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Figure 1: Reconstruction by [CLP10], and by our method with regularization based on area, edge length and number of corners.

Abstract
This paper presents a method for the 3D reconstruction of a piecewise-planar surface from range images, typi-
cally laser scans with millions of points. The reconstructed surface is a watertight polygonal mesh that conforms
to observations at a given scale in the visible planar parts of the scene, and that is plausible in hidden parts. We
formulate surface reconstruction as a discrete optimization problem based on detected and hypothesized planes.
One of our major contributions, besides a treatment of data anisotropy and novel surface hypotheses, is a regu-
larization of the reconstructed surface w.r.t. the length of edges and the number of corners. Compared to classical
area-based regularization, it better captures surface complexity and is therefore better suited for man-made en-
vironments, such as buildings. To handle the underlying higher-order potentials, that are problematic for MRF
optimizers, we formulate minimization as a sparse mixed-integer linear programming problem and obtain an ap-
proximate solution using a simple relaxation. Experiments show that it is fast and reaches near-optimal solutions.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis, I.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Range data, I.5.4 [Pattern Recognition]: Applications—Computer vision

1. Introduction

Many applications make use of 3D models representing
buildings and urban areas. It includes virtual navigation, ur-
ban planning, quantity survey as well as physical simulations
for thermal performance, acoustics, lighting and shadow
casting, pollutant dispersion, solar panel deployment. Qual-
itative applications, whose goal is to provide visual under-
standing, are generally based on detailed meshes with realis-
tic rendering. On the contrary, quantitative applications call
for a simplified geometry, that is better suited for simulation
and for scaling up to large scenes. An increasing number of
applications also require semantic information, e.g., build-
ing information models (BIM) or 3D city models (e.g., with
CityGML). Creating this information, manually or automati-
cally [BHMT13], is much easier on models with a simplified

geometry. A market is in fact developing to offer model re-
construction services for existing buildings. It is based on
the processing of dense 3D data obtained by laser scanners
or photogrammetry. Model creation consists in manually ad-
justing geometric primitives to parts of the point cloud. It is
labor intensive, error prone, and time and money consuming.
Automatic building reconstruction has thus been an active
field of research in the last years.

We present here a method for constructing a piecewise-
planar approximation of an observed surface provided as
range images. While most of our experiments are motivated
by building and city reconstruction, the method is general
and can be applied to any scene in man-made environments,
where surfaces are mostly planar and where there are strong
geometric priors, such as orthogonality and parallelism.
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Challenges. One characteristic of buildings and urban en-
vironments is that, because of ubiquitous occlusions, many
observations are required to see the whole scene. It goes be-
yond seeing all parts of concave areas and regions masked
by pillars or open doors. Some areas are actually bound to
remain hidden (e.g., behind or under furniture), to be hardly
accessible to a device standing on a tripod (e.g., complete
steps of a staircase), or to require many acquisitions (e.g.,
all intervals between exposed ceiling beams). A major chal-
lenge is thus the reconstruction of plausible surfaces for
missing regions, to reduce the need for observations, and
thus also to reduce the cost and time of data acquisition. We
address it using robust plane hypotheses and an energy min-
imization with powerful higher-order regularization terms.

Another challenge is sampling anisotropy. Laser scans are
often considered simple to treat as they have less noise and
outliers compared to photogrammetric or Kinect-like data.
They may however feature anisotropic data. Parts of the
scene that are more distant from the scanner are less densely
sampled than closer parts. Sampling of low-incidence sur-
faces also produces curved 3D lines of densely sampled
points where the distance between lines can be one or two
orders of magnitude larger than the distance between points
on a line. Besides, for rotating laser scanners, regions close
to poles of the sampling sphere are much more densely sam-
pled than at the equator, typically with factors more than one
thousand. Many approaches have robustness and accuracy
problems with this issue. We address it by normalizing sam-
pled data at each stage of the reconstruction process.

Related work. Many approaches have been proposed for
reconstructing surfaces from point clouds with missing parts
[BTS∗14]. A number of them complete surfaces by infer-
ring smooth geometry in areas with missing data [PBL10],
which is inadequate for buildings and indoor scenes as they
are mainly composed of planar regions and contain sharp
features. Methods that handle these aspects first detect ge-
ometric primitives [SWK07, FP13], then reconstruct sharp
features where primitives intersect. The choice of intersect-
ing primitives is often based on proximity criteria and rely
on the presence of observed points close to the intersection
[LA13, CC08, LWC∗11, JKS08]. These approaches are not
suited for completing large regions with missing data when
primitive intersections occur in hidden areas or far from ob-
served points. User interaction might be needed in this case
to select primitives and recover surfaces [CC08, ASF∗13].

Only a few methods are able to complete large miss-
ing regions. In [Cas02], partially visible regions are ex-
tended until edges intersect, or intersect the wall or the
floor. But this extension is made on a per-polygon basis,
it does not prevent self-intersection and holes in the re-
sulting surface. In [SDK09], a graph cut is performed on
a graph aligned with a regular voxel grid favoring cuts
close to detected primitives. However, it reconstructs only
visible regions, possibly with artifacts due to voxel dis-

cretization. Other methods assume that all planes are ori-
ented toward one of the three orthogonal dominant direc-
tions [FCSS09a,FCSS09b,BB10,VAB12]. This Manhattan-
world assumption works well but is often too restrictive for
indoor and detailed urban scenes. In [CLP10], planar regions
can have long extensions in hidden areas. Detected planes
are used to partition the 3D space into a polyhedral cell com-
plex, and the reconstructed surface is defined as the interface
of a volumic cell assignment (empty or full). It ensures a wa-
tertight surface without self-intersection. Moreover, to pro-
vide plausible completions in hidden areas, additional hid-
den plane hypotheses (called “ghosts”) are considered. They
are generated after regions are approximated by polygons,
based on their edges. The idea is that, in a man-made envi-
ronment, a straight edge of a planar region is likely to also
be the edge of another planar region, often with a right an-
gle. However, polygonization in [CLP10] is based on alpha
shapes, which are sensitive to noise and sampling anisotropy,
resulting in wrong or spurious plane hypotheses. More im-
portantly, the prior used to regularize surfaces in hidden parts
of the scene is area minimization, which is not an appropriate
measure of surface simplicity for man-made environments.

One of our main contributions is the use of higher-order
regularization terms that penalize the length of edges and/or
the number of corners in the reconstructed surface. Such
higher-order priors have been used for greedy mesh simpli-
fication but are challenging to incorporate in a global mini-
mization for surface reconstruction. Note however that, con-
trary to a number of mesh simplifications approaches, we
minimize the sum of the lengths of edges between non copla-
nar faces only, thus ignoring edges between coplanar faces.
Therefore, our method ignores the problem of obtaining a
good triangulation of each planar face and concentrate on the
actual surface estimation problem. Our approach bares some
similarity with some methods used for 2D image segmenta-
tion that also rely on higher-order regularization terms such
as region boundary curvature [SKC09,SKR12]. In [SK11], a
3D surface is completed based on higher-order priors using a
global binary labelization of a volume partition, similarly to
us. However it requires a mesh as input and does not enforce
visibility constraints available from range images. Besides,
reconstruction quality is limited as it relies on a regular vol-
ume tessellation based on a few discrete plane directions.
Last, it minimizes the mean curvature and produces a smooth
surface, while we aim at reconstructing sharp features.

Our goal is not to reconstruct the most accurate surface,
but to produce a simple piecewise-planar approximation at a
given level of detail σ. Depending on the use, e.g., quantity
survey or simulation, features such as baseboards, window
ledges, roof tiles or chimneys may or may not be consid-
ered as useful pieces of information. This also matches with
usual tolerances in the construction industry, e.g., an offset
of 1 cm every 2 m for walls. To address the data anisotropy
issue, a kind of information normalization is required so that
the same choices are made in all regions of the scene, at any
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distance and any incidence from the observation points. This
normalization concerns both high-density areas and regions
where the distance between points is higher than the scale
of analysis. A standard way to handle anisotropy is to vox-
elize the point cloud [CLP10], which however has a num-
ber of drawbacks. First, it may introduce artifacts as the re-
constructed surface may follow discrete voxel boundaries in
addition to regression surfaces. Second, it introduces a new
parameter, the voxel size, which can however be set to some
value related to the requested level of detail, typically a frac-
tion of the scale of analysis. Yet it only makes sense if not
too small, as it rapidly introduces complexity issues. Last, it
tends to introduce holes in regions whose density is low with
respect to the scale of analysis; otherwise, voxel size is to be
set higher, but then details of interest can be lost. Rather than
voxelizing the scene, we directly normalize the influence of
each 3D point, which prevents missing fragments in areas
where the density is low compared to the scale of analysis.

Overview. Our approach can be summarized as follows:

• Planar primitives are detected in the point cloud, and pos-
sibly merged to recover from potential over-segmentation.
The resulting planes are organized in an arrangement, rep-
resenting plane hypotheses for the reconstructed surface.
• The edges of primitives are then extracted and classified.

Edges considered as occluding create extra “ghost” plane
hypotheses in the arrangement as scene priors. Ghosts par-
allel to primitives are generated too, that are well suited
for thin flat objects without enough data on their border.
• Next, we associate to each cell of the complex a binary

variable representing its occupancy status: a reconstructed
surface is defined as the interface between empty and oc-
cupied cells. And we define an energy on cell occupancy
that penalizes deviations to observations as well as struc-
tural complexity (to regularize invisible regions).
• Last, the corresponding discrete optimization problem is

turned into an integer linear program. The final occupancy
status is extracted from a solution to the relaxed problem,
which experimentally proves to be relatively tight.

Our main contributions are the following:

• We present a thorough treatment of sampling anisotropy.
• We propose new schemes for generating plane hypotheses

in hidden areas and for thin objects.
• We introduce new regularization priors that encode the

length of edges and the number of corners in a recon-
structed surface, possibly with angle preferences.
• We show how to efficiently minimize an energy based on

these regularization terms.
• We illustrate on various experiments how these plane

hypotheses and higher-order regularization terms signif-
icantly improve the quality of 3D reconstruction.

The paper is organized as follows. Section 2 describes plane
hypotheses. Section 3 details the energy. Section 4 explains
the optimization. Section 5 shows experimental validation.

