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This paper addresses the high precision measurement of the distortion of a

digital camera from photographs. Traditionally, this distortion is measured

from photographs of a flat pattern which contains aligned elements. Neverthe-

less, it is nearly impossible to fabricate a very flat pattern and to validate its

flatness. This fact limits the attainable measurable precisions. In contrast, it is

much easier to obtain physically very precise straight lines by tightly stretch-

ing good quality strings on a frame. Taking literally “plumb-line methods”, we

built a “calibration harp” instead of the classic flat patterns to obtain a high

precision measurement tool, demonstrably reaching 2/100 pixel precisions.

The harp is complemented with the algorithms computing automatically

from harp photographs two different and complementary lens distortion

measurements. The precision of the method is evaluated on images corrected

by state-of-the-art distortion correction algorithms, and by popular software.

Three applications are shown: first an objective and reliable measurement of

the result of any distortion correction. Second, the harp permits to control

state-of-the art global camera calibration algorithms: It permits to select the

right distortion model, thus avoiding internal compensation errors inherent

to these methods. Third, the method replaces manual procedures in other

distortion correction methods, makes them fully automatic, and increases

their reliability and precision. c© 2012 Optical Society of America

Note to referees and editor: Our lens distortion measurement algorithm

can be tested on the online demo version available at http://bit.ly/

lens-distortion.
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1. Introduction

The precision of 3D stereovision applications is intimately related to the precision of the cam-

era calibration, and especially of the camera distortion correction. An imprecise distortion

model produces residual distortion that will be directly back-projected to the reconstructed

3D scene. Such imprecision can be a serious hindrance in remote sensing applications such

as the early warnings of geology disasters, or in the construction of topographic maps from

stereographic pairs of aerial photographs. The fast growing resolution of digital cameras and

of their optical quality is transforming them into (potential) high precision measurement

tools. Thus, it becomes important to measure the calibration precision with ever higher

precision.

A first step toward high-precision distortion corrections is to perform precise distortion

measurements. This basic tool can then be used to evaluate the precision of a correction

method, or can become part of the correction method itself.

Camera and lens distortion measurement methods usually require a flat pattern containing

aligned elements. The pattern is photographed using the target lens, and the distortion is

measured by how much the observed elements deviate from the straight alignment on the

pattern. For example the classic DxO-labs’ software, a good representative of camera maker

practice, (http://www.dxo.com/) uses a pattern with a grid of aligned dots. Distortion

is measured by the positional errors associated with the maximal deviation in a row, see

Fig. 1. Similar methods are proposed by the SMIA1, EBU2, IE3, and I3A4 standards. These

measurements are generally manual and require a perfectly flat pattern.

Every lens distortion correction method includes, implicitly, a lens distortion measurement.

These methods can be roughly classified into four groups:

• re-projection error minimization methods;

• pattern matching methods;

• enlarged epipolar geometry based methods;

• plumb-line methods.

Re-projection methods usually rely on a planar pattern containing simple geometric shapes.

In these methods, the lens distortion is estimated together with the camera internal and

external parameters [1–5], by minimizing the re-projection error between the observed control

points on the pattern and the re-projected control points simulated by the pattern model

1Standard Mobile Imaging Architecture standard
2European Broadcasting Union standard http://www.ebu.ch/
3Image Engineering standard http://www.image-engineering.de/
4International Imaging Industry Association standard http://www.i3a.org/
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Fig. 1: DxO lens distortion measurement standard. Estimation of distortion from an image

of a dot chart.

and camera model. The distortion is measured in terms of re-projection error once all the

parameters have been estimated. Both the pattern model errors and the camera model

errors contribute to the re-projection error. Unfortunately, these errors can compensate each

other. Thus, a small re-projection error may be observed while the pattern model and the

camera model are not well estimated. This compensation effect reduces the precision of the

estimation of the lens distortion parameters [6]. It hinders accurate distortion estimation

from the re-projection error.

A quite different kind of method proceeds by matching a photograph of a flat pattern to

its digital model. These methods estimate the distortion field by interpolating a continuous

distortion field from a set of matching points. Several variants exist depending on the kind of

pattern, matching and interpolation technique. A common and crucial assumption for these

methods is that the pattern is flat. In practice, however, it is difficult to produce a very

flat pattern, and the consequences of a tiny flatness flaw are considerable. For example it

is reported in [7] that a flatness error of about 100 µm for a 40 centimeters broad pattern

can lead to an error of about 0.3 pixels in the distortion field computation for a Canon EOS

30D camera of focal length 18 mm with the distance between the camera and the object

about 30 cm. The only physical method to assess a pattern flatness at a high precision

is interferometry, but it requires the pattern to be a mirror, which is not adequate for

photography. Furthermore, camera calibration requires large patterns, which are therefore

flexible. Deformations of the order of 100 µm or more can be caused by temperature changes,

and by a mere position change of the pattern, which deforms under its own weight.

Recently, more attention has been paid to pattern-free methods (or self-calibration meth-

ods) where the distortion estimation is obtained without using any specific pattern. The
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distortion is estimated from the correspondences between two or several images in absence

of any camera information. The main tool is the so-called enlarged epipolar constraint, which

incorporates lens distortion into the epipolar geometry. Some iterative [8,9] or non-iterative

methods [10–20] are used to estimate the distortion and correct it by minimizing an alge-

braic error. The estimated distortion can be used as the initialization in bundle adjustment

methods to improve the camera calibration precision [21].

The so called “plumb-line” methods, which correct the distortion by rectifying distorted

images of 3D straight lines, date back to the 1970s (see Brown’s seminal paper in 1971 [22]).

Since then, this idea has been applied to many distortion models: the radial model [23–25],

the FOV (Field Of View) model [26], or the rational function model [27]. These methods

minimize the straightness error of the corrected lines. According to the fundamental theorem

to be introduced in section 2, the plumb-line methods minimize an error directly related to

the distortion, without suffering from the above mentioned drawback, namely a numerical

error compensation. On the other hand, in spite of their name, current digital plumb-line

methods usually involve flat patterns with alignments on them and not the plumb lines that

were originally proposed in analog photogrammetry.

Taken literally, these methods should use photographs of 3D straight lines. When a high

precision is required, this setup becomes much easier to build than a flat pattern. The main

purpose of this article is to show that very accurate distortion evaluation and correction

can be obtained with a basic plumb line tool, which we called “calibration harp”. The

calibration harp is nothing but a frame supporting tightly stretched strings. Nevertheless,

the photographs of a calibration harp require a new numerical treatment to exploit them.

The strings will have to be detected at high sub-pixel accuracy and their distortion converted

into an invariant measurement.

Distortion measurements can be used to evaluate the distortion of a camera, but also its

residual distortion after correction. Two aspects of the measurement should be clarified here.

In this paper we discuss distortion measurements that apply to the camera conceived as a

whole: It is impossible to tell which part the relative position and deformation of the CCD,

and the lens distortion itself play in the global camera distortion. The distortion measurement

is therefore not a pure optical lens distortion measurement, but the distortion measurement

of the full acquisition system of camera+lens in a given state. Different lenses on different

cameras can be compared only when the camera calibration matrix is known. On the other

hand, the residual error due to different correction algorithms can be compared objectively

after applying an appropriate normalization on the corrected images.

This paper is organized as follows: The fundamental theorem characterizing undistorted

cameras is introduced in section 2. Section 3 uncovers the simple fabrication secrets of cal-

ibration harps. The image processing algorithms needed for an automatic measurement are
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presented in section 4 and section 5 introduces the two most relevant measures. Section 6

demonstrates two applications, to the measurement of residual distortion after applying a cal-

ibration method, and to the transformation of existing manual distortion correction methods

into automatic and far more precise ones. Finally, section 7 concludes the paper.

2. From Straight Lines to Straight Lines

In multiple-view geometry, the pinhole camera is the ideal model that all techniques tend

to approximate at best by calibrating the real cameras. This model corresponds to the ideal

geometric perspective projection. The next theorem characterizes perspective projections by

the fact that they preserve alignments. Instead of restating the simplified version in [28], we

prefer to make it more precise. The proof of the theorem can be found in [6].

Theorem 1 Let T be a continuous map from P3 to P2 (from 3D projective space to 2D

projective plane). If there is a point C such that:

(a) the images of any three point belonging to a line in P3 not containing C, are aligned

points in P2;

(b) the images of any two points belonging to a line in P3 containing C, are the same point

in P2;

(c) there are at least four points belonging to a plane not containing C, such that any group

of three of them are non aligned, and their images are non aligned either;

then T is a pinhole camera with center C.

This theorem provides us with a fundamental tool to verify that a camera follows the

pinhole model. Nevertheless, rectifying straight lines does not define a unique distortion cor-

rection: two corrections can differ by any 2D homography that preserves all alignments.

