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Abstract

Usual Structure-from-Motion (SfM) techniques require
at least trifocal overlaps to calibrate cameras and recon-
struct a scene. We consider here scenarios of reduced im-
age sets with little overlap, possibly as low as two images
at most seeing the same part of the scene. We propose a
new method, based on line coplanarity hypotheses, for es-
timating the relative scale of two independent bifocal cali-
brations sharing a camera, without the need of any trifocal
information or Manhattan-world assumption. We use it to
compute SfM in a chain of up-to-scale relative motions. For
accuracy, we however also make use of trifocal information
for line and/or point features, when present, relaxing usual
trifocal constraints. For robustness to wrong assumptions
and mismatches, we embed all constraints in a parameter-
less RANSAC-like approach. Experiments show that we can
calibrate datasets that previously could not, and that this
wider applicability does not come at the cost of inaccuracy.

1. Introduction
Structure-from-Motion (SfM) has made spectacular im-

provements concerning scalability [8, 42, 14], accuracy
[24, 5, 2, 39] and robustness [41, 26]. However, most ap-
proaches assume a significant amount of overlap between
images. In this work, we consider the case where images
have only little overlap, possibly as low as two images at
most seeing the same part of the scene.

This situation commonly occurs when a scene is pho-
tographed by people with little or no knowledge in pho-
togrammetry. Even when informed, they can make occa-
sional mistakes, widening too much a baseline, or shooting
a low-quality image that cannot be exploited and has to be
skipped. Another example is when exploiting street views,
e.g., taken from a vehicle, if the viewpoints are too distant
one from another, or if the camera is too close to the facades
because of narrow sidewalks. In such cases, SfM methods
may yield partial or fragmented calibrations.

It also applies to situations where only a small number of
pictures can be shot, because of physical or time constraints.

It may be the case when digitizing a building which is still
in use, not to disturb occupants. Reducing the number of
images, to only a few per room for indoor scenes, is also a
way to reduce the cost and time for acquiring and process-
ing information, as long as a minimum level of accuracy can
still be reached for the targeted application.

Another issue concerns the lack of texture in environ-
ments such as building interiors, as it greatly reduces the
amount of feature points detected in images, also leading
to uneven feature distributions. Besides, if the number of
images is small, it is likely that the baselines are wide, as
well as the view angles between overlapping images. Con-
sequently, because of perspective distortion, point descrip-
tors are harder to match; relaxing matching thresholds does
not fix the problem, as it introduces outliers. Moreover, de-
tected points may unknowingly lie on a single plane, possi-
bly giving rise to degenerate configurations for camera reg-
istration. On the contrary, lines do not suffer from lack of
texture and are prevalent in interiors, where they often oc-
cur at plane intersections and object boundaries, see Fig. 1.
Furthermore, lines are robust to significant changes of view-
points, although their matching eventually also degrades.

Our approach thus leverages on lines for pose estimation
and reconstruction, although it also exploits points when
available. Our main contributions are as follow:

• Given two successive bifocal calibrations, i.e., sharing
a middle camera, we propose a novel method for com-
puting their relative scale without the need for trifocal
features. It is based on line coplanarity hypotheses,
which is relevant in man-made scenes (cf. Sect. 4).

• To however exploit trifocality when present, we show
how to relax usual trifocal constraints, and integrate
them with coplanarity constraints in a unified frame-
work. The relaxed constraint only needs 2 bifocal cal-
ibrations among a feature triplet (cf. Sect. 5).

• Robustness to outliers in this context (cf. Sect. 6) re-
quires parameters that may be hard to set given the va-
riety of scenes and constraint types. We propose a pa-
rameterless method that integrates all constraints and
adapts automatically to the scene diversity (cf. Sect. 7).

• Using both standard SfM datasets with ground truth
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Figure 1. Top row: 3 consecutive views of the Office-P19 dataset, with detected line segments. Bottom row: views of this area with
reconstructed structures: points (left), lines (middle), bounding boxes of planes associated to clusters of coplanar lines after BA (right).

and difficult interior scenes with little overlap and little
texture, we validate empirically our technical choices
and we show (1) that we can calibrate images that
cannot be calibrated with existing point- or line-based
SfM methods, and (2) that our accuracy is on par with
state-of-the-art SfM methods on less hard datasets.

Our method does not assume any Manhattan configuration.

2. Related Work

Incremental SfM methods [36, 23, 42] register a new im-
age to a partial model already constructed, using 3D-2D
correspondences. A number of Perspective-n-Points (PnP)
algorithms [19, 10] have been proposed for solving this re-
section problem. Whatever the method, at least 3 correspon-
dences common to 3 images are required: three 3D points
visible in the same 3 images, and up to minimum of 6 [49].
Only [48] estimates the pose of a pinhole camera just from
2D matches, considering a generalized camera model.