2. Surface hypotheses

We formulate the surface reconstruction problem as an opti-
mum binary labeling of the 3D space as empty or occupied.
The reconstructed surface corresponds to the boundary of all
the occupied volume. This ensures that the surface is water-
tight and without self-intersection. To make it amenable to
a discrete optimization method with good optimality guar-
anties, we partition the 3D space a priori into a set of regions
whose boundaries are plausible components of the surface.

2.1. Space partitioning

Two main partition methods have been used in the context
of surface reconstruction: a regular voxel grid and a Delau-
nay triangulation of 3D points. The computational cost of
a voxel grid can grow cubicly with the desired level of de-
tail. It also has a bias in the estimation of surface areas and
creates aliasing for surfaces not aligned on the grid. More-
over, it is hardly compatible with a sensible measure of edge
length and corner count. In practice, because of noise in
the data, Delaunay triangulations do not contain multi-face
planes. [LA13] alleviates this issue by removing points near
a detected plane and uniformly resampling it, which guaran-
tees that the visible parts of the plane are covered by a set of
faces in the triangulation. [vKvLV13] detect planar polygons
and use a conforming constrained Delaunay triangulation to
make sure polygons are preserved.

As in [CLP10], we partition the 3D space (within a bound-
ing box) into a polyhedral cell complex using a plane ar-
rangement structure. Each plane corresponds to a surface hy-
pothesis. There are two kinds of hypotheses: planes detected
as geometric primitives in the point cloud (cf. Section 2.2),
and “ghosts”, that are unobserved but possible planar sur-
faces associated to detected primitives (cf. Section 2.3). The
arrangement is constructed by inserting each plane one after
another. Each inserted plane cuts the volume into two half-
spaces, resulting in a new set of cells, which are all convex
as they correspond to the non-empty intersections of all half-
spaces generated so far. We maintain adjacency information
as we insert new planes, which allows an access to adjacent
cell, edges and vertices in constant time. We denote C the fi-
nal set of cells. It does not depend on insertion order. In con-
trast to [LA13, vKvLV13], this volume partition guarantees
that planar primitives can be expanded far beyond their visi-
bility area. It also allows the use of unseen plausible planes.

As the complexity of building such a plane arrangement is
cubic in the number of planes in the worst case, it is better to
restrict to planes that have good chances to be used in the re-
construction. The number of cells can be reduced too by lim-
iting the extension of some planar primitives, using planes
already in the arrangement as bounding surfaces. However, it
creates a bias in plane insertion order. [CLP10] proposes two
different strategies to limit planes. For aerial data, horizontal
planes are inserted first; vertical planes are then inserted us-
ing horizontal planes as limiting planes; oblique planes are
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Figure 2: Segmentation by region growing (left), plane fusion (middle) and line segments selected for ghosts generation.

Figure 3: Sensitivity to plane insertion order.

inserted last using both horizontal and vertical planes as lim-
iting planes. For ground-level data, vertical planes are in-
serted before horizontal ones. We show in the experiment
section that these strategies are often too aggressive and not
suited for indoor scenes. Figure 3 illustrates the sensitivity
to plane insertion order, showing widely different results for
the two strategies. As described below, we not only have sur-
face hypotheses different from [CLP10], we also use a less
aggressive strategy for plane limitation in the arrangement.

2.2. Observed primitives

Many approaches have been proposed for detecting planes in
a 3D point cloud, e.g., based on RANSAC [SWK07] or re-
gion growing. We exploit here the structure of the laser range
images by segmenting the point cloud into planar regions us-
ing a region growing algorithm as in [PVBP08]. Points are
first ordered according to their degree of planarity. A prim-
itive is then grown iteratively from locally planar seed re-
gions, adding neighboring points when close to the plane
and with a similar normal. The plane is re-estimated each
time the region is grown using an incremental estimate of
the covariance. We estimate the normals of points with a ro-
bust method that preserves sharp features [BM12].

It differs from [CLP10] in that we consider as neighbor-
ing points the 8-pixel neighbors in the range image instead
of the k-nearest neighbors in 3D. It is much faster and, more
importantly, it prevent problems due to anisotropic data, in
particular when laser sampling produces a series of (curved)
lines of densely sampled points for high-incidence surfaces.
This is not sensitive in the range image, but if region growing
is based on k-nearest neighbors as in [CLP10], it tends to find
all neighbors on a single line and thus to segment lines indi-
vidually. And if k is increased, then robustness and accuracy
are reduced for smaller primitives. In addition to [CLP10],
we also perform plane fusion to recover from possible over-
segmentation, based on efficient and robust statistical criteria
for merging primitives [BM14] (see Figure 2).

Laser image

Unit sphere

Laser
center

Figure 4: Distance to line in range image for segment fusion.

2.3. Ghost primitives

We want to build a 3D cell complex whose facets include,
for the visible parts of the scene, the detected primitives, and
for invisible parts of the scene, plane hypotheses supported
by the occluding edges of primitives. These ghost primitives
are plausible surfaces that do not originate from direct obser-
vation, but that are likely enough given detected primitives
and scene priors. In a man-made environment, an occluding
straight edge of an observed planar primitive is likely to be
the intersection with another, orthogonal plane. The gener-
ation of ghosts requires first the determination of primitive
boundaries as well as their occlusion status.