More concretely, assume that the real camera model is P = DKR[I | − C] with C the

coordinate of camera optic center in a given 3D world frame, R the camera 3×3 orientation

matrix, K the camera 3× 3 calibration matrix and D the camera lens non-linear distortion.

The estimated distortion can be written as DH−1 with H−1 the unknown homography in-

troduced in the distortion correction and can be different from one correction algorithm to

another. By applying the inverse of the estimated distortion, the recovered pinhole camera

is P̂ = HKR[I | − C]. The homography H can enlarge or reduce the straightness error,

which makes the comparison of different correction algorithms unfair. This effect can be

compensated by two strategies.

To arrive at a universal measurement, a first strategy that we will consider is to normalize

the homography:
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1. Select four points Pi=1,...,4 in the distorted image in general position (not three of them

aligned). For example, they can be the four corners of the distorted image.

2. Find their corresponding points P′i in the corrected image, according to the correction

model: P′i = HD−1Pi. Note that H is different from one correction algorithm to

another.

3. Compute the normalization homography Ĥ which maps P′i to Pi: Pi = ĤP′i. Note

that Ĥ is different from one correction algorithm to another.

4. Apply the normalization homography Ĥ on the corrected image.

With this normalization, the final correction model is ĤHD−1.
A second possible strategy would be to fix specific parameters in the correction model.

For example, since the zoom factor in the distortion correction is mainly determined by the

order-1 parameters in the correction model, it is sufficient to set all the order-1 parameters

to be 1 to obtain a unique distortion measurement. Unfortunately, this will not be possible

for some non-parametric distortion correction methods. The first strategy therefore is more

general.

3. Building a Calibration Harp

Theorem 1 suggests to take a set of physical straight lines, as a calibration pattern. However,

a common practice actually contradicts the plumb-line basic idea: line patterns are printed

and pasted over a flat plate. There are many sources of imprecision in this setup: the printer

quality is not perfect; the paper thickness is not perfectly uniform; the pasting process

can add bubbles or a non uniform glue layer; the supporting surface is not perfectly flat

either. Notwithstanding these defects, if only a pixel precision is required, this setup is quite

sufficient. Nonetheless, when high sub-pixel precision is involved, the flatness errors cannot be

neglected. For current camera precision, a flatness error of 100 µm (the thickness of current

writing paper) for a 40 cm pattern can lead to errors in the observed image coordinates of

about 0.3 pixels [7]. High precision aims at final 3D reconstructions far more precise than

this. So the measuring tool error should be also far smaller, if only possible.

The obvious advantage of “real” plumb lines on 2D patterns with straight lines on them,

is that it is much easier to ensure a very precise physical straightness for lines than a very

precise physical flatness for a physical pattern plate. Yet, the precision of the resulting

measurement or correction depends on the straightness of the physical lines. In [22], to

achieve a high precision, plumb lines were made of very fine white thread and stabilized

by immersion of the plumb bobs in oil containers. Illumination was provided by a pair

of vertically mounted fluorescent fixtures. A dead black background was provided for the
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plumb-line array to highlight the contrast. The points on the lines were measured with a

microscope. The measuring process required from 5 to 6 hours for generating 324 points.

The digital procedure proposed here will be faster.

For the applications where the precision is not a crucial point, straight lines present in the

natural scene can be used. In [27, 29], the straight lines are obtained by photographing the

architectural scenes and points on the lines are detected by Canny edge detector.

(a) The harp with a uniform opaque object as back-

ground

(b) The harp with a translucent paper as back-

ground

(c) A close-up of the harp with a uniform opaque

object as background

(d) A close-up of the harp with a translucent paper

as background

Fig. 2: The “calibration harp”. Shadows can be observed in (a) and (c), while there is no

shadow in (b) or (d).

In order to keep the high precision and simplify the fabrication procedure, we built a

simple calibration pattern by tightly stretching strings on a frame as shown Fig. 2. The

pattern looks like the musical instrument, hence its name. The setup warrants the physical

straightness of the lines. Its construction does not require any experimental skill, but only
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good quality strings. Indeed twisted strings show local width oscillations; other strings do

not have a round section, and a little torsion also results in width variations that can have a

large spatial period. Rigid strings may have a remanent curvature. Finally, a (tiny) gravity

effect can be avoided by using well stretched vertical lines.

(a) (b) (c)

Fig. 3: Three types of strings. (a) sewing line. (b) tennis racket line. (c) opaque fishing line.

