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Abstract A very important property of the usual pinhole
model for camera projection is that 3D lines in the scene
are projected in 2D lines. Unfortunately, wide-angle lenses
(specially low-cost lenses) may introduce a strong barrel dis-
tortion which makes the usual pinhole model fail. Lens dis-
tortion models try to correct such distortion. In this paper,
we propose an algebraic approach to the estimation of the
lens distortion parameters based on the rectification of lines
in the image. Using the proposed method, the lens distor-
tion parameters are obtained by minimizing a 4 total-degree
polynomial in several variables. We perform numerical ex-
periments using calibration patterns and real scenes to show
the performance of the proposed method.
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1 Introduction

Typically, wide angle lenses tend to suffer from barrel dis-
tortion and tele lenses from pincushion distortion. Both ef-
fects tend to be stronger at the extreme ends of zoom lenses,
especially on low-cost compact cameras, web-cam, fish-eye
lens, etc.

Lens distortion correction is an important issue in camera
calibration where the pinhole model is used (see for instance
[1, 2] or [3]). The basic standard model for barrel and pin-
cushion distortion compensation (see for instance [4, 5] or
[6]) is a radial distortion model given by the following ex-
pression:

(
x̂ − xc

ŷ − yc

)
= L(r)

(
x − xc

y − yc

)
, (1)

where (x, y) are the original point coordinates (distorted),
(x̂, ŷ) are the corrected (undistorted) point coordinates,
(xc, yc) is the center of the camera distortion model, usu-
ally the center of the image (in fact, in this paper we will
always take as distortion center, the center of the image),
r=

√
(x − xc)2 + (y − yc)2 and L(r) is the function which

defines the shape of the distortion model. Usually, L(r) is
approximated by a Taylor expansion, that is

L(r) = k0 + k1r + k2r
2 + k3r

3 + · · · ,

where the set k = (k0, k1, . . . , kNk
)T are the distortion para-

meters. The complexity of the model is given by the num-
ber of terms of the Taylor expansion we use to approxi-
mate L(r).

In this paper, we use the general approach to determine
L(r) by imposing the requirement that the projection of 3D
lines in the image has to be 2D straight lines. This approach
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has been successfully used in [7–11], in these papers, the
authors minimize the objective error functions which are ex-
pressed in terms of line equations or distance functions. In
this paper we propose a new fast technique to obtain the
distortion parameter model using a new lens distortion mea-
sure error. The main advantage of our formulation is that
it yields to a general 4-degree polynomial in the distortion
parameters ki , that can be minimized using powerful tech-
niques of computer algebra. Using the algebraic approach,
the global minimum of the distortion measure error func-
tion, for the 3 parameter model case (i.e. k = (k0, ki, kj )

T

with 0 < i, j ≤ Nk) can be directly found (bounded) in one
step. As a particular application of the proposed method, we
also show how to use this technique in an iterative way to
estimate lens distortion model with higher number of para-
meters.

The lens distortion is included in the camera calibration
model in the following way: Given a camera defined by a
rotation matrix R, a focus c = (cx, cy, cz)

T and a 3 × 3 in-
trinsic matrix parameter A, the projection (x, y) of a 3D
point X = (X,Y,Z) in the camera is given by the following
expression

⎛
⎝ x̂

ŷ

1

⎞
⎠ = sA(R,−Rc)

⎛
⎜⎜⎝

X

Y

Z

1

⎞
⎟⎟⎠ ,

where (x̂, ŷ) is defined in (1) and s is the usual projective
factor value. In the case of L(r) ≡ 1, the camera model is
lens distortion free and the above expression becomes the
usual “pinhole” projective model where the projection of a
3D point X in the camera is given by the interception of
the line cX with the retinal plane. We observe that lens dis-
tortion correction is performed in pixel image coordinates.
In order to the lens distortion model be a radial function in
pixels coordinates, we need to assume that the camera CCD
sensor has square pixel. This square pixel size assumption
is satisfied, in practice, for most modern digital cameras.
On the other hand, this square size assumption could be re-
moved if we use normalized coordinates instead of pixel co-
ordinates, but to normalize the point coordinates we need to
know the camera intrinsic parameters. Since we assume that
camera intrinsic parameters are unknowns we have formu-
lated the lens distortion correction in terms of pixel coordi-
nates.