One way to define the boundaries of a planar primitive de-
fined from 3D points is to project the points on the support
plane and to build their α-shape, as done in [CLP10] with
α = σ

2. As α-shapes tend to over-segment boundaries, post-
processing is required to simplify the polygonal contours,
such as greedy iterative edge merging [CLP10]. But a ma-
jor drawback of using alpha shapes to define boundaries is
that points are disconnected from an α-shape as soon as their
distance to other point of the primitives is larger than

√
α, re-

sulting in truncated primitives. It occurs typically for distant
planes with high incidence such as ceilings and floors.

To prevent it, we consider boundaries in the range image,
i.e., pixel chains of primitive contours, discarding small re-
gions for robustness to noise and clutter. The primitive edges
are then given by a simplification of the contour lines that ab-
stract from the aliasing (discretization) effect, which is dom-
inant here w.r.t. noise, yielding a polygon with holes. For
this, we iteratively merge two adjacent segments ab and bc
into segment ac if the distance of b to ac is below a fixed
pixel threshold δ, starting with points with the smallest dis-
tance. With a spherical acquisition, straight 3D lines appear
as curves in the range image. To measure the deviation of
a 2D point b with respect to a 2D line ac, we consider their
projection A,B,C on the unit sphere (see Figure 4). Let B′ be
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the geodesic projection of B on the geodesic line AC, and let
b′ be the projection of B′ on the range image. Segments ab
and bc are merged into ac if the distance between b and b′

(rather than ac) is below the fixed pixel threshold δ. To make
sure that edges do not drift, we actually keep track of all
points merged into lines segments and ensure at each itera-
tion that new segments stay within the same pixel distance δ

to the original contour. The Haussdorf distance between the
original pixel contour and the simplified polygon, adjusted
according to spherical projection, is thus also bounded by δ.

Projecting the 2D segments onto their 3D support planes,
we obtain bounding 3D segments for each primitive plane.
There are three kinds of segments: adjacency segments (at
the visible intersection of two observed primitives), occlud-
ing segments (when the primitive boundary is significantly
in front of what lies on the other side of the segment) and
occluded segments (when the primitive boundary is signif-
icantly behind what lies on the other side of the segment).
Generating a ghost for adjacency segments is not necessary,
if not inaccurate or wrong. As the surface at occluded seg-
ments is likely to continue behind what occludes it, we gen-
erate ghost planes for occluding segments only (see Fig. 2).
For robustness to anisotropy, we identify occluding seg-
ments as segments such that (1) a majority of segment points
in the range image lies close to points behind the plane, and
(2) the segment is not an adjacency segment, which excludes
salient edges. Two primitives are considered as adjacent if at
least two points, one in each projection of a primitive on
its support plane, are mutual neighbors, and a segment is an
adjacency segment if it intersects in the range image the re-
projected line of intersection of the two 3D planes.

In [CLP10], ghosts are generated for each edge of the
polygonal contour of each primitive, unless the edge is con-
sidered as adjacent to another primitive, i.e., at a distance
less than the observation scale σ. Compared to us, this sys-
tematic generation of ghosts for all edges (except adjacency
edges) results in many spurious ghosts for edges of occluded
primitives, on the order of twice too many. It greatly reduces
speed and scalability because of the cubic complexity of
plane addition into the arrangement. It also reduces accuracy
by introducing dummy planes that can be chosen when the
surface is reconstructed. Note however that deciding whether
a point on the edge of a primitive occludes another primitive
is difficult with unstructured 3D point sets, especially when
there are several visibility points and density variations.

Finally, typical indoor scenes also contain thin plane-
parallel objects for which only one plane is visible, e.g., an
open door or a table top, whose edges are too thin to be de-
tected as planar primitives. To reconstruct such an object, we
need to generate a plane hypothesis for the hidden opposite
plane. It requires an estimation of the object thickness. For
this, we extrude the planar region in the direction opposite to
its normal, trying various thickness hypotheses and checking
that the extruded volume does not intersect with the visibil-

ity cone, i.e., rays from the scanner center to observed points.
Thicknesses are tried with increasing values based on a con-
stant increment, thus yielding a maximum thickness. For ro-
bustness to noise, we include some tolerance when testing
ray intersection and consider a thickness as too large only if
a minimum number of intersecting rays are found.

3. Surface reconstruction

We want to reconstruct a surface that mostly conforms to
observations in the visible planar parts of the scene, that does
not intersect the lines of sight of observed points, and that is
plausible and simple in hidden parts.

We formulate the surface reconstruction problem as an
optimal binary labeling (occupied or empty) of each 3D cell
of the complex defined in Section 2. The surface is given
by the set of facets that lie on the interface between empty
and occupied regions, i.e., facets adjacent to both an empty
and an occupied cell. This guarantees watertightness and the
absence of self-intersections. To represent the occupation as-
signment, we associate a discrete variable xc ∈ {0,1} to each
cell c ∈ C, where 0 represents an empty cell and 1 an oc-
cupied cell. We define the energy of an occupation assign-
ment x = (xc)c∈C as composed of two terms, a data term
and a regularization term:

E(x) = Edata(x)+Eregul(x) (1)

The regularization term acts as a prior to favor plausible sur-
faces of man-made environments, mainly in hidden regions.