Hierarchical SfM methods, that additionally merge par-
tial models, also have similar constraints. In [13], the two
models to merge are overlapping in that they share one or
several images, and pairs of 3D points projecting to the
same 2D features in both models are used to relate the mod-
els, implying tracks of length 3 or more. In [40], models
are merged via feature matches between images separately
associated to each model, requiring that the same four 3D
points are reconstructed in both models, implying tracks of
length 4 (connections between 2 tracks of length at least
2). Even with relaxed requirements where merging uses 4
points that are seen but not necessarily reconstructed in the
other model [9], feature tracks of length 3 are required.

As for global SfM methods, their main objective is merg-

ing relative motions between two cameras into a consistent
graph of all cameras. Besides robustness concerns, to get
rid of outlier edges, and various approaches to average rota-
tions, one of the main issues is that the relative translations
are only given up to an unknown scale factor; only their
directions are known. Most methods to infer global transla-
tions rely on information redundancy assuming a densely-
connected graph [11, 5], or on additional information from
trifocal tensors [35, 24] (hence requiring 4 tracked points
across 3 views). A number of other methods [17, 29, 1]
compute the global translations, possibly along with the 3D
points, by solving equations relating points visible in two
images; however, they implicitly assume that enough points
are visible in at least 3 images to cancel the degrees of free-
dom of the relative scale factors. Besides, they do not all
address point match outliers.

The situation is similar with line-based SfM. In [46],
an initial image triplet with common line matches is re-
quired. Then, given a partial model, Perspective-n-Line
(PnL) methods estimate the pose of a camera in which three
3D lines reproject [21, 47], which implies that at least 3
lines are visible in 3 views. A minimum of 6 lines is some-
times even desirable to prevent noise sensitivity [21], if
not 9 for applicability and 25 for accuracy [27].

More generally, when associating both points and lines
in a “Perspective-n-Features” framework, a minimum of 3
features visible in 3 views is still required [28, 43].

Our approach for relating the scale of two bifocal cali-
brations is based on coplanar line pairs. To our knowledge,
coplanar lines have been used for pose estimation, but only
in a two-view context and with a Manhattan-world assump-
tion, to identify planar structures [18]. A related topic is
plane-based SfM, but it has mostly been studied assuming



prior knowledge (user-given) about the scene planes [38, 3]
or in tracking scenarios with videos [50]. In [30, 17], a ref-
erence plane is used to estimate both the global translations
and 3D points, but it must be visible in all images.

A related work regarding the estimation of scale factors
and the identification of planar structures concerns direct
structure estimation (DSE) via homography estimations,
with the computation of coplanar point clusters, but it does
not estimate poses and it also relies on trifocal points [16].

Line triangulation and line bundle adjustment have been
well studied given an initial global pose estimation [4], but
not associated to coplanarity issues.

3. From Relative to Global Pose Estimation
In the epipolar graph, for every edge between camera i

and camera j, we assume the relative pose (Rij , tij) known
(estimated), where Rij is the relative rotation and tij is the
unit norm translation direction. We want to estimate the
scale factors λij relating tij to the global relative transla-
tions Tij = λijtij , that is, up to a single global scale factor.

In the following, we only consider the case of a chain
or cycle of cameras, for which we estimate global poses
(Rj , Tj), where rotations Rj , translations Tj and camera
centers Cj are defined in the same reference frame. Yet, our
pose estimation method can be integrated in a general global
SfM framework for arbitrary graphs, e.g., as described in
[34] to evenly distribute errors over the whole graph in try-
ing to satisfy the consistency constraints:

Rj = RijRi, Tj = RijTi + Tij , Cj = −R>j Tj . (1)

This could be associated to a method to remove outlier
edges and enforce cycle consistency [12, 44, 7]. In a chain
of cameras, global motions are recursively defined as:

R1 = I and Rj+1 = Rj,j+1Rj (2)
T1 = 0 and Tj+1 = Rj,j+1Tj + λj,j+1tj,j+1 (3)

As the global pose remains defined up to an unknown scale
factor, we additionally set λ12 = 1: distances are thus de-
fined with unit length λ12. (In case of a cycle, we could
also include epipolar constraints to close the loop and dis-
tribute errors as in [34], but we do not in our implementa-
tion.) Finally, a bundle adjustment refines the initial pose
estimation.

To simplify notations, we assume features are normal-
ized: camera intrinsic matrices Kj = I . We denote a triplet
of successive cameras 1, 2, 3 rather than j, j+ 1, j+ 2.