In our experiments three different strings were tested: a sewing string, a smooth tennis

racket string, and an opaque fishing string, all shown in Fig. 3. Sewing strings have a braid

pattern and their thickness oscillates. Tennis racket strings are rigid and require a very strong

tension to become straight. Fishing strings are both smooth and flexible, and can therefore

be easily tightened and become very straight. The transparent ones, however, behave like a

lens, producing multiple complex edges. Opaque fishing strings end up being the best choice

to build a calibration harp. Fig. 5 shows an evaluation of the obtained straightness. We took

photos of the three types of strings, and corrected their distortion. The green curves show

the signed distance from edge points of a corrected line to its regression line. The red curve

shows the high frequency component of the corresponding distorted line. The high frequency

is computed as follows:

• Transform the edge points into the intrinsic coordinate system, which is determined

by the direction of the regression line. In this coordinate system, the x-coordinate is

the distance between the edge points and a reference edge point along the regression

line and the y-coordinate is the signed distance from the edge points to the regression

line. This produces a one-dimensional signal (see Fig. 4).

• Apply a big Gaussian convolution of standard deviation σ = 40 pixels on this one-
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dimensional signal to keep only the low frequency component.

• The difference between this convolved signal and the original signal in the intrinsic

coordinate system is considered as the high frequency. The red curves in Fig. 5 show

the high frequency (due to the border effect of Gaussian convolution, there is a sharp

increase of magnitude at the border).

Fig. 4: The intrinsic coordinate system of the edge points extracted on the distorted line. The

red points are the distorted edge points. The x direction is determined by the direction of the

regression line. The x-coordinate is the distance to the reference point along the regression

line and the y-coordinate is the signed distance from the edge points to the regression line.

To ensure the precision of the edge detection in the string images, a uniform background

whose color contrasts well with the string color must be preferred. Using an opaque back-

ground is not a good idea because this requires a direct lighting and the strings project

shadows on the background (Fig. 2a and 2c). The sky itself is hardly usable: a large open

space is needed to avoid buildings and trees entering the camera field of view, and clouds

render it inhomogeneous, see Fig. 6. The simplest solution is to place a translucent homoge-

neous paper or plastic sheet behind the harp and to use back illumination, preferably natural

light to make it more uniform (see Fig. 2b and 2d).

The acquisition aspects are also important for producing high quality measurements: lens

blur, motion blur, aliasing, noise, must be as reduced as physically possible. To that aim

a tripod and timer were used to reduce camera motions, but also to avoid out of focus

strings while taking photos at different orientations. Of course, changing focus changes the

distortion. Thus each distortion calibration must be done for a fixed focus, and is associated

with this focus.
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(a) The sewing string (b) The tennis racket string (c) The opaque fishing string

Fig. 5: The small oscillation of the corrected lines is related to the quality of the strings.

The green curves show the signed distance (in pixels) from the edge points of a corrected

line to its regression line. The red curves show the high frequency of the corresponding

distorted line. The corrected line inherits the oscillation from the corresponding distorted

line. (a) The sewing string. (b) The tennis racket string. (c) The opaque fishing line. The

x-axis is the index of edge points. The range of the y-axis is from −0.3 pixels to 0.3 pixels.

The almost superimposing high frequency oscillation means that the high frequency of the

distorted strings is not changed by the distortion correction. In such a case, the straightness

error includes the high frequency of the distorted strings and does not really reflect the

correction performance. So it is better to use a string which contains the smallest high

frequency oscillation. Among the three types of strings, the opaque fishing string shows the

smallest such oscillations. The larger oscillation of the sewing string is due to a variation

of the thickness related to its twisted structure, while the tennis racket string is simply too

rigid to be stretched, even though this is not apparent in Fig. 3b.

4. Straight Edges Extraction

In this section we describe the procedure to extract accurately and smooth the aligned edge

points, which will be used to measure the distortion.

Devernay’s algorithm [30] is the classic sub-pixel accurate edge detector. The implementa-

tion of Devernay’s detector is very simple since it is derived from the well-known Non-Maxima

Suppression method [31,32]. On good quality images (SNR larger than 100), Devernay’s de-

tector can attain a precision of about 0.05 pixels.

Straightness measurements require the detection of groups of edge points that belong to

the same physical straight line, and the rejection of points that do not belong to any line. To

this aim, line segments are detected on the image using the LSD algorithm [33, 34]. When

applied to photographs of the calibration harp, the detection essentially corresponds to the
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(a) Photo of the harp taken against the sky (b) Photo of the harp taken against a translucent

paper using a tripod

Fig. 6: The quality of photos depends on the harp, its background and also the stability of

camera for taking photos.

strings. In case of a strong distortion, one string edge could be cut into several line segments.