Notations. Each point p ∈ P belonging to a primitive Πp
based on plane Pp is assigned to a facet fp of the cell com-
plex, given by the projection of p on Pp. The assignment of
points to facets is done when the plane is put in the arrange-
ment and updated as more planes are inserted and facets are
split. The subscript is dropped when unambiguous. Given a
facet f ∈ F in the complex, we note f+ and f− the sides
of f corresponding respectively to the positive (i.e., visi-
ble) and negative (i.e., hidden) sides of the underlying plane
(primitive or ghost). We also note c f+ and c f− the corre-
sponding cells on both sides of f , and xf+ ,xf− = xcf+ ,xcf− .

3.1. Data terms

To mostly conform to visible features of the scene, the data
term penalizes different kinds of deviations from observa-
tions. It is composed of two terms, a primitive term Eprim(x)
and a visibility term Evis(x):

Edata(x) = Eprim(x)+Evis(x) (2)

Primitive term. Eprim(x) penalizes primitive points that are
not on the reconstructed surface, with proper orientation. A
penalty is given to point p if its corresponding facet f is not
part of the reconstructed surface with appropriate orienta-
tion, i.e., if the cell on the positive side of f is not empty and
if the cell on the negative side of f is not occupied.

© 2014 The Author(s)
Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.



A. Boulch, M. de La Gorce, R. Marlet / Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization

Figure 5: Tolerance for the points-on-primitive penalty.

As there may be some measurement error in the position
of p and in the detection of the underlying plane Pp, we ac-
tually add some tolerance around Pp. We consider the facets
intersected by a line segment of length σ, orthogonal to Pp,
and starting at the orthogonal projection of p on Pp, on both
sides of Pp (see Figure 5). Let f σ+

p be the facet whose in-
tersection point with this line segment is on the positive side
of Pp, is at most at distance σ to Pp, and is the most distant
from Pp. (There is at least one such facet: f itself.) Symmet-
rically, let f σ−

p be the facet with the same definition on the
negative side of Pp. Let cσ+

p and cσ−
p be the cells on the posi-

tive and negative sides of f σ+
p and f σ−

p , and xσ+
p ,xσ−

p be the
corresponding variables. The penalty is defined as the sum of
xσ+

p and 1−xσ−
p , which should both be 0. Note that the cells

between cσ+
p and cσ−

p , if any, are ignored. Imposing a single
empty-to-occupied transition on the line of sight around p is
not necessary in practice thanks to regularization.

To take sampling anisotropy into account, we assign a dif-
ferent weight to each observation point. The weight mea-
sures the area of the reconstructed surface that does not com-
ply to observations, relatively to the scale. It is adimensional,
homogeneous to a number of area units w.r.t. scale, i.e., a
number of times σ

2. It is related both to the local density
of observation rays, which is higher near the pole, and to
their incidence on planes. We consider here a rotating 3D
laser scanner that acquires a spherical view of the surround-
ing scene with measures taken on a sequence of vertical
planes. Data points are given by an azimuth angle θ∈ [0,2π[
in the horizontal plane and a polar angle φ ∈ [0,π] (mea-
sured from the zenith direction) in the corresponding ver-
tical plane. Sampling discretizes the range of angles with
constants steps ∆θ and ∆φ. We consider a point p, acquired
in direction (θ,φ) and observed at distance d on a plane P
with incidence angle ψ ∈ [0,π/2[ w.r.t. the observation ray.
We give it a weight that is the relative area of the projection
on P of the patch on the unit sphere corresponding to the an-
gular discretization step ∆θ×∆φ, made relative to the polar
angle to cope with the variation of sampling density:

waniso
p (P) =

d2

σ2 ∆θ∆φ

sinφ

cosψ
(3)

Finally, the actual primitive term is as follows:

Eprim(x) = ∑
p∈P

waniso
p (Pp)

(
xσ+

p +(1− xσ−
p )
)

(4)

Visibility term. Evis(x) penalizes reconstructed surfaces
between observed points and the sensor. For each point p,
we consider the line of sight between p and its observation
point ω (the laser center). There should be no matter, hence
no reconstructed surface, on the ray ωp. For that, we forbid
the cell containing ω to be occupied (with an infinite cost)
and we penalize facets that are transitions between occupied
and empty cells along observation rays. A penalty is paid
each time an interface is traversed, from inside or outside.

Figure 6: Tolerance for the visibility penalty.

Like for the primitive term, to be robust to measurement
errors in the position of p, we actually add some tolerance
and do not penalize facets f whose plane Pf is at most at
distance σ from p (see Figure 6). As for the primitive term
too, we take sampling anisotropy into account and weigh the
penalty of an interface facet f by the relative area of the sam-
pling ray on the surface interface, i.e., waniso

p (Pf ). However,
contrary to the primitive term, all observed points are taken
into account here, whether they belong to a primitive or not:

Evis(x) = ∑
p∈P , f∈F

ωp∩ f 6=∅, d(p,Pf )≤σ

waniso
p (Pf )

∣∣x f+ − x f−
∣∣ (5)

Compared to [CLP10], we separate the penalty of ob-
served points into primitive reconstruction requirements and
visibility issues. Also, for visibility, we penalize all planes,
not only reconstructions relying on the negative side of a
plane. More importantly, [CLP10] counts a constant cost for
all disagreeing observed points, whereas we weigh penalties
depending on point density. It also provides a unit common
ground to balance Evis(x) and Eprim(x) into a single term.