4. Coplanarity Constraint
Let La and Lb be two non-parallel 3D line segments in

a plane P . (Coplanarity here is an hypothesis to be later
validated, see Sect. 6.) SupposeLa only appears on cameras
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Figure 2. If La and Lb, without trifocal overlap, are known to be
coplanar, it is enough to place C1, C2, C3 in the same reference
frame knowing only bifocal calibrations for cameras 1-2 and 2-3.

1 and 2, and Lb only appears on cameras 2 and 3. Let lji be
the projection of Li on camera j. (See Fig. 2.)

The coordinates of a 3D point P in the global reference
frame relates to its projection pj on camera j and depth zjp:

P = R>j (zjpp
j − Tj) (4)

Assuming P ∈ Li, we also have for any camera k:

lki · (RkP + Tk) = 0, (5)

where “·” denotes scalar product. Combining (4) and (5),
and relating global to relative motions using (1), we can ex-
press the depth zjp in terms of the relative pose information:

zjp = − lki · Tjk
lki · (Rjkpj)

. (6)

We also know that the normal to plane P is given by:

nP = dLa×dLb
= (R>1 l

1
a×R>2 l2a)× (R>2 l

2
b ×R>3 l3b) (7)

where dLi
is the 3D direction of line Li. Let M be a point

in P . As any line in P is orthogonal to nP , we have:

P ∈ P ⇔ nP · (P −M) = 0 (8)

From (8), since P ∈ Li ⊂ P , using (4) and (6) yields:

nP · (Cj −M) =
(lki · Tjk)(nP · (R>j pj))

lki · (Rjkpj)
(9)

Now using (9) both for a point Pa ∈La with j= 2 and
k= 1, and a point Pb ∈Lb with j= 2 and k= 3, we get:

λ23
λ21

=
(l3b · (R23p

2
b))(nP · (R>2 p2a))(l1a · t21)

(l1a · (R21p2a))(nP · (R>2 p2b))(l3b · t23)
(10)

Eq. (10) expresses the signed ratio of the distances between
3 successive camera centers in the same reference frame, in
terms of only 2-view relative pose information, plus weak
information about 2 coplanar lines that do not have to be
visible in all 3 views. It has 3 degenerate configurations that



can be assessed and controlled with an angular threshold
(please see the supplementary material for details).

Note that this criterion does not depend on the endpoints
of line segments, that are notoriously inaccurate. Line seg-
ment matches can actually be grossly wrong because of
over-segmentation, which is a common weakness of line
segment detectors. On the contrary, our criterion only relies
on (infinite) lines, which are much more stable. It can cope
with line segments matches that are wrong w.r.t. endpoints
but correct w.r.t. the supporting 3D line.

5. Simplified Trifocal Constraints, When Any

Absolutely no trifocal feature is required. Yet if a line
or point is visible in three successive views 1-2-3, which
is a rich information, we consider a corresponding simpli-
fied trifocal constraint, that also involves the scale factors
λ12, λ23. For both kinds of features, we do as follows:

1. We set arbitrarily the first two camera centers given
their relative pose: C1 = 0, λ12 = 1, C2 = −RT2 T12.

2. We compute the approximate 3D reconstruction of the
feature from the first 2 camera poses, as well as its
projection on the third camera.

3. We compute the scale factor λ23 such that the projected
feature on camera 3 corresponds best to the detection.

As in step 1 we set λ12 = 1, the computed scale factor
λ23 is actually also the ratio τ123 = λ23/λ12. For a more
robust and accurate estimation, we can symmetrize the set-
ting: permuting the role of cameras and averaging the re-
sulting scale factors. As we just consider here a chain of
successive views, it makes sense to actually only take into
account the case where cameras 1 and 3 are swapped, keep-
ing camera 2 as central. It prevents camera configurations
1-3 or 3-1, which are likely to feature wider changes of
viewpoints, i.e., wider baselines and view angles. Bifocal
calibration 1-3 may even fail and not be available. (In our
implementation, we thus only compute the ratios τ123 and
τ321, retaining the average τ = (τ123 + 1/τ321)/2.) Note
that, as opposed to usual trifocal constraints that require at
least three trifocal features, one is enough here.

In step 3, as detailed below, the scale factor λ23 is ex-
pressed in the form:

λ23 = arg min
λ∈R

‖u× (v + λw)‖
‖u‖ ‖v + λw‖

, (11)

where u, v, w are known vectors in R3. To find the mini-
mum, we look for the values of λ that make the derivative
vanish. It leads to a third-degree polynomial, that simpli-
fies into a second-degree polynomial, whose roots can be
tested to find the minimum of the original expression. As
above, this formula has a degenerate configuration that can
be checked and discarded using an angular threshold.

