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Normal estimation in point clouds

Normal: 3D normalized vector

At each point: local orientation of the surface
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Normal estimation in point clouds

Surface reconstruction
[BDLGM14]

Primitive 
extraction
[SWK07]

Rendering
[ABCO*03]

Full references in the paper
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Normal estimation in point clouds

Noise and outliers
Sharp features

Density variations Computation time

Main issues
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Normal estimation in point clouds

Normal estimation need neighborhood information
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Existing methods

Sample consensus

Regression
Voronoï

[HDD*92] HOPPE et al
[CP05] CAZALS and POUGET [DG04] DEY and OSWAMI

[LSK*10] LI et al.

Other references in the paper

Hough Space

Hough Transform

[BM12] BOULCH and MARLET
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Existing methods

Hough Space
Sample consensus

Regression
Voronoï

Hough Transform

[HDD*92] HOPPE et al
[CP05] CAZALS and POUGET [DG04] DEY and OSWAMI

[LSK*10] LI et al. [BM12] BOULCH and MARLET

Other references in the paper
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Principles of our method

CNNFilled 
accumulator 

Selected normal 
2 coordinates 

Point

Point with 
normal

Hough 
transform
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Robust Randomized Hough Transform

Point and 
neighborhood

Pick three 
points

Estimate 
plane normal

Vote in the 
accumulator

Iterate

Statistical bounds on number of hypotheses to pick in the 
paper

Principle
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Robust Randomized Hough Transform

Accumulator design

Discretized half sphere
[BM12]

Need for multiple 
evaluations

Grid accumulator

Better resolution
Suited for CNN
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Robust Randomized Hough Transform

Accumulator design

PCA
Normal hypotheses 
2D projection in 
Hough space

PCA

3D rotation 
(local 3D coordinates)

2D rotation

Accumulation
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Estimation from accumulator

Estimator

Filled 
accumulator

Normal 
coordinates in 
Hough Space

(x, y)
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Estimation from accumulator

Estimator

Filled 
accumulator

Normal 
coordinates in 
Hough Space

[BM12] 
Maximum of the 

accumulator

(x, y)



15

CNN for normal estimation

Estimator

Filled 
accumulator

Normal 
coordinates in 
Hough Space

CNN

(x, y)
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Deep learning

80's and 90's
Theory, 

optimization... 
Since 2000's

GPU 

DATA 
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Convolutional Neural Networks
Main layer types

Convolutions
Input: rectangle of pixels
Regular grid of neurons 
Share weights

Pooling
Dimension reduction

Fully connected
Input: all neurons 
of previous layer

Activation layer
ReLU, Tanh
Increase non linearity

n
1

n
k

f (x)=max (o , x)
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CNN for normal estimation

Stack of Convolutions 
and Pooling

Descriptor Classifier

Stack of fully 
connected layers

LeNet like architecture
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CNN for normal estimation

Estimator

Filled 
accumulator

Normal 
coordinates in 
Hough Space

CNN
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CNN for normal estimation
Training

Requires annotated 
data for training

Using big mesh:
- not satisfactory 
- not enough difficult 
points
- real point clouds (no 
ground truth)

Conv 3x3 + ReLU

Conv 3x3 + ReLU

Max Pooling 2x2

Conv 3x3 + ReLU

Conv 3x3 + ReLU

FC + ReLU

FC + ReLU

FC

FC + ReLU

Max Pooling 2x2

Training 
accumulators

Corresponding 
normals

n
1
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1
, y

1
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n
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n
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3
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3
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...
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CNN for normal estimation
Training

Conv 3x3 + ReLU

Conv 3x3 + ReLU

Max Pooling 2x2

Conv 3x3 + ReLU

Conv 3x3 + ReLU

FC + ReLU

FC + ReLU

FC

FC + ReLU

Max Pooling 2x2

Synthetic angles

Training 
accumulators

Corresponding 
normals

n
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, y
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...

L=‖n− n̂‖2
2
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CNN for normal estimation

Scale 1

Scale 2

Scale 3

Multi-channeled
accumulator

Multiple 
neighborhood 
observations
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Robust Randomized Hough Transform

Robustness to density variation

Point cloud with 
density 

variations

Compute local 
scale

Assign picking 
probability to 
each point



24

Experiments

Depthmap + CNN     vs     Hough + CNN 

Comparison with existing methods
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Experiments

Ground truth + 
outliers

Hough + CNN
Estimation without outliers

Hough + CNN
Estimation with outliers
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Experiments

Ground laser office scene

Aerial laser scene (DFC 2015)

Plane fitting [HDD*92] Our method plain Our method density-adaptive

Our method plain Our method density-adaptive
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Experiments

Château de Sceaux, SfM point cloud

Reconstructed using OpenMVG by Pierre Moulon
https://github.com/openMVG/openMVG
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When to use it ?

Smooth surface
Homogeneous density

Sharp edges
Density variations
Outliers
Noise

Perspectives
Adaptation to structured point clouds

Work on training sets and architectures

Geometric transformation in Hough space

✔

✘

https://github.com/openMVG/openMVG
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Conclusion

Normal estimation in unstructured point cloud

New trend in geometry processing

Deep data driven approach

Hough transform helps the 
network
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Hough + CNN :
C++ and Lua/Torch 7
Trained models available

[BM12] Header only
Original: CGAL, PCL
Updated version (density sensitive): Eigen / NanoFlann

Thank you

</code>

sites.google.com/site/boulchalexandre
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Computation times

Model Cube Armadillo DFC 
Detail

Omotondo DFC tile

Size 20k 173k 185k 997k 2.3M

[HDD*92] 0.3 2.1 1.9 12 25

[DG04] 3.2 55 41 441 1243

[CP05] 5.8 50 54 304 711

[BM12] 1.9 13 11 44 147

[LSK*10] 8.8 64 75 392 902

CNN 1s 4.5 33 34 183 423

CNN 3s 5.9 48 52 273 639

CNN 5s 7.9 69 73 382 897

https://sites.google.com/site/boulchalexandre
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