3.2. Regularization terms

As we want to reconstruct the simplest plausible surface in
hidden parts of the scene, regularization terms penalize sur-
face complexity. Note that surface regularization applies to
the whole scene, not just the visible part. Yet, the weight of
regularization terms is lower than the weight of data terms
to make sure that the reconstruction mostly conforms to ob-
servations, unless a few observed points can be considered
as outliers and traded for a greater surface simplicity.
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Figure 7: Computation of weights ν(c,e) and edge measure
function he(x) in the case of 3 adjacent cells.

We introduce three regularization terms, that can be used
separately, or jointly with relative weights: an area term, an
edge term and a corner term:

Eregul(x)= λareaEarea(x)+λedgeEedge(x)+λcornerEcorner(x)
(6)

Area term. Earea(x) penalizes the area of the reconstructed
surface, i.e., the sum of the areas af of facets f separating an
empty cell from an occupied one, relatively to scale σ:

Earea(x)= ∑
f∈F

wf |hf (x)| where
{

wf = af /σ
2

hf (x) = xf+ − xf−
(7)

It can be seen as a sum of submodular pairwise potentials in
the context of Markov Random Fields (MRF). This kind of
term has been widely used in surface reconstruction methods
based on energy minimization [CLP10].

Edge term. Eedge(x) penalizes the length of edges in the re-
constructed surface. An edge e ∈ E in the cell complex lies
on the intersection line of two non-parallel planes, with end
points at the intersection with two other planes in the com-
plex. It has 4 adjacent cells in general, but may have only 3
as ghosts just introduce half-planes in the arrangement; one
cell then lies alone on one side of a plane (see Figure 7). To
model both cases, we introduce a function s that associates a
sign to each cell-plane pair:

s(c,P) =


+1 if c is on the positive side of P
−1 if c is on the negative side of P

0 if c is on both sides of P
(8)

An edge in the complex that has 4 adjacent cells is an actual
“material” edge of the reconstructed surface if and only if
one only of the 4 cells is empty (re-entrant edge) or one only
is occupied (salient edge), see Figure 8. An edge that has 3
adjacent cells is a material edge iff the two cells lying on the
same side of the plane have different values. In both cases,
the existence of a material edge at e can be expressed by:

he(x) = ∑
c∈Adjc(e)

ν(c,e)xc where ν(c,e) = ∏
P∈AdjP(e)

s(c,P) (9)

Adjc(e) is the set of cells adjacent to e and AdjP(e) the set
of adjacent planes, which are accessed in constant time (cf.
Section 2.1), and ν(c,e) a sign used as a linear weight as-
sociated to each adjacent cell (see Figure 8). The absolute

Penalized configurationsNon-penalized configurations

1 2

Figure 8: Possible configurations of the 4 cells adjacent to
an edge and corresponding penalization. Other configura-
tions can be obtained by rotation and occupancy inversion.

value |he(x)| is equal to 0 when there is no material edge,
to 1 when there is 1 edge (re-entrant or salient) and to 2 when
there are 2 re-entrant and 2 salient edges. It is independent on
the convention for assigning a sign to the supporting planes.

This term corresponds in the 4-cell case to a 4th-order po-
tential in the context of MRFs, and in the 3-cell case to a
2nd-order potential as one variable then has a null factor. It
can be shown that this 4th-order potential cannot be made
regular in Kolmogorov and Zabih’s sense [KZ04]. We actu-
ally penalize edges in the reconstructed surface by:

Eedge(x) = ∑
e∈E

we |he(x)| (10)

where we is a weight associated to e. This weight is made
proportional to the edge length le to make the total length
of material edges independent of plane splitting in the com-
plex. It is made relative to scale σ too. It can also reflect the
inadequacy of the angle αe between the two planes of e with
respect to an expected angle distribution. We penalize here
angles far from 90°, using two parameters: the cost A of hav-
ing a angle α in the scene widely different from a right angle,
and the expected standard deviation ρ of an angle w.r.t. the
right angle. The angular weight wang(α) is defined as:

wang(α) = A+(1−A)exp(− (α−π/2)2

2ρ2 ) (11)

The weight wang(α) is equal to 1 if α = π/2, and rapidly
reaches A as soon as α departs from π/2 with an offset more
than ρ. Finally, we define the edge weight we as:

we =
le
σ

wang(αe) (12)

Corner term. Ecorner(x) penalizes the number of corners in
the reconstructed surface. A vertex v ∈ V in the complex is
the point of intersection of three non-parallel planes. It has 8
adjacent cells in general, but can have only 6 or 4 as ghosts
introduce half-planes. The existence of an actual “material”
corner in the reconstructed surface can be expressed by:

hv(x) = ∑
c∈Adjc(v)

ν(c,v)xc where ν(c,v) = ∏
P∈AdjP(v)

s(c,P) (13)

ν(c,v) is a sign used as a linear weight associated to each
adjacent cell (see Figure 9). |hv(x)| is equal to 0 when there
is no material corner, to 1 when there is a single solid or
empty corner, and can rise up to 4 in complex corner cases.
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Penalized configurations

Non-penalized configurations

1 11

2 2 32

Figure 9: Possible configurations for the 8 cells adjacent
to a corner and their corresponding penalization. Penalized
configurations are in the red zone. Other configurations can
be obtained by rotation, symmetry and occupancy inversion.