Trifocal point constraint. Given a triplet of matched
points p̂ = (p1, p2, p3) in cameras 1-2-3, we can estimate
the corresponding 3D point P̃ from p1, p2, assuming λ12 =
1, and reproject P̃ as p̃3 on camera 3, for some given λ23:

p̃3 = R3(P̃ − C3) = R3(P̃ − C2)− λ23t23

We look for the scale factor λ∗23 that makes p̃3 the closest to
p3. Rather than minimizing the point distance, we minimize
the angle p̂3C3p̃3, or instead ‖p3 × p̃3‖/(‖p3‖ ‖p̃3‖):

λ∗23 = arg min
λ23∈R

‖p3 × (R3(P̃ − C2)− λ23t23)‖
‖p3‖ ‖R3(P̃ − C2)− λ23t23‖

, (12)

which is in the form (11), and allows the exact minimum to
be explicitly and rapidly computed.

Trifocal line constraint. Given a triplet of matched line
segments l̂ = (l1, l2, l3) in cameras 1-2-3, we can estimate
the corresponding 3D line L̃ from l1, l2, assuming λ12 = 1,
and reproject L̃ as l̃3 on camera 3, for some given λ23. As
l̃3 also is the normal of the plane defined by C3 and L̃, we
have for any point P̃ on L̃:

l̃3 ∝ R3[dL̃ × (P̃ − C3)]

We look for the scale factor λ∗23 that makes l̃3 the most col-
inear with observation l3, minimizing their relative angle:

λ∗23 = arg min
λ23∈R

‖l3 × (R3[dL̃×(P̃−C2)]− λ23R3[dL̃×t23])‖
‖l3‖ ‖R3[dL̃×(P̃−C2)]− λ23R3[dL̃×t23]‖

(13)
which is in the form of (11). As for coplanarity (Sect. 4),
this constraint does not depend on line segment endpoints.

6. Robust Estimation
A single pair of coplanar 3D lines as in Fig. 2 is enough

to determine a scale factor (Eq. (10)), but confirming it calls
for more lines. As there is no oracle to safely pick non-
parallel coplanar lines (cf. Sect. 4), we adopt a RANSAC-
like approach to sample candidate line pairs and select the
associated scale λ23 with which the largest number of pairs
agree. More generally, we also sample and check agreement
w.r.t. trifocal points and lines when any (cf. Sect. 5), which
provides robustness to wrong detections and matching too.

For this, we define a measure of residual error for the
three different kinds of features (hypothesized coplanar line
pairs, trifocal points, trifocal lines), given a presumed λ23 =
λ obtained from the sample (discarding degenerate cases).

Coplanar lines. For any quadruplet of line segments
ľ = (l1a, l

2
a, l

2
b , l

3
b) s.t. l1a, l

2
a match in cameras 1-2 and l2b , l

3
b

match in cameras 2-3, we estimate the associated 3D lines
La, Lb and consider the 3D point Pab ∈La (resp. Pba ∈Lb)
that is the closest to Lb (resp. La) in 3D, with Pab=Pba
if La, Lb are coplanar. We then consider their reprojection



p̃2ab, p̃
2
ba on the shared camera 2. The residual error is their

pixel distance: dco(ľ) = dco(La, Lb) = d(p̃2ab, p̃
2
ba).

To avoid degenerate cases with mostly parallel lines, we
also discard line pairs whose 3D directions are similar. (In
our experiments, we use a threshold of 15◦.) Note that these
directions can be computed from the global rotations only,
before global translations are estimated. As there can be
many pairs candidate for coplanarity, we only consider, for
each segment in camera 2, having a match in camera j, its
N closest neighbors having a match in the other camera,
with a distance defined as the minimum distance between
segment endpoints. (In our experiments, N=10).

Trifocal point error. For each triplet of matched points
p̂ = (p1, p2, p3) in cameras 1-2-3, we estimate the corre-
sponding 3D point P from p1, p2, and reproject it as p̃3 on
camera 3 (assuming λ23), as in Sect. 5. The residual er-
ror is the pixel distance of reprojection p̃3 to the observed
detection p3. For robustness, we actually symmetrize this
measure by swapping cameras 1 and 3, and averaging the
distances: dpt(p̂) = (d(p̃1, p1) + d(p̃3, p3))/2.