Fig. 7: The LSD algorithm computes the level-line field of the image. The level line field

defines at each pixel the direction of the level line passing by this pixel. The image is then

partitioned into connected groups that share roughly the same level-line direction. They

are called line support regions. Only the validated regions are detectered as line segments.

Devernay’s edge points belonging to the same validated line support region are considered

as the edge points of the corresponding line segment.

LSD works by grouping connected pixels into line support regions, see Fig. 7. These regions

are then approximated by a rectangle and validated. The line support region links a line

segment to its support pixels. Thus, Devernay’s edge points that belong to the same line
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Fig. 8: Line re-sampling. The red points (x1, y1), (x2, y2), . . . are the edge points extracted

by Devernay’s detector. They are irregularly sampled along the line. The re-sampling (in

green) is made along the line with the uniform length step d. Linear interpolation is used to

compute the re-sampled points.

support region can be grouped as aligned; points belonging to none are ignored.

For photos of strings, almost every pixel along each side of one string is detected as an

edge point at sub-pixel precision. So there are about 1000 edge points detected for a line of

length of about 1000 pixels. This large number of edge points opens the possibility to further

reduce the detection and aliasing noise left by the detection through a final convolution

step followed by a sub-sampling. A Gaussian blur of about 0.8 ×
√
t2 − 1 is needed before

a t-subsampling to avoid aliasing [35]. We have two one-dimensional signals (x-coordinate

and y-coordinate of edge points) along the length of the line. The Gaussian convolution is

performed on both one-dimension signals, parameterized by the length along the edge. To

facilitate the sub-sampling in the following, the edge points are resampled along the length

with a uniform sampling step d = L/N with L the length of a line and N the number of

extracted edge points on the line. Assume the distance between two adjacent edge points

(x1, y1) and (x2, y2) is l, then the re-sampled point (x′, y′) can be expressed as

x′ =
d

l
(x2 − x1) + x1,

y′ =
d

l
(y2 − y1) + y1,

see Fig. 8. Once the line is re-sampled, the Gaussian blur 0.8×
√
t2 − 1 can be applied and

is followed by a sub-sampling with factor t on the x and y coordinates separately.

5. Distortion Measurements

This section examines two natural distortion measurements that are somewhat complemen-

tary.
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Fig. 9: The distance from a set of points to their global linear regression line.

5.A. Root-Mean-Square Distance

According to Theorem 1, the most direct measure should be the straightness error, defined

as the root-mean-square (RMS) distance from a set of distorted edge points that correspond

to the same physical line, to their global linear regression line, see Fig. 9.

Given N edge points (x1, y1), . . . , (xN , yN) of a distorted line, the regression line

αx+ βy − γ = 0 (1)

is computed by

α = sin θ, β = cos θ, γ = Ax sin θ + Ay cos θ,

where

Ax =
1

N

N∑
i=1

xi, Ay =
1

N

N∑
i=1

yi,

Vxx =
1

N

N∑
i=1

(xi − Ax)2, Vxy =
1

N

N∑
i=1

(xi − Ax)(yi − Ay), Vyy =
1

N

N∑
i=1

(yi − Ay)
2,

tan 2θ = − 2Vxy
Vxx − Vyy

.

Since (α, β) is a unit vector, the signed distance from point (xi, yi) to the line is given by

Si = αxi + βyi − γ.

Given L lines, with Nl points in line l, the total sum of squared signed distance is given by

S =
L∑
l=1

Nl∑
i=1

|Sli|2 =
L∑
l=1

Nl∑
i=1

(αlxli + βlyli − γl)2. (2)

Thus, the RMS straightness error is defined as

d =

√
S

NT

. (3)

where NT =
∑L

l=1Nl is the total number of points.
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Fig. 10: Left: traditional distortion measure: the maximal distance to the line defined by the

extremities of the edge. Right: The regression line crosses the distorted line; the difference

between the maximal and minimal signed distance to the line measures the full width of the

distorted line.

5.B. Maximal error

An alternative measure is the average maximal error defined by

dmax =

√∑L
l=1 |maxi Sli −mini Sli|2

L
. (4)

In the classic camera maker practice, the maximal error is defined by

max
l
|max

i
Sli −min

i
Sli|,

which would become instable with the calibration harp, some of the strings being potentially

distorted by blur or wrong detection.

This measure is traditionally used in manual settings, for example see Fig. 1. While tradi-

tionally the measures are made relatively to the line joining the extremities of the distorted

edge, see Fig. 10, here we use the signed distance to the regression line to make it more com-

parable to the previous measure. The use of a signed distance and the difference between

the maximal and minimal value is needed to handle correctly the fact that there are values

on both sides of the regression line, see Fig. 10.

6. Applications

In this section, real photographs of the calibration harp will be used to evaluate the residual

camera distortion when this distortion has been corrected with three state-of-the-art correc-

tion methods or two popular software. In addition, we can feed any plumb-line method with

the precise edge points detected on the harp images to improve the correction precision. The

efficient Alvarez et al. algorithm thus becomes an automatic parametric distortion correc-

tion method. Our lens distortion measurement algorithm can be tested on the online demo

version available at http://bit.ly/lens-distortion.
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6.A. Precision

It is reported in [30] that Devernay edge points have a precision better than 0.05 pixel under

zero-noise condition. As proposed in Section 4, the precision of Devernay edge points can

be further improved by applying Gaussian convolution of standard deviation 0.8×
√
t2 − 1,

followed by a sub-sampling of factor t. The only parameter to adjust here is the factor t,

which corresponds to the assumed regularity of the lens distortion. We are only interested in

realistic lens distortion, which makes a straight line globally convex or concave. Thus local

edge oscillations due to noise can be harmlessly removed. In the experiments, the value of

t = 30 was chosen, which is enough to remove the local oscillation while keeping the global

distortion.

6.B. Measuring the residual error after distortion

As a first main application, the “calibration harp” permits to evaluate the performance of

any distortion correction algorithm by measuring its residual distortion in corrected images.

The procedure is as follows:

1. A series of photos of the “calibration harp” are taken at different orientations.

2. These photos are processed by a camera distortion correction algorithm.

3. The corrected images are normalized by a homography as described in section 2.

4. The residual distortion is measured by the proposed method.

Three distortion correction algorithms and two software were tested. With the exception of

the classic Lavest et al. calibration method, all the others are designed to only correct the

lens distortion without estimating the other camera parameters:

• The Lavest et al. method [4]: probably the most advanced pattern-based global camera

calibration method, which estimates and corrects for the pattern non-flatness, using a

bundle adjustment technique. Various distortion parameter configurations are allowed

in this method: 2 radial parameters and 2 tangential parameters for a partial distortion

model; 2 radial parameters for a partial radial distortion model; 5 radial parameters for

a complete radial distortion model; 5 radial parameters and 2 tangential parameters

for a full distortion model.

• A non-parametric lens distortion correction method requiring a textured flat pattern

[7]. The pattern is obtained by printing a textured image and pasting it on an aluminum

plate, which is thick and solid.

15



• The DxO-Optics-Pro software: a program for professional photographers automatically

correcting lens distortion (even from fisheyes), color fringing and vignetting, noise and

blur. This software reads the EXIF of each image to know exactly what camera, lens

and settings have been used. It therefore uses a fixed lens distortion estimation for each

supported camera model.

• PTLens: Photoshop plug-in that corrects lens pincushion/barrel distortion, vignetting

and chromatic aberration.

The distorted photographs to be corrected are shown in Fig. 11 and Table 1 shows the residual

distortion measurements obtained by the calibration harp, after applying the corrections

specified by the various methods.

Fig. 11: The distorted photos of the “calibration harp”.

The Lavest et al. method depends on the parameter configuration of the distortion model

integrated in the global calibration process. Since the global calibration process only mini-

mizes the re-projection error and does not control the distortion correction, it can happen

that the error in internal parameters compensates the error in external parameters. In con-

sequence, the minimized re-projection error is small, but neither the estimated distortion

parameters nor the other parameters are correct. In fact this is the common drawback of

global camera calibration methods based on bundle adjustment. The textured pattern based

method requires a perfectly flat pattern. Even though it is not very feasible to fabricate a

perfectly flat pattern, a pattern made of a thick and solid aluminium plate gives a good

flatness condition and thus a precise distortion correction. DxO Optics Pro includes many

pre-calibrated distortion models depending on the camera type and parameters setting. But

these distortion models are only calibrated on several fixed focused distances and obtain by

interpolation the distortion models focused on the other distances. Once the camera param-

eters are extracted from the EXIF of each image, DxO Optics Pro asks the user to manually
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Table 1: The distortion correction performance of three algorithms, measured by RMS dis-

tance d and maximal distance dmax.