Note that the saddle point (4th case on the first line in
Figure 9) is not penalized. This can be justified from a com-
plexity point of view: assuming that putting two cuboids in
contact should not be measured as more complex than two
separate cuboids, the saddle points that it can create (up to 4)
should not be penalized. As for edges, these terms do not de-
pend on the convention for assigning a sign to the supporting
planes. They correspond to potentials of order up to 8 in the
context of MRFs. We actually penalize corners with:

Ecorner(x) = ∑
v∈V

wv |hv(x)| (14)

where wv is a weight associated to v. Indeed, we may want
to discourage 3D corners that do not feature right angles. We
consider the three angles (αv,i)i∈{1,2,3} between each pair of
plane passing through v. As with edges, the corner penalty is
then made proportional to the following weight:

wang(α1,α2,α3)=A+(1−A)exp(−
∑i∈{1,2,3}(αi−π/2)2

2ρ2 )

(15)
It is independent of plane order. Finally we define:

wv = wang(α1,α2,α3) (16)

4. Optimization

We estimate the surface to reconstruct through the mini-
mization of energy E(x). It could be done using a discrete
optimization method based on an MRF formulation with
higher-order potentials, up to 8th-order for the corner term.
However such higher-order terms are known to be challeng-
ing for most MRF inference techniques. Efficient graph-cut
methods can be used if we have submodular pairwise po-
tentials, which is the case only if we do not use the edge
and corner terms (as in [CLP10]), but they are not suited to

models that contain such higher-order non-submodular po-
tentials. We tested various methods that can handle higher-
order potentials in the OpenGM library [KAH∗13], includ-
ing tree-reweighted belief propagation and lazy flipper, with-
out much success in terms both of running time and quality
of the found optimum.

Mixed-integer programming formulation. Instead of us-
ing an MRF formulation, we express the problem as a linear
integer program. The main idea is to reformulate each ab-
solute value in each term of the energy as a linear program
using a continuous auxiliary variable as we have:

|x|= min
y

y s.t. − y≤ x≤ y (17)

Based on this idea, we introduce a set of continuous auxiliary
variables y for each facet, edge and corner, and a set of linear
constraints on these variables:

(x,y) ∈ C ⇔


∀f ∈ F , − yf ≤ hf (x)≤ yf
∀e ∈ E , − ye ≤ he(x)≤ ye
∀v ∈ V, − yv ≤ hv(x)≤ yv

(18)

We can then reformulate the minimization E(x) as the mini-
mization of a linear function of both sets of variables x and y,
which becomes a mixed-integer linear program of the form:

E′(x,y) = ζ+∑
c∈C

w′cxc +∑
f∈F

w′f y f +∑
e∈E

w′eye +∑
v∈V

w′vyv (19)

min
x

E(x) = min
x,y

E′(x,y) s.t.
{
∀c∈C xc∈{0,1}
(x,y) ∈ C

(20)

Optimization using LP-Relaxation. Solving a integer pro-
gram is NP-Hard in general. We take the classical approach
that consists in relaxing the problem by allowing each vari-
ables xc to take values in the interval [0,1]. This leads to a
linear programming (LP) problem that can be solved effi-
ciently using of-the-shelf solvers. The method based on the
dual simplex in Mosek© has been successfully used in our
experiments. In case we only use area penalization, all terms
are submodular, the relaxation is tight, and solving the re-
laxed problem yields an integral solution that is the global
optimum of the corresponding integer programming prob-
lem. When using the higher-order regularization terms, we
obtain fractional values that have to be rounded, yielding a
suboptimal integral solution. We use the most simple round-
ing strategy that consists in rounding each primary variable
xc independently of other variables. After this rounding step,
we solve the linear program again by constraining each pri-
mary variables xc to remain fixed to the rounded value. It
re-estimates the slack variables given the chosen solution of
the primary variables, and thus estimates the increase of the
objective function caused by the rounding. We observed ex-
perimentally that this energy increase is small in general:
up to 8% when using only corner regularization and up to
6% with edge regularization, depending on scene complex-
ity. It shows we find solutions that are almost as good as the
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global optimum. We also experimented with the minimiza-
tion of the original integer programming problem using the
“branch & bound & cut” algorithm implemented in Mosek©
and obtained running times that where much longer for only
a marginal improvement of the reconstructed surface.

5. Experiments

We evaluated our surface reconstruction method on interior
scenes sampled with a 3D laser scanner. We compared to the
general piecewise-planar reconstruction method in [CLP10],
at the same scale σ. (Comparison only makes sense with
methods that feature surface completion in hidden area and
piecewise-planar priors. We thus did not compare with Pois-
son or other smooth reconstruction approaches because they
are not appropriate for the kind of scene we target and be-
cause they produce a complex geometry that is not suited
for quantitative applications. We did not compare either with
approaches based on a Manhattan-world assumption, which
present obvious artifacts.)

