
Architecturing Software

Using

A Methodology for Language Development

Charles Consel and Renaud Marlet

IRISA� INRIA�University of Rennes �
Campus universitaire de Beaulieu� ����� Rennes Cedex� France

http���www�irisa�fr�compose

�consel�marlet��irisa�fr

� Introduction

Domain�speci�c languages �DSLs� can be viewed from both a programming lan�
guage and a software architecture perspective� The goal of this paper is to re�
late the two viewpoints� In particular� we demonstrate that DSLs can be con�
structed using an existing formal methodology for developing general purpose
languages �GPLs� while expressing software architecture concerns�

��� A Programming Language Perspective

A DSL can be viewed as a programming �or speci�cation� language dedicated
to a particular domain or problem� It provides appropriate built�in abstractions
and notations� it is usually small� more declarative than imperative� and less
expressive than a GPL�

Consider for example the Unix command make� This tool is a utility to main�
tain programs� it determines automatically which pieces of a large program need
to be recompiled� and issues the commands to recompile them� The language of
make�les is small �at least in the early versions of make� and mainly declarative�
although it also contains some imperative constructs� Its expressive power is lim�
ited to updating task dependencies� actual recompilation actions are delegated
to a shell� It hides implementation details like �le last�modi�cation time and
provides domain abstractions such as �le su�xes and implicit compilation rules�
As a result� the user may concisely express precise update dependencies�

This example illustrates several important DSL features� which make DSLs
more attractive than GPLs for a variety of applications�

Easier programming� Because of appropriate abstractions� notations and de�
clarative formulations� a DSL program is more concise and readable than its
GPL counterpart� Hence� development time is shortened and maintenance
is improved� As programming focuses on what to compute as opposed to
how to compute� the user does not have to be a skilled programmer� For
example� in the case of recompilation� writing a program to explicitly test



	 c� LNCS To appear in PLILP���

all �le modi�cation times in order to incrementally rebuild a system would
clearly be lengthy� tedious and error�prone�

Systematic re�use� Most GPL programming environments include the ability
to group common operations into libraries� Though some are standard li�
braries� re�use is left to the programmer� On the other hand� a DSL o
ers
guidelines and built�in functionalities which enforce re�use� Additionally� a
DSL captures domain expertise� either implicitly by hiding common program
patterns in the DSL implementation� or explicitly by exposing appropriate
parameterization to the DSL programmer� Thus� any user necessarily re�uses
library components and domain expertise�

Easier veri�cation� Another important advantage of DSLs is that they enable
more properties about programs to be checked� In contrast to a GPL� the
semantics of a DSL can be restricted to make decidable some properties that
are critical to a domain� For example� make reports any cycle in dependencies
and thus totally prevents non�termination �assuming the individual actions
do not loop��

Although all DSL features listed above address important software engineer�
ing concerns� they do not say much about the way applications based on DSLs
should be structured� In fact� DSLs strongly suggest particular software archi�
tectures�

��� A Software Architecture Perspective

Software architectures express how systems should be built from various compo�
nents and how those components should interact� From a software architecture
perspective� a DSL can be seen as a parameterization mechanism as well as an
interface model�

Parameterization mechanism� A program or a library can be more or less
generic depending on the scope of the problems it addresses ��� For exam�
ple� a scienti�c library can be highly generic considering the vast variety
of problems it can be used for� Pushing the idea of genericity further leads
to complex parameters that can be seen as DSLs� For example� the format
string argument of function printf can be seen as both a complex parameter
and a very simple DSL� Considering a DSL program as a complex argument
to a highly parameterized component may sound contrived but it actually
is the �nal step of a chain of increasingly expressive power in parameteriza�
tion� This situation is illustrated by Unix commands grep� sort� find� sed�
make� awk� etc�� and the progression from simple command�line parameters
to program �les� At the end of the spectrum� the data parameter ends up
being a program to be processed� yielding increased parameterization power�

Interface to a library� As a library becomes larger or more generic� its us�
ability decreases due to the multiplication of entry points� parameters and



c� LNCS To appear in PLILP��� �

options o
ered� As a result� the library might be ignored by programmers
because it is too complex to use� In this situation� a DSL can o
er a domain�
speci�c interface to the library so that the programmer does not have to di�
rectly manipulate numerous highly�parameterized building blocks� the com�
plexity is hidden� Another common situation is when some patterns of library
calls occur frequently� In this case� a DSL interface can provide direct access
to those commonly used combinations� For example� Unix shells are inter�
faces to standard Unix libraries� This idea is shared by scripting languages�
that glue together a set of powerful components written in traditional pro�
gramming languages� For example� Tcl�Tk provides a Tcl interface on top
of the Tk graphic toolkit�

Recognizing a DSL as both a parameterization mechanism and an interface
has an impact on structuring and reasoning about the software� In fact� the range
of software adaptability is de�ned by the DSL� Such software is thus naturally
separable into two parts� the decoding of the parameterization expressed by DSL
programs and a library of components�

One may wonder when complex parameters and library interfaces are used�
In the �rst case� complex parameters are introduced when� instead of o
ering
separate but related tools� a single� versatile program is provided� In the second
case� libraries are in essence created to enable re�use of data types and basic
operations among related programs� Thus� the common motivation of those ar�
chitectures is to build a set of related programs� This observation leads us to
another� more conceptual aspect of DSLs� a program family�

Program family� A DSL program designates a member of a program family�
A program family is a set of programs that share enough characteristics that
it is worthwhile to study them as a whole �	�� A program family can also
be seen as providing a solution to a problem family� i�e�� a set of related
problems� Drivers� for a given type of device� form a natural example of a
program family� in addition to having the same API �for a given operating
system�� they all share similar operations� although they vary according to
the hardware�

��� When to develop a DSL�

Conversely� we believe that whenever a problem family must be solved� i�e��
whenever a program family must be developed� basing the software architecture
on a DSL makes con�guration �i�e�� DSL programming� simpler� More generally�
the following issues should be raised even when developing new software� does
the program to be developed address an isolated problem� Could it be a member
of a future program family�

The fact is that existing DSLs do implement program families� Examples
are numerous� DSLs have been used in various domains such as graphics ��	�
��� �nancial products ��� telephone switching systems ���� 	�� protocols ��� ���
operating systems �	�� device drivers ���� routers in networks ��� and robot



� c� LNCS To appear in PLILP���

languages �	� This profusion also shows the recent attention that DSLs have
received from both the research and industrial communities�

��� How to develop a DSL�

These applications have clearly illustrated the advantages of DSLs over GPLs�
recording bene�ts such as productivity� reliability and �exibility �	�� However�
they also raise a key issue which� if not addressed� could obstruct the use of
DSLs ��� how does one design and implement a DSL� Resolving this issue is
critical to make the approach pro�table since there is no point in reducing the
complexity of program development by shifting all the complexity into the con�
struction and maintenance of a DSL programming environment�

Another related question is� who will develop DSLs� Even in the program�
ming language community� only a few people have actually designed a language�
A fortiori� we cannot expect software engineers to have the full expertise to build
up new languages� Thus� it is crucial that a methodology and tools are provided
to make the DSL approach widely accessible�

��� Our Methodology for Developing DSLs

We propose a methodology for designing and implementing DSLs� This method�
ology is based on an existing formal framework for de�ning GPLs and integrates
software architecture concerns�

This formal framework is based on denotational semantics� which has been
extensively used to formally de�ne GPLs ���� It identi�es key concepts in lan�
guage design and semantics� Furthermore� techniques have been developed to
derive implementations from de�nitions in denotational semantics ���� These
techniques typically produce compilers that are less e�cient than ad hoc GPL
compilers� However� in the context of DSLs� e�ciency often relies on the underly�
ing building blocks� As will be shown in this paper� structuring a DSL de�nition
allows these building blocks to be isolated and implemented e�ciently�

Our methodology is based on a framework outlined in an earlier paper by
Thibault and Consel ���� It can be summarized as follows� For the sake of clarity�
the phases of our methodology are presented sequentially� In practice� the whole
process needs to be iterated� Notice that the working example used to illustrate
each phase throughout the paper is the �nal result of this iteration�

Language analysis� Assuming a problem family has been identi�ed� the �rst
step is to analyze the commonalities and the variations in the corresponding
program family� This analysis is fueled by domain knowledge� The result
of this analysis includes a description of objects and operations that are
needed to express solutions to the family of problems� as well as language
requirements �e�g�� analyzability� and elements of design �e�g�� notations��

Interface de�nitions� The next phase is to re�ne the design elements of the
DSL� To do so� the syntax of the DSL is de�ned and its informal semantics
is developed� The informal semantics relates the syntactic constructs to the



c� LNCS To appear in PLILP��� �

objects and operations �i�e�� the building blocks� identi�ed previously� Ad�
ditionally� the domain of objects and the type of operations are formalized�
thus forming the signature of semantic algebras�

Staged semantics� The semantics of a GPL is typically split between the
compile�time and the run�time actions� These two parts are also referred
to as the static and the dynamic semantics of a language� We propose to
perform the same separation in the semantics of a DSL� With respect to
software architecture concerns� this separation makes stages of con�guration
explicit�

Formal de�nition� Once the static and dynamic components of the language
have been determined� the DSL is formally de�ned� Valuation functions de�
�ne the semantics of the syntactic constructs� They specify how the opera�
tions of the semantic algebras �i�e�� the building blocks� are combined�

Abstract machine� Then� the dynamic semantic algebras are grouped to form
a dedicated abstract machine which models the dynamic semantics of the
DSL� From the denotational semantics� the DSL is given an interpretation
in terms of this abstract machine� The state of the semantics is globalized
and mapped into abstract machine entities �e�g�� registers� dedicated to the
program family�

Implementation� The abstract machine is then given an implementation �typ�
ically� a library�� or possibly many� to account for di
erent operational con�
texts� The valuation function can be implemented as an interpreter based on
an abstract machine implementation� or as a compiler to abstract machine
instructions�

Partial evaluation� While interpreting is more �exible� compiling is more e��
cient� To get the best of both worlds� we use a program transformation tech�
nique� namely� partial evaluation� to automatically transform a DSL program
into a compiled program� given only an interpreter�

Each of the above methodology steps is further detailed in a separate section
of this paper�

��	 A Working Example

To illustrate our approach� an example of DSL is used throughout the paper� We
introduce a simple electronic mail processing application as a working example�
Conceptually this application enables users to specify automatic treatments of
incoming messages depending on their nature and contents� dispatching mes�
sages to people or folders� �ltering spam� o
ering a shell escape �e�g�� to feed an
electronic agenda�� replying to messages when absent� etc�

This example is inspired by a Unix program called slocal which o
ers users
a way of processing inbound mail� With slocal� user�de�ned treatments are
expressed in the form of rules� Each rule consists of a string to be searched in a
message �eld �e�g�� Subject� From� and an action to be performed if the string



� c� LNCS To appear in PLILP���

is found� Each rule stands on a single line and the whole speci�cation is a �at
series of rule lines� as opposed to a structured program�

This simple application illustrates the situation where a family of problems
has to be handled� addressing di
erent needs for the treatment of messages�
One could imagine a combination of various GPL programs being written to
address each kind of treatment� This would form a family of programs which
would most likely rely on a dedicated library� This library would consist of basic
operations such as parsing a message� accessing and modifying message header
�elds� archiving and sending messages� etc�

We present a DSL solution to this problem family� More precisely� we show
how to design and implement Mailsh� a simple DSL aimed at specifying the
automatic treatment of incoming e�mails� Some details are left out of the fol�
lowing discussion� Our goal is to illustrate our methodology� not to propose an
alternative to slocal�

� Language Analysis

In the �rst phase of our approach� we analyze the problem family� During this
analysis� the commonalities �shared features and assumptions that hold for all
family members� and variabilities �variations in behavior and assumptions that
di
er among family members� must be identi�ed� The analysis takes into ac�
count domain knowledge such as technical literature� existing programs� and
current and future requirements� It can be conducted using methodologies used
for commonality analysis� such as FAST ���� ��� and domain analysis �	�� 	��
	�� The main results of this analysis phase are� language requirements� a de�
scription of the common objects and operations� and design elements of the DSL�
We examine each of these items in turn and illustrate them with our working
example�

��� Language Requirements

Analyzing the family of problems leads to requirements for the language� Those
requirements mainly consist of the functionalities that must be expressible in the
DSL� Requirements also include language constraints �e�g�� domain issues such
as safety and security� and implementation constraints �e�g�� resource bounds��

This phase does not di
er much from a problem analysis that occurs when
initiating any software development� The di
erence is that requirements are
expressed in terms of language issues rather than general features of the appli�
cation�

Working example� Concerning our message processing application� it should be
possible� at the language level� to copy� move� delete� forward� pipe to a shell
command� and reply to a message� Those actions should be triggered according
to conditions depending on the inbound message� Those conditions should be
string patterns matched against �elds of the message�



c� LNCS To appear in PLILP��� �

Moreover� we have determined four language constraints� First� the user�
de�ned treatments determined by a Mailsh program should not loop� Second�
treatments should be guaranteed not to lose inbound messages� Third� inbound
messages should not be duplicated in the same folder when archived� Fourth�
automatically forwarding messages should not cause endless loops�

��� Objects and Operations

Identifying the common objects and operations essentially corresponds to de�n�
ing the basic building blocks needed to express solutions for the family of prob�
lems� From a software architecture point of view� this process can be viewed as
designing a library since it captures the common program patterns in the family
and abstracts over the di
erences� The building blocks are grouped with respect
to the objects they manipulate�

Working example� The program family analysis of our e�mail processing appli�
cation results in the following fundamental objects and operations�

Messages� An electronic message consists of header �elds and a body� We need
operations to manipulate these message �elds and to create new messages�

Folders� Folders contain a list of messages� Assuming we limit ourselves to dis�
patching messages� the only operation needed is to add a message to a folder�

Hierarchies of folders� A user typically has many folders to which �s�he directs
messages� e�g�� according to topic or source� To cope with an increasing
number of folders� e�mail systems o
er the ability to create a folder hierarchy�
To treat this feature in our system we need to associate an actual �lename
to a folder path in the folder hierarchy�

Files of Folders� Because of the layer introduced by the hierarchy of folders� the
actual folders need to be captured by a separate object� Operations to read
and write a folder from�to the �le system need to be introduced�

Streams� Messages need to be sent� received or piped into a shell command� To
model this� we need streams of inbound and outbound messages� as well as
a command stream�

Miscellaneous� There are other� less fundamental objects and operations that
we do not further detail here� This includes the ability to know the user�s
name �to send messages� and the current date �to timestamp the messages��
There are also operations on booleans and strings� in particular a pattern
matcher used in the message �ltering condition�

��� Elements of Design

The last part of the language analysis phase consists of determining elements
of the language design� These elements include the language paradigm �e�g��
declarative or imperative� as well as the language level� from low�level for ex�
pressivity� to high�level for usability� In addition� a terminology and notations
are developed both from the domain and the set of problems to be addressed�
These notations must correspond to the way domain experts express a solution�
i�e�� a member of the problem family�



� c� LNCS To appear in PLILP���

Working example� To apply this phase to our example� we have to introduce
assumptions about the users of this message processing system� We assume such
users to be typical Unix shell programmers� As a result� we decide the DSL
should be imperative like shell languages� Moreover� selection criteria should
include regular expressions to achieve pattern matching in messages� as provided
in the shell languages�

� Interface De�nitions

Given the information collected previously� we are now ready to develop a prelim�
inary speci�cation of the DSL� This preliminary speci�cation consists of de�ning
interfaces� the signature of semantic algebras and the DSL syntax� The seman�
tics is kept informal� it will be made explicit in a later phase �see Section ���
Still� it allows taking into account some language requirements and to prepare
the structuring of the actual language de�nition�

��� Semantic Algebras

The common objects and operations collected in the previous phase are now
grouped with respect to the objects they manipulate to produce abstract data
types� In the denotational framework� this form of abstract data types can be
formalized as semantic algebras� A semantic algebra formally de�nes a domain
�i�e�� a structured value space� and the operators on that domain ���� At this
stage� we only provide signatures� we postpone details until a complete view of
basic building blocks is determined�

Working example� Let us illustrate the notion of semantic algebra with our
message processing application� To do so� we present in Figure � the signature
of semantic algebras which follow the common objects and operations determined
earlier in Section 	���

Messages� Functionmsg�to�string converts a message into a string� This function
is used when piping a message into a shell command and when forwarding a
message� In the latter case� the body of the new message �a string� contains
the forwarded message� FieldName is de�ned as String �

Folders� We consider a folder as an ordered list of messages� function add�msg

adds a message at the end of this list� There are other obvious common
operations on folders� we do not mention them here as they are not needed
for our example�

Hierarchies of folders� Function get��lename maps a folder path into a �lename�
Note that the folder hierarchy may de�ne aliases� two paths may be mapped
into the same �lename�

Files of Folders� There are several common implementations of a folder� depend�
ing on the user�s mailing system� We let actual implementations of abstract
operators read�folder and write�folder deal with that�



c� LNCS To appear in PLILP��� �

Messages

Domain	 Message
Operations	

new�msg 	 Message
get��eld 	 FieldName � Message � String
set��eld 	 FieldName � String � Message � Message
get�body 	 Message � String
set�body 	 String � Message � Message
msg�to�string 	 Message � String

Folders

Domain	 Folder
Operations	

add�msg 	 Message � Folder � Folder

Hierarchy of Folders

Domain	 FolderHierarchy
Operations	

get��lename 	 FolderPath � FolderHierarchy � FileName

Files of Folders

Domain	 FolderFiles
Operations	

read�folder 	 FileName � FolderFiles � Folder
write�folder 	 FileName � Folder � FolderFiles � FolderFiles

Streams

Domains	 InStream �OutStream �CmdStream
Operations	

next�msg 	 InStream � 
Message � InStream�
send�msg 	 Message � OutStream � OutStream
pipe�msg 	 Message � CmdString � CmdStream � CmdStream

Fig� �� Signature of the main semantic algebras for Mailsh

B � BoolExpr
C � Command
F � FolderPath
S � String

B 		� match S�eld Spat

j notB j B� and B� j B� or B�

C 		� C� � C�

j if B then C� else C�

j skip

j delete

j copy F

j forward Sto

j reply Sbody

j pipe Scmd

Fig� �� Abstract syntax of Mailsh



�� c� LNCS To appear in PLILP���

Streams� Function next�msg reads the next incoming message� Note that an im�
plementation of it must not return until a new message has arrived� thus
suspending the application� Function send�msg ships a message to the sys�
tem stream� Function pipe�msg passes a string to the standard input of a
command� We also de�ne CmdString as String �

Miscellaneous� We do not detail here other miscellaneous semantic algebras� We
will later only explicitly use match � String � StringPattern � Bool as the
pattern matching operator�

��� The DSL Syntax

The syntax of the DSL is de�ned based on information collected earlier� namely�
the language requirements �functionalities as well as constraints� and the design
elements �language paradigm� language level� terminology and notations�� It
may also explicitly refer to some of the objects and operations identi�ed as
fundamental� the others remain hidden in the underlying semantics� Intuitively�
a syntactic construct in the DSL corresponds to a pattern of operations�

One of the key issues in designing the abstract syntax �i�e�� the interface of
the language� is to restrict the programmability so that required properties are
provable� At the same time� raising the level of the DSL may hinder future needs
for expressiveness� For example� a common practice to ensure the termination of
DSL programs is to provide the programmer only with restricted loop constructs�
if any� so that the property can be syntactically checked� Issues regarding the
design of a concrete syntax are beyond this work�

As the DSL syntax is developed� its semantics is informally de�ned� This
preliminary de�nition allows the semantic algebras to be further re�ned�

Working example� The requirements were that Mailsh should express condi�
tional treatment of incoming messages� be imperative and close to Unix shells�
Figure 	 presents the BNF de�nition of an abstract syntax which ful�lls those
requirements� Folders are an example of a domain�speci�c object explicitely re�
ferred to by the syntax via folder paths� In contrast� folder �lenames remain
hidden� For the sake of simplicity� we have intentionally reduced this DSL to a
kernel language� rich enough to allow us to illustrate the various aspects of our
approach� Obviously� to make it usable� more constructs and actions on messages
should be added� For example� the following abbreviations could be provided�


 move F � copy F � delete


 if B then C � if B then C else skip

A concrete syntax close to Unix shells can easily be developed�
We shall not comment here on the semantics of the various constructs of

the language since most of them are self�explanatory� An example program is
given in Figure �� �Indentation emphasizes the nesting of constructs�� Note that
the reply construct can be used to setup a vacation�like tool� i�e�� a message�
sensitive answering machine�



c� LNCS To appear in PLILP��� ��

if match Subject� DSL� then

forward jake��
copy Research�Lang�DSL� delete

else if match From� hotmail�com� then

reply Leave me alone��� delete

else if match Subject� seminar� then

pipe agenda 		stdin�� delete

else

skip

Fig� �� Abstract syntax of a Mailsh program

It must be noted that the language only speci�es the treatment of a single
message� there is an implicit loop over the inbound messages� This kind of treat�
ment encapsulation is typical to DSLs� Common examples are text processing
DSLs� like sed� that assume an implicit loop over each line of the text input�

Before providing a formal de�nition for the language and tackling its imple�
mentation� a staging phase is required to separate the language semantic entities�

� Staged Semantics

From a programming language viewpoint� the semantics of a GPL is traditionally
split into two parts� the static and the dynamic semantics� In practice� the static
semantics of a language corresponds to the actions performed by a compiler�
these actions are thus the ones which depend on the program being compiled�
The dynamic semantics represents the computations which may depend on the
input data of the program� Necessarily� these computations must be postponed
until run time�

Because a compiler processes the static semantics of a language with respect
to a given program� it is in e
ect a syntax�to�dynamic�semantics mapping ����
Concretely� the dynamic semantics is a compiled program� it consists of a com�
bination of instructions for a machine �either abstract or concrete��

From a software architecture viewpoint� the static semantics corresponds to
computations that determine the member of a program family� The dynamic
semantics corresponds to computations that produce the answer to the corre�
sponding problem� i�e�� program execution�

From an implementation viewpoint� processing the static semantics of an
application can be seen as con�guring generic software with respect to a given
context� More concretely� con�guring amounts to processing the static �i�e�� avail�
able� information in order to select the appropriate components� and combining
them to produce a customized software� Then� processing the dynamic semantics
consists of executing the customized software�



�	 c� LNCS To appear in PLILP���

Determining staging addresses an important concern in software architecture�
reasoning about the genericity of software to predict and control its customiza�
tion� This is a key step towards reconciling �exibility� as promoted by many
approaches to software architecture� and performance� Indeed� ine�ciency is a
well�known limitation of many of these approaches �	��

We propose to address the staging of a DSL semantics� or equivalently the
con�guration of its software architecture counterparts� using a language ap�
proach� At this point of our methodology� the staging process is limited to se�
mantic algebras� instead of being applied to the complete DSL de�nition� Later�
when providing an actual de�nition �the valuation functions�� more staging issues
will also have to be considered� For the moment� from initial staging constraints
coming from the problem family� we introduce staging in the semantic algebras
and in the treatment of language constraints�

��� Initial Staging Constraints

To achieve the staging of a DSL semantics� the initial step is to determine the
semantic arguments of the valuation functions which can be assumed to be static
�i�e� known� given the problem family� These static arguments can be seen as
con�guration arguments� Just like GPLs� the static semantics of DSLs assumes
that the program is available �i�e�� static��

Working example� Considering our message processing application� we assume
that the static arguments are the DSL program representing the user�de�ned
treatments� the folder hierarchy of the user� and the user�s name�

��� Staging the Semantic Algebras

Given this initial staging� the semantic algebras need to be analyzed to determine
which ones correspond to con�guration �i�e�� static� computations and which
ones de�ne actual �i�e�� dynamic� computations� For example� in the context
of a GPL� a semantic algebra which maintains type information on program
variables is typically a static algebra when the language is strongly typed�

For a given DSL� the staging process should answer the following question
on each semantic algebra� should this value domain� and its corresponding op�
erations� be static or dynamic�

Working example� Given that the folder hierarchy is a static initial argument to
Mailsh� it should remain unchanged throughout the semantics since our DSL
does not provide a way to modify this hierarchy� Therefore� the semantic algebra
for the hierarchy of folders should be static as well� operations on such values
should be processed completely statically�

The other semantic algebras of our DSL are intrinsically dynamic since they
rely on values assumed to be known only at run time� i�e�� inbound messages�

��� Staging the Language Constraints

Staging not only involves the language semantics but also the language con�
straints� which in turn has an impact on the semantics� Some constraints may



c� LNCS To appear in PLILP��� ��

be guaranteed statically� before the DSL program is run� Others may rely on
run�time information and have to be checked when the DSL program is exe�
cuted�

Working example� The �rst language constraint �see Section 	��� is that the
treatment of a message should not loop� This constraint is syntactically enforced
given that there is no iteration construct�

The second constraint states that user�de�ned treatments should be guar�
anteed not to lose inbound messages� An inbound message is lost when it is
neither copied� forwarded� piped� replied�to nor explicitly deleted� i�e�� when it
is skipped� For example� the program in Figure � can lose a message if none of
the conditions applies� This constraint can be statically checked by analyzing
the possible execution paths of a program with respect to the pattern matching
conditions� �Proof omitted��

The third language constraint can also be statically checked� �Proof omitted��
It states that inbound messages should not be duplicated in the same folder when
archived�

The fourth language constraint says that automatically forwarding messages
should not be able to cause endless loops� Because of unknown aliases and mailing
lists� it is not possible to make sure that� if a message is forwarded� it will not
eventually be forwarded back to the sender� This condition can only be checked
dynamically by introducing a speci�c mechanism�

An additional constraint has not been expressed yet because it depends more
on the structure of the language than on the domain� it should not be possible to
operate on a message after it has been deleted� This amounts to checking paths
where there exist message treatments after a delete invocation� This property
can be statically checked� �Proof omitted�� We make the decision to reject any
program not satisfying this property� As we will see� not only does it prevent us
from specifying error handling in the dynamic semantics� but it also simpli�es
the implementation of delete� turning it into a mere skip�

� Formal De�nition

We now have all the necessary elements to formally de�ne the semantics of a DSL�
Fundamentally� the denotational de�nition represents a guide for the language
implementer and a key source of documentation� By postponing implementation
issues to a later phase� the DSL developer can better stage decisions� For ex�
ample� the data layout of objects can be postponed until hardware features are
known�

As is customary� the denotational semantics is composed of three parts� the
abstract syntax �see Section ��	�� the semantic algebras �see Section ����� and
the valuation functions� In contrast to the informal semantics given previously�
the semantic algebras are now completely speci�ed� including the de�nition of
their operations�



�� c� LNCS To appear in PLILP���

��� Semantic Arguments

Valuation functions are inductively de�ned on the abstract syntax� Besides the
program text� a valuation function includes other semantic arguments which de�
�ne the semantic context� The semantic arguments are drawn from the semantic
algebras introduced earlier�

Working example� The semantic arguments in the case ofMailsh are the folder
hierarchy� the message being treated� the folder �les� the streams and other
miscellaneous entities like the current date and the user�s name�

��� Staging the Semantic Arguments

Beyond the semantic algebras� the valuation functions must further separate the
DSL semantics into its static and dynamic parts� To do so� we keep separate the
static and dynamic semantic arguments of the valuation functions� This sepa�
ration is guided by the binding time �static � dynamic� of the semantic algebras
determined previously�

Working example� As for Mailsh� the static semantic arguments are the folder
hierarchy and the user�s name� these are grouped into a product domain named
StaticState� The dynamic arguments are the message being treated� the folder
�les� the streams and the current date�

We use the following notations� the tuple projection on the domain X �e�g��
Message� of � � DynamicState is denoted �x �e�g�� �message�� Updating the X

element of the tuple � with a value y is denoted �x �� y��

��� Control Staging and Dynamic Combinators

The computations described by the valuation functions also need to be staged�
The basic operations used by a valuation function have a binding time that has
been determined in the previous phase� only the control operations remain to
be staged� To do so� the separation between static and dynamic control oper�
ations must be made explicit� We thus introduce combinators for the dynamic
control operations� these combinators are later turned into control instructions
in the abstract machine� Static control operations need not be associated with
an explicit combinator�

Working example� The conditional statement if B then C� else C� is dynamic
because it depends on the message to be treated via the match construct� We
thus introduce a choice function as an explicit cond combinator�

��� Valuation Functions

The valuation functions may �nally be de�ned� Complete de�nition of the se�
mantic algebras should be provided at this stage as well�



c� LNCS To appear in PLILP��� ��

C 	 Command � StaticState � DynamicState � DynamicState where
StaticState � FolderHierarchy �UserName
DynamicState � FolderFiles �OutStream � CmdStream �Date �Message

C ��C� � C��� � � 
C ��C��� �� � 
C ��C��� ��

C ��if B then C� else C��� � � cond 
B ��B��� 
C ��C��� �� 
C ��C��� ��

C ��skip�� � � � �

C ��copy F �� � � �
let � � get��lename 
F ��F ��� �folder�hierarchy

� � add�msg 
set��eld Delivery	Date� �date �message�

read�folder � �folder��les�

in �folder��les �� write�folder � � �folder��les��

C ��forward S�� � � �
�out�stream �� send�msg

set��eld Resent	by� 
concat �user�name 
get��eld Resent	by� �message��

set��eld Subject� 
concat Fwd� � 
get��eld Subject� �message��

set�body 
msg�to�string �message�

set��eld From� �user�name


set��eld To� 
S ��S���

set��eld Date� �date 
new�msg������� �out�stream� �

C ��reply S��� � � �
�out�stream �� send�msg

set��eld Subject� 
concat Re� � 
get��eld Subject� �message��

set�body 
S ��S����

set��eld From� �user�name


set��eld To� 
get��eld From� �message�

set��eld Date� �date 
new�msg������ �out�stream��

C ��pipe S�� � � � �cmd�stream �� pipe�msg �message 
S ��S��� �cmd�stream��

B 	 BoolExpr � DynamicState � DynamicState

B ��match S� S��� � � match 
get��eld 
S ��S���� �message� 
S ��S����

Fig� �� Valuation functions for Mailsh

Working example� Remember that the processing of messages is always active
and should be modeled by an in�nite loop aimed at polling the stream of inbound
messages� This loop must further rely on function next�msg� which suspends
the message processing application if no inbound message is available� When
some messages are received� the dynamic semantic arguments are set up and
the valuation function C is applied to the program� i�e�� a possibly structured
command�

Figure � shows the de�nition of valuation function C� The delete construct
does not appear in the de�nition of C because it is replaced by a skip after
analysis �see Section ��� The de�nition of the other valuation functions and the
semantic algebras of our DSL are omitted since they are rather simple and do
not raise issues with respect to our approach� Setting the �Resent�by� �eld



�� c� LNCS To appear in PLILP���

when forwarding allows the encapsulating loop to discard incoming messages
that have already been forwarded by the user� thus dynamically verifying the
fourth constraint expressed in the language requirements�

Common dynamic patterns of operations in the right�hand side of the seman�
tic equations can be encapsulated into new operators� For example� composing
a message for the forward or reply operations shares dynamic operations that
could have been grouped into a single higher�level operator�

� Abstract Machine

Although the valuation functions make a clear separation between the static and
dynamic semantics of the DSL� we still have to further encapsulate the dynamic
semantics to de�ne a dedicated abstract machine� This is a key step to derive a
realistic implementation from the DSL de�nition� The abstract machine roughly
corresponds to the library in a conventional software architecture� However� it
is not yet the implementation �see Section ���

Another bene�t of the approach is that it provides a formal model of com�
putation that can be reasoned about using well�established techniques for ab�
stract machines �	�� In fact� the abstract machine o
ers a model of computation
that underlies all programs in the family ��� The abstract machine model also
provides the right level of decomposition to increase reuse of the abstract ma�
chine ���� In particular� since an abstract machine can express a wide range of
applications within the domain� and a DSL only a restricted subset of these�
several DSLs could share the same abstract machine� For example� it is useful
to have multiple DSLs for di
erent users� a DSL could thus manage a whole
database while a subset of this DSL might only be able to express queries�

	�� Single�Threadedness and Globalization

The key issue in expressing a semantics in terms of an e�cient abstract machine
is the globalization of the dynamic semantic arguments� To enable semantic
arguments to be made implicit in the actual implementation� they cannot be
manipulated in an arbitrary way by the denotational de�nition� Schmidt and
others have developed speci�c criteria which allow semantic arguments to be
globalized when deriving an implementation from a denotational de�nition ����
If these criteria are ful�lled by the denotational de�nition for a given semantic
argument� then the denotational de�nition is said to be single�threaded in this
semantic argument� A precise de�nition of these criteria is beyond the scope of
this paper�

If a semantics de�nition is single�threaded in a dynamic state argument� this
argument can be globalized� For example� in case of an imperative GPL� the
store is a typical semantic argument which gets globalized in an implementation
of its dynamic semantics� Indeed� the store corresponds to the processor memory
and thus does not need to be passed explicitly since it is globally available� In
the case of a DSL� there may be various semantic arguments which need to be



c� LNCS To appear in PLILP��� ��

globalized in an actual implementation� This is one of the aspects which re�ects
the dedicated nature of the abstract machine of DSL�

Note that� when the dynamic state is globalized� abstract machine instruc�
tions which perform a state transition are linearized�

Working example� The semantics example given in Figure � is already single�
threaded� Thus� the dynamic semantics arguments can be globalized�

	�� Abstract Machine Entities

Our goal is to develop an abstract machine dedicated to the dynamic computa�
tions of the DSL� based on the semantic algebras� To facilitate this process� the
dynamic parts of the semantic context need to be grouped in a unique seman�
tic argument which pre�gures the basic entities of the abstract machine �e�g��
registers��

Because all of the dynamic context is passed as a unique argument to the
valuation functions� the operations in the semantic algebras no longer need to be
passed to the dynamic semantic arguments separately� they can be transformed
so as to get these values from a unique argument�

Working example� The valuation functions shown in Figure � already group the
dynamic semantic arguments passed to the valuation functions into a unique
semantic argument� namely DynamicState� These arguments naturally corre�
spond to registers of the abstract machine� We group them in the domain
AbsMachState �

In addition� consider the new�msg operator� It returns a fresh� new mes�
sage whose �elds are later assigned dynamically� However� from an operational
viewpoint� only two messages may exist at any time� the current inbound mes�
sage and a message being composed �two new messages cannot be composed
at the same time�� To make globalization more explicit� we dedicate an extra
register of the abstract machine for the message being currently composed� The
operator new�msg � Message thus becomes the abstract machine instruction
new�msg � AbsMachState � AbsMachState which operates indirectly on this
new register�

In making operators like set��eld and get��eld implicitly access the dynamic
registers� an ambiguity has appeared because we now have two registers for mes�
sages� To make the message register explicit� we denote get��eldi the instruction
that accesses the inbound message and get��eld

c
the instruction that accesses

the message being composed� In an actual implementation� this may be modeled
as an argument to the instructions �e�g�� a pointer to the actual message��

The resulting semantic de�nition based on the abstract machine is given in
Figure ��

� Implementation

The implementation of a DSL can be derived from the implementation of its val�
uation function and an implementation of the corresponding abstract machine�



�� c� LNCS To appear in PLILP���

C 	 Command � StaticState � AbsMachState � AbsMachState where
StaticState � FolderHierarchy �UserName
AbsMachState � FolderFiles �OutStream � CmdStream �Date

�Message
i
�Message

c

C ��C� � C��� � � 
C ��C��� �� � 
C ��C��� ��

C ��if B then C� else C��� � � cond 
B ��B��� 
C ��C��� �� 
C ��C��� ��

C ��skip�� � � no�op

C ��copy F �� � � �
let � � get��lename 
F ��F ��� �folder�hierarchy
in 

write�folder �� �


add�msg� �

set��eldi Delivery	Date� �date� �

read�folder ��� �

C ��forward S�� � � �


send�msg� �

set��eldc Resent	by� 
concat �user�name 
get��eldi Resent	by� ���� �

set��eldc Subject� 
concat Fwd� � 
get��eld

i
Subject� ���� �


set�body
c

msg�to�string

i
��� �


set��eldc From� �user�name� �

set��eldc To� 
S ��S���� �

set��eldc Date� �date� �

new�msg

c
�� �

C ��reply S��� � � �


send�msg� �

set��eldc Subject� 
concat Re� � 
get��eld

i
Subject� ���� �


set�body
c

S ��S����� �


set��eldc From� �user�name� �

set��eldc To� 
get��eld

i
From� ��� �


set��eldc Date� �date� �

new�msg

c
�� �

C ��pipe S�� � � pipe�msg 
S ��S���

B 	 BoolExpr � AbsMachState � AbsMachState

B ��match S� S��� � � match 
get��eld
i

S ��S���� �� 
S ��S����

Fig� �� Abstract�machine�based semantic de�nition of Mailsh



c� LNCS To appear in PLILP��� ��

Like GPLs� DSLs can either be implemented by an interpreter or a compiler�
The abstract mahcine provides a portable layer�

��� Interpretation

The interpretation is usually the easiest implementation approach because it
processes a program in the presence of its data� and thus directly produces an
answer� In contrast� a compiler produces a program which� when executed� pro�
duces a result� Thus� the compiler approach introduces an indirection which
makes it more di�cult to develop� Another advantage of the interpretation ap�
proach is that interpreters can often be derived from the denotational de�nition
by directly translating the speci�cation into a functional program�

The interpretation approach is also well known for its �exibility� For example�
there are existing techniques to extend interpreters �e�g�� based on monads �		�
�	� ��� without corrupting the semantics� More generally� interpretation allows
languages to be prototyped rapidly and thus language design can be very reac�
tive� This feature is particularly important in the context of a DSL� given that
needs in the domain may evolve over time� so should the DSL� The obvious limi�
tation of the interpretation approach is ine�ciency� Depending on the language�
interpretation has been commonly cited to be one order of magnitude slower
than compiled code ����

��� Compilation

From a software engineering viewpoint� a DSL compiler can be seen as an appli�
cation generator in that it processes a speci�cation to generate an application�
Traditional compilation could be applied to a DSL� that is� native code could be
directly produced from a DSL program� Developing a compiler which generates
e�cient code should not require more e
ort than for a GPL� considering the
restricted nature of a DSL�

Another compilation strategy consists of producing abstract machine instruc�
tions from a DSL program� In doing so� the staged semantics is exploited to allow
more �exibility in the implementation of the abstract machine�

��� Abstract Machine Implementation

As for e�ciency� the abstract machine layer should cause a negligible overhead
given that each instruction often captures substantial dynamic computations�
Therefore� if there exist e�cient compilers for the implementation language of
the abstract machine� little �if any� overhead should be incurred compared to
natively�compiled programs�

Depending on the implementation language which glues the abstract ma�
chine instructions� the valuation functions may however need linearization� If
the implementation language has expressions� the abstract machine code may
stay structured� the reason is that the implementation language compiler would
linearize them anyways� In our example� these are the expressions involving
msg�to�string� concat� get��eld� etc� On the contrary� linearizing these instructions



	� c� LNCS To appear in PLILP���

further would have been useless� at best� and an obstacle for optimizing compi�
lation� at worst� Indeed� higher�level machine instructions may expose more op�
timization opportunities than instructions where early operational choices have
been made� If the implementation language is �at �e�g�� assembly� JVM�� then
linearization is necessary� However� linearization does not go beyond state tran�
sition boundaries�

��� The Abstract Machine as an API

Although only a single implementation of the valuation functions is typically
needed� there might be several implementations of the same abstract machine�
to account for di
erent operational contexts�

Working example� To illustrate the �exibility o
ered by a staged implementa�
tion� let us examine the Mailsh folders� There are several common implemen�
tations of a folder� either as a single �le being the �formatted� concatenation of
messages �e�g�� Netscape or GNU Emacs� or as a directory containing one �le
per message �e�g�� exmh�� We abstracted over these implementation choices by
introducing the domains FileName and FolderF iles�

� Partial Evaluation

In the previous section� two separate implementation approaches were presented�
namely� interpretation and compilation� In this section we propose a third ap�
proach which allows compilation to be achieved from an interpreter� This ap�
proach relies on partial evaluation ��� ��� ��� It consists of developing an inter�
preter based on the staged semantics of the DSL� Then� a partial evaluator is
applied to the interpreter and a given DSL program to process the static seman�
tics� That is� it performs the static computations of the interpreter and produces
code for the dynamic computations� as a compiler would do�

Partial evaluation has traditionally been used to specialize an interpreter by
removing the interpretation layers ���� ��� More generally� it has been shown to
successfully optimize the implementation of various software architectures ��� 	��
In the context of DSLs� partial evaluation has been used to successfully optimize
DSL interpreters� as demonstrated by GAL� a language to specify device drivers
for PC graphics card� Thibault et al� have reported that the GAL interpreter
can be specialized with respect to a driver speci�cation �known at compile time�
to yield an implementation as e�cient as an equivalent� hand�written device
driver ����

In addition� partial evaluation has been successfully used to specialize inter�
preters at run time� i�e�� with respect to a DSL program not known until run
time� This work has been done in the context of PLAN�P� a DSL for active
networks ���� When the PLAN�P interpreter is specialized at run time with
respect to a PLAN�P program� the resulting code incurs no overhead in overall
system performance in comparison with hand�written C code� Furthermore� in
comparison with Java� another mobile code approach� the specialized program



c� LNCS To appear in PLILP��� 	�

cond 
match 
get	fieldi �Subject�� �DSL��


new	msg�

set	fieldc �Date� 
date��

set	fieldc �To� �jake��

set	fieldc �From� �bob��

set	bodyc 
msg	to	stringi��

set	fieldc �Subject� 
concat �Fwd� � 
get	fieldi �Subject����

set	fieldc �Resent	by� 
concat �bob� 
get	fieldi �Resent	by����

send	msg�

read	folder ��home�bob�Mail�Research�Lang�DSL��

set	fieldc �Delivery	Date� 
date��

write	folder ��home�bob�Mail�Research�Lang�DSL�

�


cond 
match 
get	fieldi �From�� �hotmail�com��


new	msg�

set	fieldc �Date� 
date��

set	fieldc �To� 
get	fieldi �From���

set	fieldc �From� �bob��

set	bodyc �Leave me alone���

set	fieldc �Subject� 
concat �Re� � 
get	fieldi �Subject����

send	msg�

�


cond 
match 
get	fieldi �Subject�� �seminar��


pipe	msg �agenda 		stdin�

�


no	op���

Fig� �� Implementation of a Mailsh program example

is twice as fast as an equivalent Java program compiled with an optimizing o
�
line byte�code compiler� In e
ect� run�time specializing interpreters achieve the
same functionality as a Just�In�Time compiler for the price of an interpreter�
Moreover� unlike specialized GPL interpreters� which compete with optimizing
compilers producing �ne�grained� low�level operations� specialized DSL inter�
preters can yield domain�speci�c� coarse�grained operations where the need for
e�ciency often resides�

Notice that the specialization of both DSL interpreters �GAL and PLAN�P�
were done using Tempo ��� �� a partial evaluator for the C language developed
by the Compose group �http���www�irisa�fr�compose�tempo��

Working example� Recall the example of a Mailsh program presented in Fig�
ure �� We have taken its denotation and performed all the reductions made
possible by the availability of both the program and folder hierarchy� Unlike
GAL and PLAN�P� this was done by hand� Mailsh has not been implemented�
The resulting term is presented in Figure �� To illustrate the globalization phase�
the dynamic state is eliminated from the reduced denotation� the composition of



		 c� LNCS To appear in PLILP���

the state�transforming instructions is noted with a semicolon� As can be noticed�
the result is quite close to an imperative program� This representation could be
transformed into a very e�cient C program for example�

	 Conclusion

DSLs have been successfully used to address software engineering concerns in
speci�c application domains� Yet� methodologies for language development have
been focusing on GPLs� designed to be universal� In this paper� we have proposed
an approach aimed at bridging the gap between these two perspectives� This ap�
proach is a complete software development process starting from the identi�ca�
tion of the need for a DSL to its e�cient implementation� It uses the denotational
framework to formalize the basic components of a DSL� The semantics de�nition
is structured so as to stage design decisions and to smoothly integrate imple�
mentation concerns� When implemented as an interpreter� partial evaluation is
proposed as an optimization technique to remove the performance overhead� Our
methodology builds on two successful developments of DSLs� GAL� a language
to specify device drivers for graphics cards� and PLAN�P� a language to program
routers�

Beyond a methodology to develop DSLs� we are now studying an approach
to allowing one to assemble a DSL from parameterized building blocks� This
work stems from the fact that� although speci�c to a domain� a DSL often
includes common functionalities which could correspond to generic components�
Providing these components in a DSL development environment could facilitate
the work for non�experts in programming languages to develop their own DSL�
A related topic involves the de�nition of properties about these components such
that they could be safely composed when de�ning a new DSL�

Another avenue of research consists of exploring structuring techniques for
the DSL de�nition to enable the derivation of DSL program analyzers� A de�
parture point for this study would include factorized semantics as proposed by
Jones and Nielson ����

Finally� the methodology needs to be further validated by more applications�
We plan on investigating other families of problems to develop new DSLs� To
do so� we are actively studying networking where various DSL candidates have
been identi�ed �e�g�� Web caching��

Acknowledgments

A substantial amount of the research reported in this paper builds on work done
by the authors with Scott Thibault on DSLs� Another source of inspiration comes
from work done by the �rst author with Olivier Danvy in the early nineties�

We thank Julia Lawall and Scott Thibault for thoughtful comments on earlier
versions of this paper� as well as the Compose group for stimulating discussions�



c� LNCS To appear in PLILP��� 	�

References

�� B�R�T� Arnold� A� van Deursen� and M� Res� An algebraic speci�cation of a lan�
guage describing �nancial products� In IEEE Workshop on Formal Methods Ap�
plication in Software Engineering� pages ����� April �����

�� E� Bjarnason� Applab	 a laboratory for application languages� In L� Bendix�
K� N�rmark� and K �sterby� editors� Nordic Workshop on Programming Envi�
ronment Research� Aalborg� Technical Report R��������� Aalborg University� May
�����

�� G� Booch� Software Components with Ada� Benjamin Cummings� �����

�� Satish Chandra and James Larus� Experience with a language for writing coher�
ence protocols� In Proceedings of the �st USENIX Conference on Domain�Speci�c
Languages� Santa Barbara� California� October �����

�� J� Graig Cleaveland� Building application generators� IEEE Software� July �����

�� C� Consel and O� Danvy� Tutorial notes on partial evaluation� In Conference
Record of the Twentieth Annual ACM SIGPLAN�SIGACT Symposium on Prin�
ciples Of Programming Languages� pages �������� Charleston� SC� USA� January
����� ACM Press�

�� C� Consel� L� Hornof� J� Lawall� R� Marlet� G� Muller� J� Noy�e� S� Thibault� and
N� Volanschi� Partial evaluation for software engineering� ACM Computing Sur�
veys� Symposium on Partial Evaluation� ��
��� �����

�� C� Consel� L� Hornof� J� Lawall� R� Marlet� G� Muller� J� Noy�e� S� Thibault� and
N� Volanschi� Tempo	 Specializing systems applications and beyond� ACM Com�
puting Surveys� Symposium on Partial Evaluation� ��
��� �����

�� C� Consel� L� Hornof� F� No�el� J� Noy�e� and E�N� Volanschi� A uniform approach
for compile�time and run�time specialization� In O� Danvy� R� Gl�uck� and P� Thie�
mann� editors� Partial Evaluation� International Seminar� Dagstuhl Castle� number
���� in Lecture Notes in Computer Science� pages ������ February �����

��� C� Consel and Danvy O� Static and dynamic semantics processing� In Confer�
ence Record of the Eighteenth Annual ACM SIGPLAN�SIGACT Symposium on
Principles Of Programming Languages� Orlando� FL� USA� January ����� ACM
Press�

��� D� Cuka and D� Weiss� Engineering domains	 Executable commands as an example�
In Proc� Fifth Internationbal Conference on Software Reuse� June �����

��� Conal Elliott� Modeling interactive �D and multimedia animation with an embed�
ded language� In Proceedings of the �st USENIX Conference on Domain�Speci�c
Languages� Santa Barbara� California� October �����

��� N�K� Gupta� L� J� Jagadeesan� E� E� Koutso�os� and D� M� Weiss� Auditdraw	
Generating audits the fast way� In Proceedings of the Third IEEE Symposium on
Requirements Engineering� pages �������� January �����

��� N� D� Jones� editor� Semantics�Directed Compiler Generation� volume �� of Lecture
Notes in Computer Science� Springer�Verlag� �����

��� N� D� Jones and F� Nielson� Abstract interpretation	 a semantics�based tool for
program ana lysis� Technical report� University of Copenhagen and Aarhus Uni�
versity� Copenhagen� Denmark� �����

��� N�D� Jones� An introduction to partial evaluation� ACM Computing Surveys�
��
��	�������� sep �����

��� N�D� Jones� C� Gomard� and P� Sestoft� Partial Evaluation and Automatic Program
Generation� International Series in Computer Science� Prentice�Hall� June �����



	� c� LNCS To appear in PLILP���

��� N�D� Jones� P� Sestoft� and H� S�ndergaard� Mix	 a self�applicable partial evaluator
for experiments in compiler generation� Lisp and Symbolic Computation� �
��	�����
�����

��� Samuel Kamin and David Hyatt� A special�purpose language for picture�drawing�
In Proceedings of the �st USENIX Conference on Domain�Speci�c Languages�
Santa Barbara� California� October �����

��� R� Kieburtz� L� McKinney� J� Bell� J� Hook� A� Kotov� J� Lewis� D� Oliva� T� Sheard�
I� Smith� and L� Walton� A software engineering experiment in software component
generation� In Proceedings of the ��th IEEE International Conference on Software
Engineering ICSE���� pages �������� �����

��� D� Ladd and C� Ramming� Two application languages in software production� In
USENIX Symposium on Very High Level Languages� New Mexico� October �����

��� Sheng Liang� Paul Hudak� and Mark Jones� Monad transformers and modular
interpreters� In Conference Record of POPL ���	 
�st ACM SIGPLAN�SIGACT
Symposium on Principles of Programming Languages� San Francisco� California�
pages �������� ACM� January �����

��� R� Marlet� S� Thibault� and C� Consel� Mapping software architectures to e�cient
implementations via partial evaluation� In Conference on Automated Software
Engineering� pages �������� Lake Tahoe� Nevada� November ����� IEEE Computer
Society�

��� R� McCain� Reusable software component construction	 A product�oriented
paradigm� In Proceedings of the �th AiAA�ACM�NASA�IEEE Computers in
Aerospace Conference� Long Beach� California� October �����

��� James Neighbors� Software Construction Using Components� PhD thesis� Univer�
sity of California� Irvine� �����

��� D�L� Parnas� On the design and development of program families� IEEE Transac�
tions on Software Engineering� �	���� mar �����

��� G� D� Plotkin� A Structural Approach To Operational Semantics� University of
Aarhus� Aarhus� Denmark� �����

��� Rub�en Prieto�D��az� Domain analysis	 An introduction� Software Engineering
Notes� ��
��� April �����

��� C� Pu� A� Black� C� Cowan� J� Walpole� and C� Consel� Microlanguages for oper�
ating system specialization� In �st ACM�SIGPLAN Workshop on Domain�Speci�c
Languages� Paris� France� January ����� Computer Science Technical Report� Uni�
versity of Illinois at Urbana�Champaign�

��� T� Romer� D� Lee� G� Voelker� A� Wolman� W� Wong� J� Baer� B� Bershad� and
H� Levy� The structure and performance of interpreters� In Proceedings of th
international conference on Architectural Support for Programming Languages and
Operating Systems� pages �������� October �����

��� D� A� Schmidt� Denotational Semantics	 a Methodology for Language Development�
Allyn and Bacon� Inc�� �����

��� Guy L� Steele� Building interpreters by composing monads� In Conference Record
of the Twentieth Annual ACM SIGPLAN�SIGACT Symposium on Principles Of
Programming Languages� ACM Press� �����

��� S� Thibault and C� Consel� A framework of application generator design� In
M� Harandi� editor� Proceedings of the Symposium on Software Reusability� pages
�������� Boston� Massachusetts� USA� May ����� Software Engineering Notes�
��
���

��� S� Thibault� C� Consel� and G� Muller� Safe and e�cient active network program�
ming� In �th IEEE Symposium on Reliable Distributed Systems� pages ��������
West Lafayette� Indiana� October �����



c� LNCS To appear in PLILP��� 	�

��� S� Thibault� R� Marlet� and C� Consel� A domain�speci�c language for video de�
vice drivers	 from design to implementation� In Conference on Domain Speci�c
Languages� pages ������ Santa Barbara� CA� October ����� Usenix�

��� Scott Thibault� Renaud Marlet� and Charles Consel� A domain�speci�c language
for video device driver	 from design to implementation� In Proceedings of the �st
USENIX Conference on Domain�Speci�c Languages� Santa Barbara� California�
October �����

��� P� Wadler� The essence of functional programming� In Conference Record of the
Nineteenth Annual ACM SIGPLAN�SIGACT Symposium on Principles Of Pro�
gramming Languages� pages ����� Albuquerque� New Mexico� USA� January �����
ACM Press�

��� Bruce W� Weide and William F� Ogden� Recasting algorithms to encourge reuse�
IEEE Software� ��
��� September �����

��� D�M� Weiss� Family�oriented abstraction speci�cation and translation	 the fast
process� In Proceedings of the ��th Annual Conference on Computer Assurance
�COMPASS�� Gaithersburg� Maryland� pages ������ IEEE Press� Piscataway� NJ�
�����


