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Abstract

Most deep pose estimation methods need to be trained for specific object instances
or categories. In this work we propose a completely generic deep pose estimation ap-
proach, which does not require the network to have been trained on relevant categories,
nor objects in a category to have a canonical pose. We believe this is a crucial step to
design robotic systems that can interact with new objects “in the wild” not belonging
to a predefined category. Our main insight is to dynamically condition pose estimation
with a representation of the 3D shape of the target object. More precisely, we train a
Convolutional Neural Network that takes as input both a test image and a 3D model, and
outputs the relative 3D pose of the object in the input image with respect to the 3D model.
We demonstrate that our method boosts performances for supervised category pose esti-
mation on standard benchmarks, namely Pascal3D+, ObjectNet3D and Pix3D, on which
we provide results superior to the state of the art. More importantly, we show that our
network trained on everyday man-made objects from ShapeNet generalizes without any
additional training to completely new types of 3D objects by providing results on the
LINEMOD dataset as well as on natural entities such as animals from ImageNet. Our
code and model is avalaible at http://imagine.enpc.fr/~xiaoy/PoseFromShape/.

1 Introduction
Imagine a robot that needs to interact with a new type of object not belonging to any pre-
defined category, such as a newly manufactured object in a workshop. Using existing single-
view pose estimation approaches for this new object would require stopping the robot and
training a specific network for this object before taking any further action. Here we propose
an approach that can directly take as input a 3D model of the new object and estimate the pose
of the object in images relatively to this model, without any additional training procedure.
We argue that such a capability is necessary for applications such as robotics “in the wild”,
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(a) Training with shape and pose (b) Testing on unseen objects

Figure 1: Illustration of our approach. (a) Training data: 3D model, input image and pose an-
notation for everyday man-made object; (b) At testing time, pose estimation of any arbitrary
object, even an unknown category, given a RGB image and the corresponding 3D shape.

where new objects of unfamiliar categories can occur routinely at any time and have to be
manipulated or taken into account for action. It also applies to virtual reality with similar
circumstances.

To overcome the fact that deep pose estimation methods were category-specific, i.e.,
predicted different orientations according to object category, recent works [10, 54] have pro-
posed to perform category-agnostic pose estimation on rigid objects, producing a single pre-
diction. However, [10] only evaluated on object categories that were included in the training
data, while [54] required the testing categories to be similar to the training data. On the con-
trary, we want to stress that our method works on novel objects that can be widely different
from those seen at training time. For example, we can train only on man-made objects, but
still be able to estimate the pose of animals such as horses, whereas not a single animal has
been seen in the training data (cf. Fig. 1 and 3). Our method is similar to category-agnostic
approaches in that it only produces one pose prediction and does not require additional train-
ing to produce predictions on novel categories. However, it is also instance-specific, because
it takes as input a 3D model of the object of interest.

Indeed, our key idea is that viewpoint is better defined for a single object instance given
its 3D shape than for whole object categories. Our work can be viewed as leveraging the
recent advances in deep 3D model representations [37, 38, 40] for the problem of pose
estimation. We show that using 3D model information also boosts performances on known
categories, even when the information is only approximate, as in the Pascal3D+ [48] dataset.

When an exact 3D model of the object is known, as in the LINEMOD [15] dataset, state-
of-the-art results are typically obtained by first performing a coarse viewpoint estimation and
then applying a pose-refinement approach, typically matching rendered images of the 3D
model to the target image. Our method is designed to perform the coarse alignment. Pose-
refinement can be performed after applying our method using a classical approach based on
ICP or the recent DeepIM [25] method. Note that while DeepIM only performs refinement, it
is similar to our work in the sense that it is category agnostic and leverages some knowledge
of the 3D model, using a view rendered in the estimated pose, to predict its pose update.
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Our core contributions are as follows:

• To the best of our knowledge, we present the first deep learning approach to category-
free viewpoint estimation, which can estimate the pose of any object conditioned only
on its 3D model, whether or not it is similar to objects seen at training time.

• We can learn with and use “shapes in the wild”, whose reference frame do not have to
be consistent with a canonical orientation, simplifying pose supervision.

• We demonstrate on a large variety of datasets [15, 42, 48, 49] that adding 3D knowl-
edge to pose estimation networks provides performance boosts when applied to objects
of known categories, and meaningful performances on previously unseen objects.

2 Related Work
In this section, we discuss pose estimation of a rigid object from a single RGB image first in
the case where the 3D model of the object is known, then when the 3D model is unknown.

Pose estimation explicitly using object shape. Traditional methods to estimate the pose
of a given 3D shape in an image can be roughly divided into feature-matching methods and
template-matching methods. Feature-matching methods try to extract local features from the
image, match them to the given object 3D model and then use a variant of PnP algorithm
to recover the 6D pose based on estimated 2D-to-3D correspondences. Increasingly robust
local feature descriptors [27, 34, 45, 46] and more effective variants of PnP algorithms [6, 21,
24, 53] have been used in this type of pipeline. Pixel-level prediction, rather than detected
features, has also been proposed [1]. Although performing well on textured objects, these
methods usually struggle with poorly-textured objects. To deal with this type of objects,
template-matching methods try to match the observed object to a stored template [14, 15,
23, 26]. However, they perform badly in the case of partial occlusion or truncation.

More recently, deep models have been trained for pose estimation from an image of a
known or estimated 3D model. Most methods estimate the 2D position in the test image
of the projections of the object 3D bounding box [10, 32, 39, 43] or object semantic key-
points [9, 34] to find 2D-to-3D correspondences and then apply a variant of the PnP algo-
rithm, as feature-matching methods. Once a coarse pose has been estimated, deep refinement
approaches in the spirit of template-based methods have also been proposed [25, 29].

Pose estimation not explicitly using object shape. In recent years, with the release of
large-scale datasets [8, 15, 42, 48, 49], data-driven learning methods (on real and/or syn-
thetic data) have been introduced which do not rely on an explicit knowledge of the 3D
models. These can roughly be separated into methods that estimate the pose of any object
of a training category and methods that focus on a single object or scene. For category-wise
pose estimation, a canonical view is required for each category with respect to which the
viewpoint is estimated. The prediction can be cast as a regression problem [30, 33, 35], a
classification problem [4, 41, 46] or a combination of both [12, 22, 28, 31]. Besides, Zhou
et al. directly regress category-agnostic 3D keypoints and estimate a similarity between im-
age and world coordinate systems [54]. Following the same strategy, it is also possible to
estimate the pose of a camera with respect to a single 3D model but without actually using
the 3D model information. Many recent works have applied this strategy to recover the full
6-DoF pose for object [17, 22, 31, 44, 50] and camera re-localization in the scene [18, 19].
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(a) Our pose estimation approach (b) Two possible shape encoders

Figure 2: Overview of our method. (a) Given an RGB image of an object and its 3D shape,
we use two encoders to extract features from each input, then estimate the orientation of
the pictured object w.r.t. the shape using a classification-and-regression approach, predicting
probabilities of angle bins l and bin offsets d , for azimuth, elevation and in-plane rotation.
(b) For shape encoding, we encode a point cloud sampled on the object with PointNet (top),
or we rendered images around the object and use a CNN to extract the features (bottom).

In this work, we propose to merge the two lines of work described above. We cast pose
estimation as a prediction problem, similar to deep learning methods that do not explicitly
leverage viewpoint information. However, we condition our network on the 3D model of a
single instance, represented either by a set of views or a point cloud, allowing our network to
rely on the exact 3D model, similarly to the feature and template matching methods. To the
best of our knowledge, we are the first to combine image and shape information as input to a
network to estimate the relative orientation of the depicted object with respect to the shape.

3 Network Architecture and Training

Our approach consists in extracting deep features from both the image and the shape, and
using them jointly to estimate a relative orientation. An overview is shown in Fig. 2. In
this section, we present in more details our architecture, our loss function and our training
strategy, as well as a data augmentation scheme specifically designed for our approach.

Feature extraction. The first part of the network consists of two independent modules:
(i) image feature extraction and (ii) 3D shape feature extraction. For image features, we use
a standard CNN, namely ResNet-18 [13]. For 3D shape features, we experimented with two
approaches depicted in Fig. 2(b) which are state-of-the-art 3D shape description networks.

First, we used the point set embedding network PointNet [37], which has been success-
fully used as a point cloud encoder for many tasks [5, 11, 36, 47, 52].

Second, we tried to represent the shape using rendered views, similar to [40]. Virtual
cameras are placed around the 3D shape, pointing towards the centroid of the model; the
associated rendered images are taken as input by CNNs, sharing weights for all viewpoints,
which extract image descriptors; a global feature vector is obtained by concatenation. We
considered variants of this architecture using extra input channels for depth and/or surface
normal orientation but this did not improve our results significantly. Ideally, we would con-
sider viewpoints on the whole sphere around the object with any orientation. In practice
however, many objects have a strong bias regarding verticality and are generally seen only
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from the side/top. In our experiments, we thus only considered viewpoints on the top hemi-
sphere and sampled evenly a fixed number of azimuths and elevations.

Orientation estimation. The object orientation is estimated from both the image and 3D
shape features by a multi-layer perceptron (MLP) with three hidden layers of size 800-400-
200. Each fully connected layer is followed by a batch normalization, and a ReLU activation.

As output, we estimate the three Euler angles of the camera, azimuth (azi), elevation (ele)
and in-plane rotation (inp), with respect to the shape reference frame. Each of these angles
q 2 E = {azi,ele, inp} is estimated using a mixed classification-and-regression approach,
which computes both angular bin classification scores and offset information within each bin.
Concretely, we split each angle q 2 E uniformly in Lq bins. For each q -bin l 2 {0,Lq �1},
the network outputs a probability p̂q ,l 2 [0,1] using a softmax non-linearity on the q -bin
classification scores, and an offset d̂ q ,l 2 [�1,1] relatively to the center of q -bin l, obtained
by a hyperbolic tangent non-linearity. The network thus has 2⇥ (Lazi+Lele+Linp) outputs.

Loss function. As we combine classification and regression, our network has two types of
outputs (probabilities and offsets), that are combined into a single loss L that is the sum of a
cross-entropy loss for classification Lcla and Huber loss [16] for regression Lreg.

More formally, we assume we are given training data (x
i

,s
i

,y
i

)N

i=1 consisting of input
images x

i

, associated object shapes s

i

and corresponding orientations y

i

= (y
i,q )q2E . We

convert the value of the Euler angles y

i,q into a bin label l

i,q encoded as a one-hot vector and
relative offsets d

i,q within the bins. The network parameters are learned by minimizing:

L=
N

Â
i=1

Â
q2E

Lcla

⇣
l

i,q , p̂q (xi

,s
i

)
⌘
+Lreg

⇣
d

i,q , d̂ q ,l
i,q (xi

,s
i

)
⌘
, (1)

where p̂q (xi

,s
i

) are the probabilities predicted by the network for angle q 2 E , input image
x

i

and input shape s

i

, and d̂ q ,l
i,q (xi

,s
i

) the predicted offset within the ground truth bin.

Data augmentation. We perform standard data augmentation on the input images: hori-
zontal flip, 2D bounding box jittering, color jittering.

In addition, we introduce a new data augmentation, specific to our approach, designed
to avoid the network to overfit the 3D model orientation, which is usually consistent in
training data since most models are aligned. On the contrary, we want our network to be
category-agnostic and to always predict the pose of the object with respect to the reference
3D model. We thus add random rotations to the input shapes, and modify the orientation
labels accordingly. In our experiments, we restrict our rotations to azimuth changes, again
because of the strong verticality bias in the benchmarks, but could theoretically apply it to
all angles. Because of objects with symmetries, typically at 90° or 180°, we also restrict
azimuthal randomization to a uniform sampling in [�45°,45°], which allows to keep the 0°
bias of the annotations. See supplementary material for details and parameter study.

Implementation details. For all our experiments, we set the batch size as 16 and trained
our network using the Adam optimizer [20] with a learning rate of 10�4 for 100 epochs then
10�5 for an additional 100 epochs. Compared to a shape-less baseline method, the training
of our method with the shape encoded from 12 rendered views is about 8 times slower, on a
TITAN X GPU.
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4 Experiments
Given an RGB image of an object and a 3D model of that object, our method estimates its
3D orientation in the image. In this section, we first give an overview of the datasets we
used, and explain our baseline methods. We then evaluate our method in two test scenarios:
object belonging to a category known at training time, or unknown.

Datasets. We experimented with four main datasets. Pascal3D+ [48], ObjectNet3D [49]
and Pix3D [42] feature various objects in various environments, allowing benchmarks for
object pose estimation in the wild. On the contrary, LINEMOD [15] focuses on few objects
with little environment variations, targeting robotic manipulation. Pascal3D+ and Object-
Net3D only provide approximate models and rough alignments while Pix3D and LINEMOD
offer exact models and pixelwise alignments. We also used ShapeNetCore [2] for training
on synthetic data, with SUN397 backgrounds [51], and tested on Pix3D and LINEMOD.

Unless otherwise stated, ground-truth bounding boxes are used in all experiments. We
compute the most common metrics used with each dataset: Acc

p
6

is the percentage of estima-
tions with rotation error less than 30°; MedErr is the median angular error (°); ADD-0.1d is
the percentage of estimations for which the mean distance of the estimated 3D model points
to the ground truth is smaller than 10% of the object diameter; ADD-S-0.1d is a variant of
ADD-0.1d used for symmetric objects where the average is computed on the closest point
distance. More details on the datasets and metrics are given in the supplementary material.

Baselines. A natural baseline is to use the same architecture, data and training strategy as
for our approach, but without using the 3D shape of the object. This is reported as ‘Baseline’
in our tables, and corresponds to the network of Fig. 2 without the shape encoder shown
in light blue. We also report a second baseline, aiming at evaluating the importance of the
precision of the 3D model for our approach to work. We used exactly our approach, but at
testing time we replaced the 3D shape of the object in the test image by a random 3D shape
of the same category. This is reported as ‘Ours (RS)’ in the tables.

4.1 Pose estimation on supervised categories

We first evaluate our method in case the categories of tested objects are covered by training
data. We show that leveraging the 3D model of the object clearly improves pose estimation.

We evaluate our method on ObjectNet3D, which has the largest variety of object cate-
gories, 3D models and images. We report the results in Table 1 (top). First, an important
result is that using the 3D model information, whether via a point cloud or rendered views,
provides a very clear boost of the performance, which validates our approach. Second, results
using rendered multiple views (MV) to represent the 3D model outperform the point-cloud-
based (PC) representation [37]. We thus only evaluated Ours(MV) in the rest of this section.
Third, testing the network with a random shape (RS) in the category instead of the ground
truth shape, implicitly providing class information without providing fine-grained 3D infor-
mation, leads to results better than the baseline but worst than using the ground truth model,
demonstrating our method ability to exploit fine-grained 3D information. Finally, we found
that even our baseline model already outperformed StarMap [54], mainly because of five
categories (iron, knife, pen, rifle, slipper) on which StarMap completely fails, likely because
a keypoint-based method is not adapted for small and narrow objects.
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ObjectNet3D bed bcase calc cphone comp door cabi guit iron knife micro pen pot rifle shoe slipper stove toilet tub wchair mean

category-specific networks/branches — test on supervised categories (((AAAc

c

cc

c

c

p
6
)))

Xiang [49]* 61 85 93 60 78 90 76 75 17 23 87 33 77 33 57 22 88 81 63 50 62

category-agnostic network — test on supervised categories (((AAAc

c

cc

c

c

p
6
)))

Zhou [54] 73 78 91 57 82 – 84 73 3 18 94 13 56 4 – 12 87 71 51 60 56
Baseline 70 89 90 55 87 91 88 62 29 20 93 43 76 26 58 30 91 68 51 55 64
Ours(PC) 83 92 95 58 82 87 91 67 43 36 94 53 81 39 45 35 91 80 65 56 69
Ours(MV,RS) 74 89 91 62 81 90 88 71 41 28 94 50 70 37 57 38 89 81 60 60 68
Ours(MV) 82 90 96 65 93 97 89 75 52 32 95 54 82 45 67 46 95 82 67 66 73

category-agnostic network — test on novel categories (((AAAc

c

cc

c

c

p
6
)))

Zhou [54] 37 69 19 52 73 – 78 61 2 9 88 12 51 0 – 11 82 41 49 14 42
Baseline 56 79 26 53 77 86 83 51 4 16 90 42 65 2 34 22 86 43 50 35 50
Ours(PC) 63 85 84 51 85 83 83 61 9 35 92 44 80 8 39 20 87 56 71 39 59
Ours(MV,RS) 60 88 84 60 76 91 82 61 2 26 90 46 73 13 45 28 79 59 61 36 58
Ours(MV) 65 90 88 65 84 93 84 67 2 29 94 47 79 15 54 32 89 61 68 39 62

[images: 90,127, in the wild | objects: 201,888 | categories: 100 | 3D models: 791, approx. | align.: rough]

Table 1: Pose estimation on ObjectNet3D [49]. Train and test are on the same data as [54];
for experiments on novel categories, training is on 80 categories and test is on the other 20.
* Trained jointly for detection and pose estimation, tested using estimated bounding boxes.

Pascal3D+ [48]
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Categ.-specific branches, supervised categ. Acc

p
6

(%) MedErr (degrees)

Tulsiani [46]* 81 77 59 93 98 89 80 62 88 82 80 80 80.75 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
Su [41]† 74 83 52 91 91 88 86 73 78 90 86 92 82.00 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7
Mousavian [31] 78 83 57 93 94 90 80 68 86 82 82 85 81.03 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1
Pavlakos [34]* 81 78 44 79 96 90 80 – – 74 79 66 – 8.0 13.4 40.7 11.7 2.0 5.5 10.4 – – 9.6 8.3 32.9 –
Grabner [10] 83 82 64 95 97 94 80 71 88 87 80 86 83.92 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9

Categ.-agnostic network, supervised categ. Acc

p
6

(%) MedErr (degrees)

Grabner [10] 80 82 57 90 97 94 72 67 90 80 82 85 81.33 10.9 12.2 23.4 9.3 3.4 5.2 15.9 16.2 12.2 11.6 6.3 11.2 11.5
Zhou [54]* 82 86 50 92 97 92 79 62 88 92 77 83 81.67 10.1 14.5 30.0 9.1 3.1 6.5 11.0 23.7 14.1 11.1 7.4 13.0 12.8
Baseline 77 74 54 91 97 89 74 52 85 80 79 77 77.42 13.0 18.2 27.3 11.5 6.8 8.1 15.4 20.1 14.7 13.2 10.2 14.7 14.4
Ours(MV,RS) 79 81 49 91 96 89 78 53 90 88 80 77 79.25 11.6 15.5 30.9 8.2 3.6 6.0 13.8 22.8 13.1 11.1 6.0 15.0 13.1
Ours(MV) 81 83 60 93 97 91 79 67 90 90 81 79 82.66 10.5 13.7 21.0 7.7 3.0 5.0 10.9 11.9 11.8 9.1 5.4 10.3 10.0

[images: 30,889, in the wild | objects: 36,292 | categories: 12 | 3D models: 79, approx. | align.: rough]

Table 2: Pose estimation on Pascal3D+ [48]. * Trained using keypoints. † Not trained on
ImageNet data but trained on ShapeNet renderings.

Pix3D [42] tool misc bcase wdrobe desk bed table sofa chair mean

category-specific networks — tested on supervised categories (((AAAc

c

cc

c

c

p
6
)))

Georgakis [9] - - - - 34.9 50.8 - - 31.2 -

category-agnostic network — tested on supervised categories (((AAAc

c

cc

c

c

p
6
)))

Baseline 2.2 9.8 10.8 0.6 30.0 36.8 17.3 63.8 43.6 23.9
Ours(MV,RS) 4.1 3.6 22.8 9.5 52.8 50.1 30.8 66.3 44.5 31.6
Ours(MV) 6.5 19.7 34.6 10.2 56.6 59.8 40.8 70.0 52.4 38.9

category-agnostic network — tested on novel categories (((AAAc

c

cc

c

c

p
6
)))

Baseline 2.2 13.1 5.4 0.6 30.3 19.6 14.9 11.9 28.0 14.0
Ours(MV,RS) 3.0 5.9 4.5 5.2 44.7 31.5 24.1 48.5 33.9 22.4
Ours(MV) 10.9 13.1 22.3 6.6 52.0 55.3 35.6 64.6 35.8 32.9
[images: 10,069, in the wild | objects: 10,069 | categ.: 9 | 3D models: 395, exact | align.: pixel]

Pix3D [42] chair

categ.-specific, supervised

# bins 24 12
(% correct) azim. elev.

Su [41] 40 37
Sun [42] 49 61
Baseline 51 64
Ours(MV) 54 65

Table 3: Pose estimation on Pix3D [42]. Right table compares to [41, 42], that only test bin
success on 2 angles (24 azimuth bins and 12 elevation bins).
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We then evaluate our approach on the standard Pascal3D+ dataset [48]. Results are
shown in Table 2 (top). Interestingly, while our baseline is far below state-of-the-art re-
sults, adding our shape analysis network provides again a very clear improvement, with re-
sults on par with the best category-specific approaches, and outperforming category agnostic
methods. This is especially impressive considering the fact that the 3D models provided in
Pascal3D+ are only extremely coarse approximations of the real 3D models. Again, as can
be expected, using a random model from the same category provides intermediary results
between the model-less baseline and using the actual 3D model.

Finally, we report results on Pix3D in Table 3 (top). Similar to the other methods,
our model was purely trained on synthetic data and tested on real data, without any fine-
tuning. Again, we can observe that adding 3D shape information brings a large performance
boost, from 23.9% to 36% Acc

p
6

. Note that our method clearly improves even over category-
specific baselines. We believe it is due to the much higher quality of the 3D models provided
on Pix3D compared to ObjectNet3D and Pascal3D+. This hypothesis is supported by the
fact that our results are much worse when a random model of the same category is provided.

These state-of-the-art results on the three standard datasets are thus consistent and vali-
date (i) that using the 3D models provides a clear improvement (comparison to ‘Baseline’),
and (ii) that our approach is able to leverage the fine-grained 3D information from the 3D
model (comparison to estimating with a random shape ‘RS’ in the category).

4.2 Pose estimation on novel categories

We now focus on the generalization to unseen categories, which is the main focus of our
method. We first discuss results on ObjectNet3D and Pix3D. We then show qualitative results
on ImageNet horses images and quantitative results on the very different LINEMOD dataset.

Our results when testing on new categories from ObjectNet3D are shown in Table 1
(bottom). We use the same split between 80 training and 20 testing categories as [54]. As
expected, the accuracy decreases for all methods when supervision is not provided on these
latter categories. The fact that the Baseline performances are still much better than chance
is accounted by the presence of similar categories is the training set. The advantage of our
method is however even more pronounced than in the supervised case, and our multi-view
approach (MV) still outperforms the point cloud (PC) approach by a small margin. Similarly,
we removed from our ShapeNet [2] synthetic training set the categories present in Pix3D,
and reported in Table 3 (bottom) the results on Pix3D. Again, the accuracy drops for all
methods, but the benefit from using the ground-truth 3D model increases.

In both ObjectNet and Pix3D experiments, the test categories were novel but still similar
to the training ones. We now focus on evaluating our network, trained using synthetic images
generated from man-made shapes from ShapeNetCore [2], on completely different objects.

We first obtain qualitative results by using a fixed 3D model of horse from an online
model repository [7] to estimate the pose of horses in ImageNet images. Indeed, compared
to other animals, horses have more limited deformations. While this of course does not
work for all images, the images for which the network provides the highest confidence are
impressively good. On Figure 3, we show the most confident images for different poses, and
we provide more results in the supplementary material. Note the very strong appearance gap
between the rendered 3D models and the test images.

Finally, to further validate our network generalization ability, we evaluate it on the
texture-less objects of LINEMOD [15], as reported in Table 4. This dataset focuses on
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Figure 3: Visual results of pose estimation on horse images from ImageNet [3] using models
from Free3D [7]. We rank the prediction for each orientation bin by the network prediction
and show the first (best) results for various poses.

LINEMOD [15] ape bvise cam can cat drill duck ebox* glue* holep iron lamp phone mean

instance-specific networks/branches — tested on supervised models (ADD-0.1d)*

w/o Ref.

Brachmann [1] - - - - - - - - - - - - - 32.3
SSD-6D [17]‡ 0 0.2 0.4 1.4 0.5 2.6 0 8.9 0 0.3 8.9 8.2 0.2 2.4
BB8 [39] 27.9 62.0 40.1 48.1 45.2 58.6 32.8 40.0 27.0 42.4 67.0 39.9 35.2 43.6
Tekin [43] 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 75.0 71.1 47.7 56.0
PoseCNN [50]† 27.8 68.9 47.5 71.4 56.7 65.4 42.8 98.3 95.2 50.9 65.6 70.3 54.6 62.7

w/ Ref.

Brachmann [1] 33.2 64.8 38.4 62.9 42.7 61.9 30.2 49.9 31.2 52.8 80.0 67.0 38.1 50.2
BB8 [39] 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7
SSD-6D [17]‡ 65 80 78 86 70 73 66 100 100 49 78 73 79 79.0
PoseCNN [50]† + [25]† 76.9 97.4 93.5 96.6 82.1 95.0 77.7 97.0 99.4 52.7 98.3 97.5 87.8 88.6

instance/category-agnostic network — tested on novel models (ADD-0.1d)*

w/o Ref. Ours‡ 7.5 25.1 12.1 11.3 15.4 18.6 8.2 100 81.2 18.5 13.8 6.5 13.4 25.5

w/ Ref. Ours‡ + DeepIM [25]† 59.1 63.8 40.0 50.8 54.1 75.3 48.6 100 98.7 49.8 49.5 55.3 50.4 61.2
[scenes: 13, artificially arranged | images: 13407 | objects: 13 | categ.: 13 | 3D models: 13, exact | align.: pixel]

Table 4: Pose estimation on LINEMOD [15]. † Training also on synthetic data. ‡ Training
only on synthetic data. * ADD-S-0.1d used for symmetric objects eggbox and glue.

very accurate alignment, and most approaches propose to first estimate a coarse alignment
and then to refine it with a specific method. Our method provides a coarse alignment, and
we complement it using the recent DeepIM [25] refinement approach. Our method yields
results below the state of the art, but they are nevertheless very impressive. Indeed, our net-
work has never seen objects any similar the LINEMOD 3D models during training, while
all the other baselines have been trained specifically for each object instance on real training
images, except SSD-6D [17] which uses the exact 3D model but no real image and for which
coarse alignment performances are very low. Our method is thus very different from all the
baselines in that it does not assume the test object to be available at training time, which we
think is a much more realistic scenario for robotics applications. We actually believe that the
fact our method provides a reasonable accuracy on this benchmark is a very strong result.

5 Conclusion
We have presented a new paradigm for deep pose estimation, taking the 3D object model as
an input to the network. We demonstrated the benefits of this approach in terms of accuracy,
and improved the state of the art on several standard pose estimation datasets. More im-
portantly, we have shown that our approach holds the promise of a completely generic deep
learning method for pose estimation, independent of the object category and training data,
by showing encouraging results on the LINEMOD dataset without any specific training, and
despite the domain gap between synthetic training data and real images for testing.
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