For all the experiments reported here, we used σ = 10 cm.
When using one kind of regularizer only, we defined λarea =
10−4, λedge = 10−3 and λcorner = 10−2. When using a
combination of edge and corner regularization, we defined
λedge = 5 × 10−4 and λcorner = 10−2. The idea is that we
want first of all to favor corner minimization, but that be-
tween two solutions with equal or similar number of corners,
the one with the minimum number of edges should be pre-
ferred: 1 corner can only be traded for σλcorner/λedge = 2 m
of edges. It somehow acts as a kind of approximate lexico-
graphical order. These coefficients make regularization neg-
ligible compared to the data term, which stays preeminent.

As shown on Figure 1 (1st image), the parts of the scene
that are distant from the observation point are not well recon-
structed with [CLP10], due to anisotropy sensitivity. Playing
with the scale σ of [CLP10] does not improve results, but on
the contrary degrades them: if smaller, distant parts of the
scene are not reconstructed; if larger, details are lost. On the
contrary, our method is robust to the anisotropy of sampling.
However, area regularization still introduces unwanted ef-
fects, such as a hole on the ground in the invisibility cone
under the laser tripod (2nd image on Figure 1), which hap-
pens to reduce the area of the reconstructed surface. Regu-
larizations with edges and corners (3rd and 4th image) are
much better as leaving a hole in this invisible region is now
penalized because of useless edges or corners.

There is only a marginal difference between corner and
edge regularization in Figure 1. But Figure 10 provides an
example where corner minimization is clearly better than
edge minimization. Yet, both regularizers used jointly can be
superior to corner regularization alone, as can be seen in Fig-
ure 11. Figures 12 and 13 provide other examples. Despite a
few errors due to clutter in the original scene, the reconstruc-
tion is mostly correct, including for thin objects (e.g., tables,

Figure 10: Edges (left) vs corners (right).

Figure 11: Corners (left) vs edge+corner (right).

Figure 12: Meeting room 2 with corner regularization.

Figure 13: Stairs scan and corner regularization.

window jambs), whose edges are too small to be detected as
planar primitives. Note that the images are seen from a dif-
ferent viewpoint than the observation point. For instance, the
laser scanner was to low to acquire any data of the treads on
the top half of the stairway, and could only sample parts of
the risers. Still, a full staircase is reconstructed.

Some execution times are provided in Table 1. The total
running time is a few minutes. Although our system could
handle a laser acquisition with tens of millions of points,
as provided by full-resolution scans, we found it effective
enough to work on downsampled images (with a factor 25).
Indeed, the bottleneck is the time to construct the arrange-
ment, which is independent of the number of points. The
number of variables in the linear program also does not de-
pend on the number of points, although the weights add up
the information of each data point, with a cost of intersecting
each line of sight with the arrangement.
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Scene #points Normals Detection Fusion Ghost generation Arrang. Optimization Total
Meeting room 1 st. 1 658 k 18 s 0 s 72 prim. 2 s 39 prim. 27 s 344 planes 54 s corner 52 s 153 s
Meeting room 1 st. 2 642 k 24 s 1 s 48 prim. 1 s 27 prim. 23 s 211 planes 57 s corner 50 s 156 s
Meeting room 1 st. 3 663 k 22 s 1 s 52 prim. 1 s 26 prim. 23 s 276 planes 32 s corner 16 s 95 s
Meeting room 1 st. 4 667 k 23 s 2 s 56 prim. 1 s 26 prim. 24 s 230 planes 52 s corner 42 s 144 s
Meeting room 2 1054 k 49 s 2 s 36 prim. 1 s 21 prim. 34 s 232 planes 64 s corner 18 s 168 s
Stairs 680 k 18 s 0 s 51 prim. 1 s 40 prim. 26 s 160 planes 47 s corner 45 s 137 s

Table 1: Computation time of surface reconstruction stages for various scenes.

6. Conclusion

We have presented an effective method for reconstructing
surfaces from range images, that infers plausible comple-
tions in hidden regions using priors adapted to man-made
environments. Compared to [CLP10], which we build on
and improve in many respects, it has no artifact due to voxel
discretization nor to the order of plane insertions in the ar-
rangement, and it handles sampling anisotropy and thin ob-
jects. Moreover, as shown by our experiments, our edge and
corner regularizations are unquestionably superior to area
minimization to reconstruct plausible surfaces in hidden re-
gions. Our formulation for these regularizers is solved effi-
ciently by LP relaxation, reaching near-optimal global so-
lutions. Note that these regularizers and their optimization
are not restricted to range images; they can be used in other
contexts, e.g., to treat photogrammetric data as in [CLP10].

Although we can treat a laser scan with millions of points,
we cannot process hundreds of such scans to reconstruct a
whole building. A challenge now is to efficiently combine
multi-view partial reconstructions while ensuring geometric
consistency and a global (near-)optimum. Semantizing the
reconstructed geometry also is a major issue.
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