method d (pixels) d̄max

original distortion 2.21 6.70

Lavest (2 radial and 2 tangential parameters) 0.07 0.30

Lavest (2 radial parameters) 0.07 0.29

Lavest (full distortion parameters) 0.60 3.00

Lavest (full radial distortion parameters) 0.59 2.90

Textured pattern 0.04 0.16

DxO Optics Pro 0.32 0.99

PTLens 0.46 1.51

input the focused distance before performing the correction. This makes the distortion cor-

rection result less precise; considering this, the results are surprisingly good. PTLens works

in the similar manner as DxO Optics Pro except that it does not ask users to provide the

focused distance information. It is not clear how PTLens recovers this information which is

not available in EXIF. Probably PTLens makes the same correction for each focal length, in-

dependently of the focus. This coarse approximation may explain why its correction precision

is not as good as DxO Optics Pro.

We also note that dmax is always larger than d. This is not surprising, since dmax is the

largest displacement with respect to the linear regression line of the edge points.

6.C. Strengthening Plumb-Line Distortion Correction Methods

Any plumb-line distortion correction method requires as input the edge points on distorted

lines, which are themselves projections of 3D straight lines. The distortion can then be

corrected by aligning the edge points belonging to the same line. To see this, let’s introduce

the widely used radial distortion correction model:

xu − xc = f(rd)(xd − xc) (5)

yu − yc = f(rd)(yd − yc) (6)

with (xu, yu) the corrected point, (xd, yd) the distorted point, (xc, yc) the distortion center

and rd =
√

(xd − xc)2 + (yd − yc)2 the distorted radius. f(rd) is a polynomial of rd and
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usually can be written as:

f(rd) = k0 + k1r + k2r
2 + · · ·+ kNr

N (7)

with k0, k1, k2, · · · , kN the distortion parameters. Assume we have L lines and there are Nl

points on line l, l = 1, 2, · · · , L. A natural way to correct the distortion is to minimize the

sum of squared distances from the corrected points to the corresponding regression line:

D =
1

L

L∑
l=1

1

Nl

Nl∑
i=1

S2
li =

1

L

L∑
l=1

1

Nl

Nl∑
i=1

(αlxuli
+ βlyuli

+ γl)
2

α2
l + β2

l

(8)

with the linear regression line l : αlx + βly + γl = 0 computed from the corrected points

(xuli
, yuli

), i = 1, · · · , Nl. The only unknown parameters in D are k0, k1, · · · , kN and (xc, yc).

With an appropriate initialization of these parameters, D can be efficiently minimized by

non-linear optimization algorithms, like Levenberg-Marquardt algorithm.

Instead of minimizing D, Alvarez et al. [23] proposed to minimize the measurement:

E =
1

L

L∑
l=1

(Sl
xxS

l
yy − (Sl

xy)
2) (9)

where Sl is the covariance matrix for the corrected points on the line l:

Sl =

(
Sl
xx Sl

xy

Sl
xy Sl

yy

)
=

1

Nl

( ∑Nl

i=1(xul,i
− xul,i

)2
∑Nl

i=1(xul,i
− xul,i

)(yul,i
− yul,i

)∑Nl

i=1(xul,i
− xul,i

)(yul,i
− yul,i

)
∑Nl

i=1(yul,i
− yul,i

)2

)
,

(10)

with xul,i
= 1

Nl

∑Nl

i=1 xul,i
and yul,i

= 1
Nl

∑Nl

i=1 yul,i
. It can be proven [23] that this new energy

function E is always positive and equals to 0 if and only if for each line its points are aligned.

The functional E can be furthur written in the form of matrix-vector multiplication [23]:

E(k) =
1

L

L∑
l=1

kTAlkkTBlk− kTC lkkTC lk (11)

with k = (k0, k1, k2, · · · , kN)T the distortion parameters in the form of vector and

Al
m,n =

1

Nl

Nl∑
i=1

((rdl,i)
mxdl,i − (rdl,i)

mxdl,i)((rdl,i)
nxdl,i − (rdl,i)

nxdl,i) (12)

Bl
m,n =

1

Nl

Nl∑
i=1

((rdl,i)
mydl,i − (rdl,i)

mydl,i)((rdl,i)
nydl,i − (rdl,i)

nydl,i) (13)

C l
m,n =

1

Nl

Nl∑
i=1

((rdl,i)
mxdl,i − (rdl,i)

mxdl,i)((rdl,i)
nydl,i − (rdl,i)

nydl,i) (14)
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with (rdl,i)
mxdl,i = 1

Nl

∑Nl

i=1(rdl,i)
mxdl,i and (rdl,i)

mydl,i = 1
Nl

∑Nl

i=1(rdl,i)
mydl,i , m = 1, · · · , N

and n = 1, · · · , N . The trivial solution k = (0, 0, 0, · · · , 0)T can be avoided by setting k0 = 1.

In general, minimizing E(k) is equivalent to solve a set of equations:

∂E(k)

∂ki
= 0, i = 1, 2, · · · , N. (15)

When there is only one unknown parameter, the solution can be approximated by solving the

resulting univariate polynomial. When there are two unknown parameters, resultant-based

method can be used to minimize E(k). The case of more than two variables requires Gröbner

basis techniques or multivariate-resultants based method (see [23] for more detail). To make

the algorithm efficient, [23] optimizes on two parameters at one time and iterates:

1. Obtain distorted edge points which are the 2D projection of 3D straight segments;

2. Initialize k = (1, 0, ..., 0)T ;

3. Choose any pair (p, q), 1 ≤ p, q ≤ N and fix all the other parameters, then optimize kp

and kq by resultant-based method;

4. Update k0 using a zoom factor such that distorted and undistorted points are as close

as possible;

5. Repeat Step 3 and 4 until all the parameters are estimated.

It is usually supposed that the edge points are already available for the plumb-line methods.

But in practice, it is not a trivial problem to extract aligned edge points in images. For

example, the online demo [36] of Alvarez et al. method [23] requires the user to click manually

edge points. This is on the one hand a tedious and time consuming work, and on the other

hand, it may reduce the precision of edge points. Our method thus gives the possibility

to automatize plumb-line methods. We fed four kinds of edge points to the Alvarez et al.

method: first the manually clicked edge points of a natural image (Fig. 12a), second the

manually clicked edge points of an image of the grid pattern (Fig. 12b), third the manually

clicked edge points of an image of the calibration harp (Fig. 12c) and finally the automatically

extracted edge points of an image of the calibration harp (Fig. 12c), as described in section 4.

These points were used as input to the Alvarez et al. method to estimate the distortion model,

which will be used to correct the distorted images in Fig. 11. The precision of this correction

was finally measured by the proposed method.

The results in Table 2 show that the edge point extraction by our proposed method

strengthens the plumb-line method in terms of precision and spares the long, tedious and

imprecise manual point clicking task. Compared to the manual clicks with the calibration

harp, the improvement in precision is moderate. Indeed, the Alvarez et al. method is applied
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on a very good quality photograph of the harp. The manual clicks were carefully placed on

the lines across the domain of the image. The slight inaccuracy of the clicks was smoothed out

by the method which applies a Gaussian convolution of the edge points along the edges. The

manual clicks on the image of the grid pattern and on the natural image give a precision that

is two or three times lower than the calibration harp. For the grid pattern, the imprecision

may come from the non-flatness error, the engraved straight lines on the pattern being not

really straight. For the natural image, the imprecision comes from two aspects: one is again

the non-straightness error of the lines, the other is the lack of lines at the border of the image

domain, which can explain a precision decay near the image border.

Table 2: The distortion correction performance of the Alvarez et al. method on four kinds of

input edge points: manual clicks on natural image, manual clicks on a grid pattern image,

manual clicks on a calibration harp image and automatic edge points extraction on the

calibration harp image. Compare d, dmax and the time to obtain the edge points.

method time (mins) d (pixels) d̄max

Natural image (manually) ∼ 5 0.27 1.02

Grid pattern (manually) ∼ 25 0.30 0.94

Calibration harp (manually) ∼ 30 0.11 0.39

Calibration harp (automatically) ∼ 0 0.08 0.27

(a) Natural image (b) Grid pattern image (c) Harp image

Fig. 12: The images used in the Lavest et al. method.
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7. Conclusion

A “calibration harp” has been proposed for camera distortion measurement, along with its

associated image processing chain. This harp is both a measurement tool and a correction

tool. As a measurement tool, it can be used independently to measure the residual distortion

left by any distortion correction methods or any software. As a correction tool, the precise

edge points detected on the harp can be used as the input to plumb-line methods and lead

to more precise distortion correction result. In the future, we aim at finding a more general

distortion model to correct more severe distortion by using the calibration harp. The ideal

case would be a harp-free distortion correction method. But we think that the harp will

always remain useful, as a final measurement tool to validate any other correction precision

and or to detect its failures.
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