incremental specialization should be pos�
sible with this system� Yet� as for ML�� the nature
of the source language and the target code makes the
comparison with our work di�cult�

	 Future Work

Incremental run�time specialization aims at making spe�
cialization
i�e�� code generation� faster� There is a
tradeo� between the quality of the generated code and
the speed to produce it� Finely tuning this tradeo� is
important for the practical use of incremental special�
ization� Code generation in Tempo is currently very
fast� However� Tempo does not perform any inter�
template optimization� nor does it take advantage of
speci�c values that are put into template holes� To im�
prove the quality of the code� we are investigating the
development a dynamic peephole optimizer� Implemen�
tation of run�time inlining when specializing a function
is in progress�

Besides� we are also considering source�level trans�
formations to encode optimizations to be performed at
specialization time by the specializer itself� this includes
some cases of algebraic simpli�cations and strength re�
duction� Source�level transformations can also cache
determined memory cells into local variables� that are
compiled more e�ciently into machine registers� As�
suming this caching is static� specialization is a little
slower because it compiles the caching process� but the
specialized function is faster because it makes less ac�
cesses to memory�

Beside techniques� we are also considering applica�
tions� We are investigating the development of a generic
virtual machine for mobile bytecode
���� The idea is
to parameterize this generic virtual machine with re�
spect to both a de�nition of bytecode instructions and
a bytecode program� The mobile nature of the appli�
cation makes it critical to use run�time specialization�
Furthermore� it is likely that a bytecode de�nition will
apply for a series of bytecode programs� This situa�
tion creates a need to factorize the specialization of the
generic virtual machine with respect to a given byte�
code de�nition� The goal is to achieve fast� e�cient
on�the��y compilation like a just�in�time compiler�

 Conclusion

We have presented an approach to incremental run�time
specialization which allows programs to be optimized at
several stages� as data become available�

The main advantage of incrementality is to factor�
ize the specialization phase� instead of specializing a
program all at once� as is traditionally done� incremen�
tal specialization allows this process to be staged� As
a result� specializing a program at a given stage costs
considerably less than specializing it once all the da�
ta are available� In addition� according to the number
of simultaneous uses of a specialized function at a given
stage� we have shown how to further optimize the incre�
mental specialization process� We have described how

��

incremental run�time specialization can be achieved us�
ing an existing partial evaluator� Our approach is im�
plemented in a program specializer for C named Tempo�

Although our preliminary experiment is encourag�
ing� realistic applications are now necessary to validate
the approach�

Acknowledgment

We would like to thank Franois Nol for early discussions
and ideas on this topic� and for testing the feasibility of
the approach by making preliminary experiments in and
with the run�time specializer of Tempo� Julia Lawall
also provided helpful comments on this paper�

References

�� A�V� Aho� R� Sethi� and J�D� Ullman� Compil�
ers Principles� Techniques� and Tools� Addison�
Wesley� �	���

�� A� Aiken� M� F ahndrich� J� Foster� and Z� Su� A
toolkit for constructing type� and constraint�based
program analyses� In Second International Work�
shop on Types in Compilation �TIC ����� Lecture
Notes in Computer Science� Springer�Verlag� �		��

�� J� Auslander� M� Philipose� C� Chambers� S�J� Eg�
gers� and B�N� Bershad� Fast� e�ective dynamic
compilation� In PLDI�	�
���� pages ��	!��	�

�� T� Autrey and M� Wolfe� Initial results for glacial
variable analysis� In Proceedings of the �th Interna�
tional Workshop on Languages and Compilers for
Parallel Computing �LCPC�� Santa Clara� Califor�
nia� volume ���	 of Lecture Notes in Computer Sci�
ence� Springer�Verlag� August �		��

�� C� Consel� L� Hornof� J� Lawall� R� Marlet�
G� Muller� J� Noy"e� S� Thibault� and N� Volanschi�
Tempo� Specializing systems applications and be�
yond� ACM Computing Surveys� Symposium on
Partial Evaluation� ��
��� �		��

�� C� Consel� L� Hornof� F� No el� J� Noy"e� and
E�N� Volanschi� A uniform approach for compile�
time and run�time specialization� In O� Danvy�
R� Gl uck� and P� Thiemann� editors� Partial E�
valuation� International Seminar� Dagstuhl Castle�
number ���� in Lecture Notes in Computer Sci�
ence� pages ��!��� February �		��

�� C� Consel and F� No el� A general approach for
run�time specialization and its application to C� In
POPL	�
���� pages ���!����

�� C� Consel� C� Pu� and J� Walpole� Incremental spe�
cialization� The key to high performance� modular�
ity and portability in operating systems� In Partial

Evaluation and Semantics�Based Program Manip�
ulation� pages ��!��� Copenhagen� Denmark� June
�		�� ACM Press� Invited paper�

	� D�R� Engler� W�C� Hsieh� and M�F� Kaashoek� �C�
A language for high�level� e�cient� and machine�
independent dynamic code generation� In POPL	�

���� pages ���!����

��� Bertil Folliot� Ian Piumarta� and Fabio Riccardi�
A dynamically con�gurable� multi�language execu�
tion platform� In Eighth ACM SIGOPS European
Workshop on Support for Composing Distributed
Applications� September �		��

��� R� Gl uck� Towards multiple self�application� In
Partial Evaluation and Semantics�Based Program
Manipulation� pages ��	!���� New Haven� CT�
USA� September �		�� ACM SIGPLAN Notices�
��
	��

��� R� Gl uck and J� Jrgensen� E�cient multi�level gen�
erating extensions for program specialization� In
M� Hermenegildo and S� Doaitse Swierstra� editors�
Proceedings of the �th International Symposium on
Programming Language Implementation and Log�
ic Programming� number 	�� in Lecture Notes in
Computer Science� pages ��	!���� Utrecht� The
Netherlands� September �		��

��� R� Gl uck and J� Jrgensen� An automatic program
generator for multi�level specialization� Lisp and
Symbolic Computation� ������!���� �		��

��� B� Grant� M� Mock� M� Philipose� C� Chamber�
s� and S�J� Eggers� Annotation�directed run�time
specialization in C� In ACM SIGPLAN Symposium
on Partial Evaluation and Semantics�Based Pro�
gram Manipulation� pages ���!���� Amsterdam�
The Netherlands� June �		�� ACM Press�

��� L� Hornof� J� Noy"e� and C� Consel� E�ective spe�
cialization of realistic programs via use sensitiv�
ity� In P� Van Hentenryck� editor� Proceedings
of the Fourth International Symposium on Static
Analysis� SAS���� volume ���� of Lecture Notes in
Computer Science� pages �	�!���� Paris� France�
September �		�� Springer�Verlag�

��� N�D� Jones� C� Gomard� and P� Sestoft� Partial E�
valuation and Automatic Program Generation� In�
ternational Series in Computer Science� Prentice�
Hall� June �		��

��� N�D� Jones� P� Sestoft� and H� S#ndergaard� An
experiment in partial evaluation� the generation
of a compiler generator� In J��P� Jouannaud� ed�
itor� Rewriting Techniques and Applications� vol�
ume ��� of Lecture Notes in Computer Science�
pages ���!���� Springer�Verlag� �	���

��

��� J�L� Lawall� Faster Fourier transforms via auto�
matic program specialization� Publication interne
��	�� IRISA� Rennes� France� May �		��

�	� P� Lee and M� Leone� Optimizing ML with run�
time code generation� In PLDI�	�
���� pages ���!
����

��� R� Marlet� S� Thibault� and C� Consel� Mapping
software architectures to e�cient implementations
via partial evaluation� In Conference on Automated
Software Engineering� pages ���!�	�� Lake Tahoe�
Nevada� November �		�� IEEE Computer Society�

��� Steven S� Muchnick� Advanced compiler design
and implementation� Morgan Kaufmann Publish�
ers� �		��

��� G� Muller� R� Marlet� E�N� Volanschi� C� Consel�
C� Pu� and A� Goel� Fast� optimized Sun RPC us�
ing automatic program specialization� In Proceed�
ings of the ��th International Conference on Dis�
tributed Computing Systems� pages ���!��	� Ams�
terdam� The Netherlands� May �		�� IEEE Com�
puter Society Press�

��� F� No el� Sp	ecialisation dynamique de code par
	evaluation partielle� PhD thesis� Universit"e de
Rennes I� October �		�� In French�

��� F� No el� L� Hornof� C� Consel� and J� Lawall� Au�
tomatic� template�based run�time specialization �
Implementation and experimental study� In In�
ternational Conference on Computer Languages�
pages ���!���� Chicago� IL� May �		�� IEEE Com�
puter Society Press� Also available as IRISA report
PI������

��� Proceedings of the ACM SIGPLAN ��
 Conference
on Programming Language Design and Implemen�
tation� Philadelphia� PA� May �		�� ACM SIG�
PLAN Notices� ��
���

��� Proceedings of the ACM SIGPLAN ��� Conference
on Programming Language Design and Implemen�
tation� Las Vegas� Nevada� June ��!��� �		��

��� Massimiliano Poletto� Dawson R� Engler� and
M� Frans Kaashoek� tcc� A system for fast� �ex�
ible� and high�level dynamic code generation� In
PLDI�	�
���� pages ��	!����

��� Conference Record of the ��rd Annual ACM
SIGPLAN�SIGACT Symposium on Principles Of
Programming Languages� St� Petersburg Beach�
FL� USA� January �		�� ACM Press�

�	� C� Pu� T� Autrey� A� Black� C� Consel� C� Cowan�
J� Inouye� L� Kethana� J� Walpole� and K� Zhang�

Optimistic incremental specialization� Streamlin�
ing a commercial operating system� In Proceedings
of the ���� ACM Symposium on Operating Sys�
tems Principles� pages ���!���� Copper Mountain
Resort� CO� USA� December �		�� ACM Operat�
ing Systems Reviews� �	
��� ACM Press�

��� Michael Sperber and Peter Thiemann� Two for
the price of one� Composing partial evaluation and
compilation� In PLDI�	�
���� pages ���!����

��� S� Thibault� C� Consel� and G� Muller� Safe and ef�
�cient active network programming� In ��th IEEE
Symposium on Reliable Distributed Systems� pages
���!���� West Lafayette� Indiana� October �		��

��� S� Thibault� R� Marlet� and C� Consel� A domain�
speci�c language for video device drivers� from de�
sign to implementation� In Conference on Domain
Speci�c Languages� pages ��!��� Santa Barbara�
CA� October �		�� Usenix�

��� Peter J� Thiemann� Cogen in six lines� In Pro�
ceedings of the ���
 ACM SIGPLAN Internation�
al Conference on Functional Programming� pages
���!��	� Philadelphia� Pennsylvania� ��!�� May
�		��

��� E� N� Volanschi� Une approche automatique
a la
sp	ecialisation de composants syst
eme� Th$ese de
doctorat� Universit"e de Rennes I� February �		��

��� Philip Wickline� Peter Lee� and Frank Pfenning�
Run�time code generation and modal�ml� In Pro�
ceedings of the ACM SIGPLAN��� Conference on
Programming Language Design and Implementa�
tion� pages ���!���� Montreal� Canada� ��!�	 June
�		��

��� Kwangkeun Yi and Williams Ludwell Harrison II�
I� Automatic generation and management of in�
terprocedural program analyses� In Conference
Record of the Twentieth Annual ACM SIGPLAN�
SIGACT Symposium on Principles Of Program�
ming Languages� pages ���!��	� Charleston� SC�
USA� January �		�� ACM Press�

��

