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Contents of this document

This supplementary material contains a derivation of the update equations used
in the algorithm and a proof that the slaves resulting from the proposed decom-
position have feasible sets with only integral vertices.

1 The formulation

An exhaustive description of the formulation and the associated notation can
be found in the paper. We briefly summarize it here for the convenience of the
reader.
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Table 1. Symbols used in supplementary material
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I set of indices of image rows
J set of indices of image columns
I set if indices of image pixels
K set of row-classes assigned to rectangles resulting from horizontal splits

and split vertically; they are assigned to image rows
L set of column-classes assigned to rectangles resulting from vertical splits

and split horizontally; they are assigned to image columns
r a class corresponding to entire image, and represented by a root of the

tree of classes,

K̊ set of row-classes that have children and a parent K̊ = K \ (T ∪ r)
L̊ set of col-classes that have children and a parent L̊ = L \ (T ∪ r)
K̃ set of nonterminal row-classes K̃ = K \ T
L̃ set of nonterminal col-classes L̃ = L \ T
T set of terminal rectangle classes; they are assigned to image pixels; note

that ∀t ∈ T it holds t ∈ K or t ∈ L
SK the set of pairs of classes (k, k′) ∈ K2 that are siblings in the tree
SL the set of pairs of classes (l, l′) ∈ L2 that are siblings in the tree
Pa(n) parent of class n
Ch(n) set of children classes of class n
Sib(n) set of classes that share a parent with class n
Anc(n) set of classes that are ancestors of class n in the tree, including n itself
Desc(n)set of classes that are descendants of n in the tree, including n itself

C
o
st

s cijt cost of assigning a pixel class t to pixel (i, j)
cikk′ pairwise cost for assigning row-classes k and k′ to rows i and i+ 1
cjll′ pairwise cost for assigning col-classes l and l′ to columns j and j + 1

V
a
ri

a
b
le

s

zijt assignment of terminal class t to pixel (i, j)
zij the vector (zijt) for a given pixel (i, j) and all t ∈ T
z the vector of (zijt) for all (i, j) ∈ I and all t ∈ T
yik assignment of row-class k to image row i
yi the vector of (yik) for a given row i
y the vector of (yik) for all i ∈ I and all k ∈ K
xjl assignment of col-class l to image column j
xj the vector of (xjl) for a given column j
x the vector of all (xjl) for all j ∈ J and all j ∈ L
yikk′ assignment of row-class k to row i and class k′ to row i+ 1
ỹ the vector of yikk′ for all i ∈ K and all (k, k′) ∈ SK
xjll′ assignment of col-class l to column j and class l′ to column j + 1
x̃ the vector of xjll′ for all j ∈ L and all (l, l′) ∈ SL



Non-Procedural Facade Parsing - Supplementary Material 3

The objective defined in the paper is

E(z,y,x) =
∑

(i,j)∈I

∑
t∈T

zijtcijt +

h−1∑
i=1

∑
k,k′∈SK

yikk′ckk′ +

w−1∑
j=1

∑
l,l′∈SL

xjll′cll′ . (1)

Finding the most likely parse is formulated as

min
z,y,x

E(z,y,x) , (2)

subject to constraints on binary domain of the variables

zijt, yik, xjl ∈ {0, 1} , (3)

the requirement of single class per pixel

∀(i, j) ∈ I,
∑
t∈T

zijt = 1 , (4)

the constraints determining pixel class given classes assigned to row and column

∀(i, j) ∈ I, ∀k ∈ K
∑

t∈Desc(k)

zijt ≤ yik , (5a)

∀(i, j) ∈ I,∀l ∈ L
∑

t∈Desc(l)

zijt ≤ xjl , (5b)

the constraints on hierarchical structure of labels assigned to rows and columns

∀i ∈ I, ∀l ∈ L̊,
∑

k′∈Ch(l)

yik′ = yiPa(l) , (6a)

∀j ∈ J, ∀k ∈ K̊,
∑

l′∈Ch(k)

xjl′ = xjPa(k) , (6b)

∀i ∈ I
∑

k∈Ch(r)

yik = 1 , (6c)

∀j ∈ J xjr = 1 , (6d)

and the constraints defining pairs of classes assigned to neighboring rows and columns

∀i ∈ {1, . . . h− 1}, ∀k ∈ K
∑

k′∈Sib(k)

yikk′ = yik , (7a)

∀i ∈ {1, . . . h− 1}, ∀k′ ∈ K
∑

k′∈Sib(k)

yikk′ = yi+1k′ , (7b)

∀j ∈ {1, . . . w − 1}, ∀l ∈ L
∑

l′∈Sib(l)

xjll′ = xjl , (7c)

∀j ∈ {1, . . . w − 1}, ∀l′ ∈ L
∑

l′∈Sib(l)

xjll′ = xj+1l′ . (7d)
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2 Decomposition of the objective

As stated in the paper we propose to relax the constraint (3) on binary domain
of the variables and apply the Dual Decomposition algorithm to the resulting
problem. In this section we present a decomposition of the objective (1) into a
sum of slave objectives.

As detailed in the paper, in order to represent minimization of the objective
(1) subject to constraints (4) to (7) as a sum of tractable slaves we transform
constraints (6) to

∀l ∈ L̃
∑
k∈Hl

yik = 1 , (8a)

∀k ∈ K̃
∑
l∈Vk

xjl = 1 , (8b)

where L̃ = L \ T and K̃ = K \ T are the sets of nonterminal column- and row-
classes, Vk = Ch(k)∪ [L∩ (Ch(Ak) \Ak)] and Hl = Ch(l)∪ [K ∩ (Ch(Al) \Al)],
Al = Anc(l) and Ch(Al) denotes the set of all children of all elements of Al.

We decompose the objective (1) into one component for each nonterminal
column-class l ∈ L̃ and one for each nonterminal row-class k ∈ K̃. Following
the scheme of Dual Decomposition, we introduce a separate set of variables for
each of the subproblems, and we denote the variables with superscripts l and k,
respectively. We note that ylik is only defined for k ∈ Hl, and ylikk′ is defined
only for (k, k′) ∈ SHl, where SHl the set of pairs of sibling row classes k, k′ such
that k, k′ ∈ Hl. Similarly, we introduce variables xkjl for each l ∈ Vk and xkjll′
for (l, l′) ∈ SVk, where SVk is the set of sibling column-classes that belong to
Vk. We denote the number of times the pair (k, k′) appears in sets SHl for all
l ∈ L̃ by nkk′ and the number of times (l, l′) appears in SVk for different k ∈ K̃
by nll′ . We denote the vector created by stacking yik by y, the vector of ylik by
yl, and the vectors obtained by stacking xjl and xkjl by x and xk. We denote

the vectors of zijt, z
l
ijt and zkijt by z, zl and zk, respectively. We introduce the

components of the new objective

El(zl,yl) =
∑

(i,j)∈I
t∈T

cijt

|K̃|+ |L̃|
zlijt +

h−1∑
i=1

∑
(k,k′)∈SHl

ylikk′
ckk′

nkk′
, (9a)

Ek(zk,xk) =
∑

(i,j)∈I
t∈T

cijt

|K̃|+ |L̃|
zkijt +

w−1∑
j=1

∑
(l,l′)∈SVk

xkjll′
cll′

nll′
. (9b)

We abuse the notation by omitting the vectors of pairwise variables ylikk′ and
xkjll′ in the list of arguments of El and Ek, because in our setting they will be

completely determined by yl and xk. The new objective becomes

E(zk,xk, zl,yl) =
∑
k∈K̃

Ek(zk,xk) +
∑
l∈L̃

El(zl,yl) . (10)
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Our optimization problem now consists in minimizing the new objective

min
zk,xk,zl,yl

E(zk,xk, zl,yl) (11)

subject to the non-negativity constraints on the relaxed variables:

∀l ∈ L̃ zl ≥ 0, yl ≥ 0 , (12a)

∀k ∈ K̃ zk ≥ 0, xk ≥ 0 , (12b)

the coupling constraints

∀k ∈ K̃ zk = z , (13a)

∀l ∈ L̃ zl = z , (13b)

∀i ∈ I ∀l ∈ L̃ ∀k ∈ Hl ylik = yik , (13c)

∀j ∈ J ∀k ∈ K̃ ∀l ∈ Vk xkjl = xjl , (13d)

the constraints (8), defining the structure of the segmentation, on the new vari-
ables

∀i ∈ I, ∀l ∈ L̃
∑
k∈Hl

ylik = 1 , (14a)

∀j ∈ J, ∀k ∈ K̃
∑
l∈Vk

xkjl = 1 , (14b)

the constraints (4) and (5) on the newly introduced variables

∀(i, j) ∈ I, ∀l ∈ L̃
∑
t∈T

zlijt = 1 , (15a)

∀(i, j) ∈ I, ∀k ∈ K̃
∑
t∈T

zkijt = 1 , (15b)

∀(i, j) ∈ I, ∀l ∈ L̃, ∀k ∈ Hl

∑
t∈Desc(k)

zlijt ≤ ylik , (16a)

∀(i, j) ∈ I, ∀k ∈ K̃, ∀l ∈ Vk
∑

t∈Desc(l)

zkijt ≤ xkjl , (16b)

and the constraints on the pairwise variables

∀i ∈ {1, . . . h− 1}, ∀l ∈ L̃, ∀k ∈ Hl

∑
k′∈Sibl(k)

ylikk′ = ylik , (17a)

∀i ∈ {1, . . . h− 1}, ∀l ∈ L̃, ∀k′ ∈ Hl

∑
k′∈Sibl(k)

ylikk′ = yli+1k′ , (17b)

∀j ∈ {1, . . . w − 1}, ∀k ∈ K̃, ∀l ∈ Vk
∑

l′∈Sibk(l)

xkjll′ = xkjl , (17c)

∀j ∈ {1, . . . w − 1}, ∀k ∈ K̃, ∀l′ ∈ Vk
∑

l′∈Sibk(l)

xkjll′ = xkj+1l′ , (17d)
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where Sibl(k) = {k′|(k, k′) ∈ SK l} denotes the set of sibling of class k that
belong to the set Kl.

We note that the domains of objective components El(zl,yl) and Ek(zk,xk)
are entangled only by the coupling constraints (13).

2.1 Formulation of the dual problem

In this chapter we present a dual formulation of problem defined by equations
(11) to (17).

We denote the vector created by stacking all (zl, zk, z) by z?. Similarly by
y? we denote all ylik, y

l
ikk′ , yik, yikk′ and the vector of all xkjl, x

k
jll′ , xjl, xjll′ is

denoted by x?. We introduce the dual variables λlijt and λkijt, corresponding to
the constraint (13), and denote the vector resulting from stacking them together
by λ, and the vectors obtained by stacking variables with the same superscripts
by λl and λk. We also introduce dual variables γlik and γkjl, corresponding to the

constraint (13), and denote their vectors by γ, γl and γk.
The application of the dual decomposition method to objective (11) consists

in formulating its Lagrangian with respect to the coupling constraints (13):

LD(λ,γ) = min
z?,y?,x?

∑
k∈K̃

Ek(zk,xk) +
∑
l∈L̃

El(zl,yl)

+
∑
l∈L̃

〈λl, (zl − z)〉+
∑
k∈K̃

〈λk, (zk − z)〉

+
∑
l∈L̃

〈γl, (yl − y)〉+
∑
k∈K̃

〈γk, (xk − x)〉 , (18)

subject to constraints (12) and (14) to (17), where by 〈·, ·〉 we denote the inner
product. The variables z, y and x can be eliminated by ensuring that∑

l∈L̃

λl +
∑
k∈K̃

λk = 0 ,
∑

l∈L̃ s.t. k∈Hl

γl = 0 and
∑

k∈K̃ s.t. l∈Vk

γk = 0 , (19)

since if (19) does not hold, the minimum in z, y and x is infinite. By eliminating
z, y and x from (18) we can create the modified Lagrangian which decomposes
into independent minimizations for each k ∈ K̃ and l ∈ L̃:

L̃D(λ,γ) =
∑
k∈K̃

L̃kD(λk,γk) +
∑
l∈L̃

L̃lD(λl,γl) , (20)

where

L̃kD(λk,γk) = min
zk,xk,x̃k

Ek(zk,xk) + 〈λk, zk〉+ 〈γk,xk〉 , (21)

L̃lD(λl,γl) = min
zl,yl,ỹl

El(zl,yl) + 〈λl, zl〉+ 〈γl,yl〉 , (22)
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and both minimizations are subject to constraints (12) and (14) to (17).

The final form of the dual problem is

max
λ,γ

∑
k∈K̃

L̃kD(λk,γk) +
∑
l∈L̃

L̃lD(λl,γl) , (23)

subject to constraint (19). We solve the problem by means of a projected sub-
gradient ascent procedure presented in the paper. In each iteration we update
the dual variables λl, λk, γ, γl and γk by making a step in the direction of the
subgradient and reprojecting them into the feasible set, where the constraint
(19) is satisfied. In the next chapter we derive the update equations.

2.2 Dual Decomposition applied to the problem

We solve (23) by a projected subgradient method. It can be shown that the
subgradient of (23) with respect to the dual variables contains the following
vectors

∇λkLD(λ,γ) 3 ẑk, ∇λlLD(λ,γ) 3 ẑl, ∇γkLD(λ,γ) 3 x̂k, ∇γlLD(λ,γ) 3 ŷl

(24a)
where

(ẑk, x̂k)=arg minzk,xkEk(zk,xk)+〈λk, zk〉+〈γk,xk〉 and (25)

(ẑl, ŷl) =arg minzl,ylEl(zl,yl) +〈λl, zl〉 +〈γl,yl〉 , (26)

where the minimizations are subject to constraints (12) and (14) to (17).

Dual Decomposition adapted to the dual problem (23) takes the form pre-
sented in algorithm 1. We denote the values of variables at iteration n with
a superscript. The dual variables are updated by a step along the subgradient
direction and reprojection to the feasible set, where constraints (19) are satis-
fied. The reprojection consists in subtracting the average from the corresponding
variables. We denote the average of all slave solutions at iteration n by

z̄nijt =
1

|L̃|+ |K̃|

∑
l∈L̃

ẑl,nijt +
∑
k∈K̃

ẑk,nijt

 . (27)

ȳnik =
1

|L(k)|
∑

l′∈L(k)

ŷl
′,n
ik , (28)

x̄njl =
1

|K(l)|
∑

k′∈K(l)

x̂k
′,n
jl , (29)

where by L(k) we denote a set of l ∈ L̃ such that k ∈ Hl, and by K(l) a set of
k ∈ K̃ such that l ∈ Vk.
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Algorithm 1 Dual Decomposition applied to the problem