Trifocal line error. For each triplet of matched line seg-
ments l̂ = (l1, l2, l3) in cameras 1-2-3, we estimate the cor-
responding 3D line L from l1, l2, and reproject it as l̃3 on
camera 3 (assuming λ23), as in Sect. 5. The residual error is
the average of the pixelic distance between the reprojected
(infinite) line l̃3 and the two endpoints of the detected seg-
ment l3, as in [4, 46]. For robustness, we also swap cameras
1 and 3, and define dseg(l̂) as the average of both errors.

7. Parameter-Free Robust Estimation
Rather than depend on fixed arbitrary error thresholds to

define feature agreement with a model, we actually resort
to an a contrario (AC) approach [22, 23]: we compute the
expectation of the number of false alarms (NFA), that mea-
sures the statistical meaningfulness (actually the converse,
i.e., the insignificance) of λ23 w.r.t. to the features to test,
and select the scale λ23 with the lowest NFA. It allows an
automatic optimization of the inlier-outlier threshold, and
thus more accurate results too. This is also consistent with
the method we use for two-view pose estimation [33].

Coplanar line NFA. For coplanarity, we follow [33] and
define a line error from the error for line pairs:

dco(Li, λ) = min
Lj coplanar with Li

dco(Li, Lj , λ) (14)

where dco(Li, Lj , λ) is the coplanarity distance defined in
Sect. 6. The NFA for our sampling is then, following [23]:

NFAco(λ) = (n2−2) min
k∈[3,nco]

n2N

(
n2
k−2

)[
π dco(Lk, λ)2

A

]k−2
(15)

where n2 is the number of lines in camera 2 that have at
least a match in camera 1 or 3, A is the image area, and Lk
is the k-th best inlier (with lowest error).

Trifocal point NFA. For triplets of matched points, fol-
lowing [23], we have:

NFApt(λ) = (npt−1) min
k∈[2,npt]

(
npt
k

)
k

[
π dpt(p̂k, λ)2

A

]k−1
(16)

where npt is the total number of matched point triplets in
cameras 1-2-3, A is the image area, dpt(p̂, λ) is the residual
error of triplet p̂ assuming scale λ (cf. Sect. 6), and p̂k is the
k-th lowest error.

Trifocal line NFA. For triplets of matched line seg-
ments, also following [23], we have:

NFAseg(λ) = (nseg−1) min
k∈[2,nseg]

(
nseg
k

)
k

[
2D dseg(l̂k, λ)

A

]k−1
(17)

where nseg is the number of matched line triplets, D the
image diagonal length, dseg(l̂, λ) the residual error of triplet
l̂ assuming scale λ (cf. Sect. 6), and l̂k the k-th lowest error.

Global NFA. As these NFAs correspond to expectations
of independent events, the global NFA is their product:

NFA(λ) = NFAco(λ).NFApt(λ).NFAseg(λ). (18)

It estimates the insignificance of a candidate ratio λ based
on coplanarity and trifocal constraints, when any. For robust
estimation, we retain the λ with the overall lowest NFA. It
defines a parameterless AC-RANSAC variant to Sect. 6.

8. Bundle Adjustment

The last step of our SfM method is a bundle adjustment
(BA) that refines simultaneously the structure and the poses.

Reconstructed structure. In our context, we could con-
sider as structures not only points and lines, but also planes
corresponding to coplanar lines. Indeed, just as tracks of
points or lines across images represent single structures,
single planes could be associated to sets of lines sharing
a coplanarity constraint. More precisely, only coplanar line
pairs with similar plane orientations should be clustered to-
gether, as a line can belong to two different planes at edges,
e.g., where a wall meets another wall, floor or ceiling.

Yet, we observed on real scenes that such a clustering of
coplanar lines into single planes tends to degrade the accu-
racy of pose estimation. Our interpretation is that individual
pairs of (real 3D) lines can be coplanar enough to robustly
estimate sensible scale ratios but, when grouped in a single
plane, their global coplanarity deteriorates.

In fact, contrary to 3D points, that are well determined
although possibly misdetected or mismatched in images,
there is no such thing in the real world as perfect 3D lines,
perfect 3D planes, nor exact line parallelism, orthogonality
or coplanarity. (Optical distortion and detection noise just



come on top of it.) This is especially true of edges and sur-
faces in a building, as tolerances of straightness and flatness
in the construction industry range typically from 0.2 to 1%.
Line-based calibration is thus prone to be less accurate in
practice than point-based calibration, and even less when
two lines are involved in a feature, as in line coplanarity.

Buildings also present many cases of near colinearity,
hence near line coplanarity, due to close edges at the bound-
ary of thin surfaces, e.g., baseboards, conduits, moldings,
picture frames, whiteboards, window and door frames, etc.
Furniture edges also tend to be almost but not exactly copla-
nar with wall edges. Due to small errors, such nearly copla-
nar lines are considered as inliers, but degrade accuracy.

This consideration is consistent with [33] where the au-
thors observe that, in real data, lines that should “logically”
be parallel turn out not to be as much as expected, lead-
ing to a number of close but different-enough vanishing
points (VPs). They found however that treating parallel line
pairs independently leads to more accurate calibrations than
merging them into a single VP. Similarly, in our bundle ad-
justment, we do not consider planes as the support of many
coplanar lines; line pairs that were determined as coplanar,
i.e., RANSAC inliers, are treated individually.

Residuals and optimization. The parameters of our BA
are tracked points and lines, as well as camera positions and
orientations. The error to minimize is the sum of the square
(pixelic) distance of the reprojected points and lines to their
detection (cf. Sect. 6), in all the cameras that see (i.e., detect
and match) them, plus the sum of the square coplanarity
residuals dco(La, Lb) (cf. Sect. 6), for all line pairs La, Lb
found as inliers, in all images that see both lines.

Concretely, we initialize the BA with the pose found by
composing the scaled relative motions (cf. Sect. 3) and with
triangulated features. As BA can be sensitive to initializa-
tion and given that rotations are often better estimated than
translations, we first refine the structure and motion with
fixed rotations, then refine all parameters, as [25, 24].

9. Experiments on synthetic data
We made synthetic experiments to study the behavior

of our coplanarity-based method when the main scene pa-
rameters vary: number of planes, number of detected lines,
amount of noise in detections, degree of line planarity. Al-
though the data is synthetic, we used realistic camera and
scene parameters, close to the configuration of the real
dataset Office-P19 (see below). The setting is detailed in
the supplementary material, as well the quantitave results.

We first varied the inaccuracy of line segment detection
from σdetect = 0 to 5 pixels, keeping the planarity noise at
σplanar = 0, then at 20 mm. We also varied the planarity
level from σplanar = 0 to 50 mm, keeping the inaccuracy
of line segment detection at σdetect = 0, then at 2 pixels.
In both cases the error of scale ratio estimation degrades

Figure 3. Left: Meeting-P31. Right: Trapezoid-P17 (non Manhat-
tanness can be seen on the ceiling at the room corner).

smoothly. These experiments also show that the more lines
a plane contains, the lower the error. The reason is that the
error is better averaged and smoothed with more features.
Besides, a larger number of planes (and thus a larger num-
ber of associated lines) increases the number of constraints
but also increases the resulting error, except in the absence
of planarity noise. The reason is that non-perfect planes also
introduce many outliers.

10. Experiments on real data

Feature detection and matching. Points are detected
and matched with SIFT [20]. Lines are detected with
MLSD [32] and matched with LBD [45]. Both kinds of
features are tracked across consecutive pictures to identify
match triplets (hence trifocal overlaps), when any.

Bifocal calibration. We implemented our SfM approach
on top of the two-view relative pose estimation of [33]. Be-
sides being parameterless, it has the advantage of robustly
combining both line and point features, when any, providing
state-of-the-art accuracy even in textureless environments
and with wide baselines. When points are not available, it
only assumes that both images contains at least two pairs of
matched lines that are parallel in 3D; this constraint is most
often met in indoor scenes. If not met, our assumption (see-
ing lines in views 1-2 coplanar with lines seen in views 2-3)
is likely not to be met either.

Using method [33] is not intrinsic to our approach. We
could have used just as well any other bifocal calibration
method, e.g., based on points assuming enough (5 or 7) are
available on all image pairs, or based on lines as in [6], al-
though it assumes a Manhattan scene, contrary to [33].

Datasets. We consider both difficult interior scenes and
a standard SfM dataset of outdoor scenes with ground truth.

• The indoor dataset pictures office rooms with little tex-
ture and little image overlap: Office-P19 (cf. Fig. 1),
Meeting-P31 and Trapezoid-P17 (cf. Fig. 3), where Pn
means n pictures. Trapezoid-P17 does not belong to a
Manhattan world. Resolution is 5184× 3456. As can
be seen on Fig. 1, points are dense on some textured
objects, like the door, but scarce in large other parts of
the scene, e.g., white walls.

• Strecha et al.’s dataset [37] is a de facto standard for
assessing the accuracy of SfM. It consists of 6 outdoor



Scene
Method Our OpenMVG Olsson Cui Arie Jiang Bundler VSfM

method [24] [25] [5] [1] [15] [36] [42]
Castle P19 22.2 25.6 76.2 — — — 344 258
Castle P30 23.8 21.9 66.8 21.2 — 235 300 522
Entry P10 5.6 5.9 6.9 — — — 55.1 63.0

Fountain P11 2.4 2.5 2.2 2.5 4.8 14 7.0 7.6
Herz-Jesu P8 3.8 3.5 3.9 — — — 16.4 19.3

Herz-Jesu P25 5.4 5.3 5.7 5.0 7.8 64 21.5 22.4

Table 1. Average position error: comparison with global [24, 25, 5, 1, 15] and incremental [36, 42] SfM methods. Best results in bold.

Scene
Method RANSAC threshold (pixels) AC-RAN

0.5 1 3 6 9 SAC
Castle P19 146 90.5 107 90 196 101
Castle P30 91 83 73 76 144 72
Entry P10 7.6 7.9 8.4 9.3 10.6 7.8

Fountain P11 2.2 2.1 2.4 2.5 3.8 2.3
Herz-Jesu P8 4.0 4.1 3.9 7.1 6.4 4.2

Herz-Jesu P25 8.5 9.0 8.6 13.3 16.9 7.9
Average 43.2 32.8 33.9 33.0 63.0 32.5

Table 2. RANSAC with a single fixed threshold vs AC-RANSAC.

scenes with ground truth for camera poses. It is easy
to calibrate but useful to show that our robust method
does not degrade accuracy in easy settings. We con-
sider both the full dataset as well as subsets of images
to reduce image overlap. Resolution is 3072× 2048.

All images have been corrected for radial distortion.
RANSAC with and without parameters. Table 2 com-

pares RANSAC with a single fixed threshold for all three
kinds of features (cf. Sect. 6) to the parameterless AC-
RANSAC (cf. Sect. 7). Although AC-RANSAC does not
always yield the best results, it works better on average. For
a given scene, a better accuracy could be achieved by set-
ting the different thresholds for each kind of features, but it
would not be practical, hence the interest of AC-RANSAC.
In the following, all experiments rely on AC-RANSAC.

Contribution of the different kinds of features. Tab. 3
reports the accuracy of the different kinds of features, alone
or when used jointly. Trifocal line features provide a little
less accuracy than trifocal points, which are prevalent in this
textured datatset. But used together, they lead to a slightly
better accuracy. Coplanarity features alone yield a bit less
accuracy than trifocal lines; only Fountain-P11 has a poor
calibration with coplanarity, probably because it contains
fewer planes than other scenes. Yet, merged with other fea-
tures, coplanarity does not degrade accuracy in general, and
often even improves it. Sect. 8 explains the likely reason for
the lesser accuracy of line-based constraints, besides detec-
tion issues. Indeed, while a 3D point exists ”perfectly” in
reality (although located with some inaccuracy), lines are
never exactly parallel in real life. Line coplanarity has one
more DOF, thus an even higher degree of inexactness. It is

Scene
Feature Points Lines Points Copl. All All

+lines +BA
Castle P19 97.9 80 98 129 101 22.2
Castle P30 80.3 111.2 78 134 72 23.8
Entry P10 7.9 12.1 8.0 8.9 7.8 5.6

Fountain P11 2.3 2.5 2.3 52 2.3 2.4
Herz-Jesu P8 4.1 4.3 4.1 5.4 4.2 3.8

Herz-Jesu P25 8.4 15.4 8.4 36 7.9 5.4
Average 33.5 37.6 33.1 60.9 32.5 10.5

Table 3. Feature comparison: resulting average position error of
cameras (in mm, before bundle adjustment). Best results in bold.
For coplanarity features alone, the residual includes the reprojec-
tion error of coplanar lines (which may or may not be trifocal).

Scene
Constraint type Point Line Copl.

triplet triplet line pair
Castle P19 71 % 0 % 29 %
Castle P30 86 % 0 % 14 %
Entry P10 100 % 0 % 0 %

Fountain P11 100 % 0 % 0 %
Herz-Jesu P8 100 % 0 % 0 %

Herz-Jesu P25 87 % 0 % 13 %
Office P19 41 % 12 % 47 %

Meeting P31 21 % 17 % 62 %
Trapezoid P17 40 % 0 % 60 %

Table 4. When selecting a scale ratio, % of best hypotheses origi-
nating from each constraint type, across all image triplets of each.

why we excluded clusters of coplanar lines from our BA.
Tab. 4 gives statistics on scale ratio hypotheses that were

retained because they were found with the lowest NFA.
State-of-the-art accuracy. Tab. 1 shows that our general

approach outperforms incremental point-based SfM meth-
ods [36, 42] regarding accuracy, and is on par with state-of-
the-art global SfM methods [24, 25, 5, 1, 15]. The wider
applicability thus is not traded for accuracy, even in scenar-
ios with dense features and much overlap.

It also shows that our relaxed trifocal constraints retain
the most relevant part of trifocality contribution to calibra-
tion. Comparing to Tab. 3, we can see that coplanarity con-
straints alone provide in general comparable or better accu-
racy than incremental SfM methods [36, 42], except again



Scene
Method

Our method OpenMVG [24]

Castle P19 0.30 0.21
Castle P30 0.29 0.21
Entry P10 0.006 0.90

Fountain P11 0.26 0.19
Herz-Jesu P8 0.28 0.20

Herz-Jesu P25 0.29 0.20
Office P19 1.07 6/19

Meeting P31 1.79 9/31
Trapezoid P17 3.60 3/17

Table 5. Mean reprojection error of all 3D points of all cameras
(in pixels). In red, fraction of calibrated cameras in case of failure.
Our residual error in indoor scenes is about 4 to 10 times larger
than on Strecha’s dataset, but picture resolution is 3 times as large.

on Fountain-P11. Residuals are shown in Tab. 5.
We could not compare with line-based SfM methods [46]

as their code is unavailable and as they do not measure their
accuracy against standard datasets with ground truth.

Succeeding when others fail. Our method can calibrate
difficult datasets that other methods fail to calibrate:

In Office-P19, some triplets do not have overlapping fea-
tures (neither points nor lines), which makes it impossible to
calibrate with existing SfM methods. But our method suc-
ceeds. Fig. 1 illustrates some views, with line detections,
and point, line and plane reconstructions. Apart from a few
line outliers due to mismatches, line and plane reconstruc-
tions are qualitatively good. We can also calibrate Meeting-
P31 and Trapezoid-P17 while OpenMVG fails; the residu-
als and number of calibrated cameras are given in Tab. 5.

We also study removing images from existing datasets as
it is representative of our scenario where only few pictures
are shot (or can be shot, or are good quality), with enough
points or line intersections to define bifocal translation di-
rections but not enough trifocal features to scale related bi-
focal calibrations — a failure case for existing methods.

Removing 3/19 images from Castle-P19 can be enough
to cause other methods to fail to calibrate all cameras, thus
also reducing reconstructed structures and ability to model
the whole scene (cf. missing wall parts in Fig. 4, left). Our
method calibrates all cameras, yielding an average location
error of 13.2 cm. It is not as good as the state-of-the-art error
of 2.3 cm when all 19 images are available (cf. Tab. 1), but
still better than Bundler (34.4 cm) and VSfM (25.8 cm). We
can actually remove up to 11/19 images and still estimate
all camera poses with average error 18.4 cm, which remains
better than incremental methods with all 19 images.

Likewise, keeping only 3 images (left-most, middle,
right-most) from Herz-Jesu-P8 (Fig. 5) leads other methods
to totally fail, while we calibrate these very-wide-baseline
images with 6 mm accuracy, the same as full P8.

Figure 4. Castle-P(19−3): OpenMVG (left), our method (right).

Figure 5. Only our method can calibrate the very wide baseline
and viewpoint change of Herz-Jesu-P3 (furthest 3 images in P8).

Scene
Features Scale factor estim. Bundle adjustment

Pts Lin. Cop. All Pts Lin. Cop. All
Castle P19 5.6 15.8 15.8 42.4 2.7 2.4 2.2 5.5
Meeting P31 4.9 4.9 7.0 8.1 0.8 1.2 5.7 8.3

Table 6. Running time (s).

More generally, disconnected components in the trifocal
graph make other SfM methods fail to calibrate all cameras,
even if the bifocal graph is connected. (Other methods even
actually require connections in the trifocal graph supported
by at least 3 features.) But provided there are 3D lines con-
figured as in Fig. 2, we can hope to calibrate all cameras.

Scalability. Given a chain of bifocal calibrations shar-
ing a camera, our scale factor estimation method is linear in
the number of cameras. Our BA is similar to BA in other
SfM methods. Our code [31], in C++, is not particularly
optimized, except for NFA computation, for which we pre-
compute binomial coefficients. Running times are in Tab. 6.

More experimental data is in the supplementary material.

11. Conclusion

We have presented a novel SfM method that exploits
lines and coplanarity constraints to estimate camera poses
in difficult settings with little image overlap and possibly
little or no texture, causing other methods to fail.

Our experiments show that our method combines the ac-
curacy of usual trifocal constraints although we relax them,
and the robustness (in the sense of wider applicability) of
coplanar constraints. It can thus be blindly used to cali-
brate scenes that other methods fail to calibrate, and still to
provide state-of-the-art results on less difficult scenes, with
smaller baselines, more overlap or more texture.

Future work include the use of coplanarity constraints
for dense surface reconstruction, even in textureless scenes.
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