∀l ∈ L̃, λ0
l ← 0, γ0

l ← 0
∀k ∈ K̃, λ0

k ← 0, γ0
k ← 0

n← 1
while not converged do
∀k ∈ K̃ (ẑk,n+1, x̂k,n+1)← arg minzk,xkEk(zk,xk) + 〈λk,n, zk〉+ 〈γk,n,xk〉
∀l ∈ L̃ (ẑl,n+1, ŷl,n+1) ← arg minzl,ylEl(zl,yl) + 〈λl,n, zl〉+ 〈γl,n,yl〉
∀k ∈ K̃, ∀t ∈ T,∀(i, j) ∈ I λk,n+1

ijt ← λk,n
ijt + αn+1

(
ẑk,n+1
ijt − z̄n+1

ijt

)
∀l ∈ L̃, ∀t ∈ T,∀(i, j) ∈ I λl,n+1

ijt ← λl,n
ijt + αn+1

(
ẑl,n+1
ijt − z̄n+1

ijt

)
∀k ∈ K̃, ∀l ∈ Vk, ∀j ∈ J γk,n+1

jl ← γk,n
jl + αn+1

(
x̂k,n+1
jl − x̄n+1

jl

)
∀l ∈ L̃, ∀k ∈ Hl,∀i ∈ I γl,n+1

ik ← γl,n
ik + αn+1

(
ŷl,n+1
ik − ȳn+1

ik

)
n← n+ 1

end while
ẑ, ŷ, x̂← Heuristics(z?,y?,x?,λ,γ)

3 The slave subproblem

Below we present the structure of a slave subproblem (26) for some l. The slaves
for k are created symmetrically. The copies of the variables are denoted with su-
perscripts l. New cost coefficients c̃ijt =

cijt
(|L̃|+|K̃|) and c̃kk′ = ckk′

nkk′
are introduced,

where nkk′ is the number of times the pair k, k′ appears in different slaves. The
resulting objective is

min
zl,yl

El(zl,yl) =

min
zl,yl

∑
(i,j)∈I
t∈T

(c̃ijt + λlijt)z
l
ijt +

∑
i∈I
k∈Hl

γliky
l
ik +

∑
i∈{1,...h−1}
(k,k′)∈SHl

c̃kk′y
l
ikk′ , (30)

where λlijt is a Lagrange multiplier corresponding to a constraint coupling the

variables zlijt for different slaves and γlik is a Lagrange multiplier coupling the

variables ylik for different slaves. The feasible set of the slave problem is defined
by constraints (12) and (14) to (17) which have variables with superscript l in
their domain. We rewrite the constraints here for future reference:

∀(i, j) ∈ I, ∀t ∈ T , zlijt ≥ 0 , ∀(i, j) ∈ I,
∑
t∈T

zlijt = 1 , (31a)

∀i ∈ I, ∀k ∈ Hl, y
l
ik ≥ 0 , ∀i ∈ I,

∑
k∈Hl

ylik = 1 , (31b)
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∀(i, j) ∈ I, ∀k ∈ Hl,
∑

t∈Desc(k)

zlijt ≤ ylik , (31c)

∀i ∈ {1, . . . h− 1}, ∀k ∈ Hl,
∑

k′∈Sibl(k)

ylikk′ = ylik , (31d)

∀i ∈ {1, . . . h− 1}, ∀k′ ∈ Hl,
∑

k∈Sibl(k′)

ylikk′ = yli+1k′ . (31e)

3.1 Integrality of the Slave Subproblem

In this section we show that all vertices of the feasible set defined by constraints
(31) are integral. We notice that constraints (31b), (31d) and (31e) form a fea-
sible set of relaxation of a binary linear program for finding the most probable
configuration of a Markov Chain. Since relaxations of tree-structured graphical
models are tight, it is enough to show that the objective remains linear in ylik
after marginalizing out zlijt.

To eliminate zlijt from the slave objective (30) we rewrite the objective as

min
zlijt,y

l
ik,y

l
ikk′

∑
i∈I

g(yli) +
∑
i∈I
k∈Hl

γliky
l
ik +

∑
i∈{1,...h−1}
k,k′∈SHl

clkk′y
l
ikk′ , (32)

subject to constraints (31b), (31d) and (31e). We recall that by yli we denote
a vector (ylik)k∈Hl

for given i. We argue that g() is a linear function. It can be
formulated as

g(yli) = min
zlijt

∑
j∈J
t∈T

(c̃ijt + λlijt)z
l
ijt (33)

subject to
∀j ∈ J, ∀t ∈ T , zlijt ≥ 0 , (34)

∀j ∈ J,
∑
t∈T

zlijt = 1 , (35)

∀j ∈ J, ∀k ∈ Hl,
∑

t∈Desc(k)

zlijt ≤ ylik . (36)

We define the complement of the sets of terminal symbols that are descen-
dants of classes k ∈ Hl as T cl = T \

⋃
k∈Hl

Desc(k). We denote ĉlijt = c̃ijt + λlijt
and define the following costs

∀k ∈ Hl, c̊ijk = min
t∈Desc(k)

ĉlijt, tkij = arg mint∈Desc(k)ĉ
l
ijt, (37)

c̊cij = min
t∈T c

l

ĉlijt, tcij = arg mint∈T c
l
ĉlijt. (38)

For future reference let us also note that from (31a) and (31b) we have∑
k∈Hl

ylik = 1 =
∑
t∈T

zlijt , (39)



10 Mateusz Koziński, Guillaume Obozinski and Renaud Marlet

which gives∑
t∈T c

l

zlijt =
∑
k∈Hl

δk , where δk = ylik −
∑

t∈Desc(k)

zlijt ≥ 0 , (40)

Where the last inequality follows directly from (31c).

Lemma 1. The optimal argument of the problem (33) to (36) is

zlijt = 0 if (t ∈ Desc(k)) ∧ ((t 6= tkij) ∨ (̊cijk > c̊cij)) (41)

zlijt = ylik if (t = tkij) ∧ (̊cijk ≤ c̊cij) (42)

zlijt = 0 if t ∈ T cl \ {tcij} (43)

zlijt =
∑

k s.t. c̊ijk>c̊cij

ylik if t = tcij (44)

Proof. We prove the lemma by contradiction.
To prove (41) we assume the optimal zlijt = ε > 0 for some t ∈ Desc(k)\{tkij}

and zl
ijtkij

= ε′ ≥ 0. By (37) an argument that yields lower value of the objective

is zlijt = 0 and zl
ijtkij

= ε′+ ε. It is easy to verify that the new solution is feasible.

For the case when t = tkij and c̊ijk > c̊cij assume the optimal zlijt = ε > 0 and

zlijtcij = ε′ ≥ 0. By the assumption of (41) a better argument can be constructed

by setting zlijt = 0 and zlijtcij = ε′ + ε.

To prove (42) assume the optimal zl
ijtkij

= ylik − ε, for ε ≥ 0. We have by (40)

and by (41) ε = δk. Since according to (40) δk is distributed over zlijt for t ∈ T cl
the cost of positive epsilon is cε ≥ (̊ccij − c̊ijk). By the assumption of (42) the
cost associated to any t ∈ T cl is larger than c̊ijk, so cε > 0 and the optimal value
of ε = 0.

We prove that any argument that violates (43) is suboptimal by constructing
a better value of the argument in which the value previously assigned to zlijt for

any t ∈ T cl \ {tcij} is assigned to zlijtcij , which, according to (38) has a lower cost

associated to it.
To prove (44) suppose the optimal value of zlijtcij =

∑
k s.t. c̊ijk>c̊cij

ylik − ε
where ε > 0. If ε is distributed over zlijt for t ∈ T cl \ {tcij} then moving it

to zlijtcij will give better energy by (38). If ε is distrubuted over zlijt such that

t ∈ Desc(k) for k s.t. c̊ijk > c̊cij then by the definition of the last set moving the

ε to zlijtcij will give lower energy value. ut

From lemma 1 it follows directly that

g(yli) =
∑
k∈Hl

ylik

∑
j∈J

min{̊cijk, c̊cij}

 . (45)

This function is linear in ylik, which concludes the proof that the slave problem
has integral vertices.