To calibrate accurately a camera, usually a linear tech-
nique is applied to get an initial estimation of camera pa-
rameters and then a bundle adjustment is used to improve
the accuracy of the parameter estimation. The bundle ad-
justment is based on a nonlinear minimization where the
mean square error between the observed and predicted im-
age points is minimized. Usually the distortion model is

included in the bundle adjustment parameter minimization
(see for instance [12] for more details). In that sense, the
method we propose can be used to get a fast initial estima-
tion of the distortion model in the bundle adjustment proce-
dure.

The paper is organized as follows: In Sect. 2 we introduce
the measure of the distortion error we propose in this paper.
In Sect. 3 we present the algebraic analysis of the proposed
measure of the distortion error. In Sect. 4, we analyze the
numerical aspects of the implementation of our algorithm
for estimating the distortion parameters. Section 5 is devoted
to the performed numerical experiments. Finally, in Sect. 6
we present some conclusions.

2 Measure of the Distortion Error

Let {(xl,i , yl,i )} with l = 1, . . . ,N and i = 1, . . . ,Nl be the
projection of N sets of 3D aligned points in the 2D image,
let {(x̂l,i , ŷl,i )} be the corrected (undistorted) points using
the distortion model (1) and k = (k0, k1, . . . , kNk

)T the dis-
tortion parameters. For each line l, and for each point i, we
note by ŷl,i and x̂l,i the average of the respective variables
taken over i. We also consider the covariance matrix given
by

Ŝl(k) =
(

Ŝl
xx Ŝl

xy

Ŝl
xy Ŝl

yy

)

≡ 1

Nl

⎛
⎝

∑Nl

i=1(x̂l,i − x̂l,i )
2 ∑Nl

i=1(ŷl,i − ŷl,i )(x̂l,i − x̂l,i )∑Nl

i=1(ŷl,i − ŷl,i )(x̂l,i − x̂l,i )
∑Nl

i=1(ŷl,i − ŷl,i )
2

⎞
⎠.

The lens distortion measure we propose in this paper is
based in the following lemma:

Lemma 1 Let

Ê(k) = 1

N

N∑
l=1

(
Ŝl

xx Ŝ
l
yy −

(
Ŝl

xy

)2
)

(2)

then Ê(k) ≥ 0 and Ê(k) = 0 if and only if for each line l,
the points {(x̂l,i , ŷl,i )}i=1,...,Nl

are aligned.

Proof Using the Cauchy-Schwarz inequality (see for in-
stance [13]) we obtain that for any line l

(
Ŝl

xy

)2 ≤ Ŝl
xx Ŝ

l
yy

and the equality holds only when the variables are propor-
tional, that is, when there exists al, bl such that for any
i ∈ {1,Nl}
al(x̂l,i − x̂l,i ) + bl(ŷl,i − ŷl,i ) = 0
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so in particular the points {(x̂l,i , ŷl,i )}i=1,...,Nl
are aligned,

which concludes the proof of the lemma. �

According with this lemma, we propose as lens distortion
measure Ê(k) and the distortion parameters k will have to
minimize the functional Ê(k).

Next, we will show that Ê(k) is a 4-degree polynomial
in the coefficient of k. Indeed, using the distortion model
(1) we obtain:

Ŝl
xx = 1

Nl

Nl∑
i=1

⎛
⎝ Nk∑

j=0

kj

((
rl,i

)j
xl,i − (

rl,i
)j

xl,i

)⎞
⎠

2

= kT Alk,

Ŝl
yy = 1

Nl

Nl∑
i=1

⎛
⎝ Nk∑

j=0

kj

((
rl,i

)j
yl,i − (

rl,i
)j

yl,i

)⎞
⎠

2

= kT Blk,

Ŝxy = 1

Nl

Nl∑
i=1

⎛
⎝ Nk∑

j=0

kj

((
rl,i

)j
xl,i − (

rl,i
)j

xl,i

)⎞
⎠

×
⎛
⎝ Nk∑

j=0

kj

((
rl,i

)j
yl,i − (

rl,i
)j

yl,i

)⎞
⎠ = kT Clk,

where rl,i=
√

(xl,i − xc)2 + (yl,i − yc)2, (rl,i )j xl,i and

(rl,i )j yl,i are the average of the respective variables taken
over i, and Al,Bl,Cl are (Nk + 1) × (Nk + 1) matrix given
by

Al
m,n = 1

Nl

Nl∑
i=1

((rl,i )
mxl,i − (rl,i )mxl,i)

× ((rl,i )
nxl,i − (rl,i )nxl,i ),

Bl
m,n = 1

Nl

Nl∑
i=1

((rl,i )
myl,i − (rl,i )myl,i)

(3)
× ((rl,i )

nyl,i − (rl,i )nyl,i ),

Cl
m,n = 1

Nl

Nl∑
i=1

((rl,i )
mxl,i − (rl,i )mxl,i)

× ((rl,i )
nyl,i − (rl,i )nyl,i ).

Therefore, the distortion error measure Ê(k) can be ex-
pressed as

Ê(k) = 1

N

N∑
l=1

kT AlkkT Blk−kT ClkkT Clk (4)

which is a 4-degree homogeneous polynomial in the vari-
able k.

Of course, the global minimum of Ê(k) corresponds to
the trivial solution k ≡ (0,0, . . . ,0)T . To avoid this prob-
lem, usually k0 is set to one (k0 = 1). As it is explained
in Sect. 4, in this paper we use another approach: we fit k0

using a zoom factor by minimizing the sum of the square
distance between the distorted and undistorted points.

3 Algebraic Analysis of the Distortion Error Measure

In this section, we show how to approach the problem by
means of computer algebra techniques. For simplicity in the
exposition, we present the results for polynomials with real
coefficients, but it must be said that they are valid over more
general polynomials rings; for further details on this topic
we refer the reader to [14] or [15].

As mentioned in Sect. 2, one needs to minimize the dis-
tortion error measure function Ê(k), which is a real polyno-
mial in the variable k. Minimizing a polynomial in several
variables can be reduced to compute the solutions of an al-
gebraic system of equations, namely the one generated by
its gradient. In our case:

S :=
{

∂Ê(k)

∂ki

= 0

}
i=1,...,Nk

.

As it will be explained in Sect. 4, parameter k0 is estimated
in a different way as a zoom factor, therefore the above al-
gebraic system does not include the derivative of Ê(k) with
respect to k0.

When the polynomial is univariate, say kp is the variable,
one just has to approximate the real roots on the univariate
polynomial

∂Ê(kp)

∂kp

.

However, when more than one variable appears, the prob-
lem is not so trivial. In order to approach this new situation,
one can apply computer algebra techniques to prepare sym-
bolically the algebraic system S before numerical methods
are executed. The two-variable case can be treated by means
of symbolic linear algebra techniques while the case of more
than two variables requires, in general, abstract algebra tech-
niques. In both cases, the underlining theory comes from al-
gebraic geometry and commutative algebra. To be more pre-
cise, we first describe in detail how to approach the problem
when two variable are considered, and afterward we give a
brief description on how to proceed in the general case.

So, let us assume that we are working with two variables,
say kp, kq . Observe that this is the case when working with
two distortion parameters, and that the system S turns to be

S :=
{

∂Ê(kp, kq)

∂kp

= 0,
∂Ê(kp, kq)

∂kq

= 0

}
.
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In order to compute the solutions of S we apply the so
called resultant-based method. Let us describe this method.
For this purpose, let G1(kp, kq) and G2(kp, kq) be two bi-
variate polynomials with real coefficients. Choosing one
variable, say kq , as a main variable, we can write G1 and
G2 as

G1(kp, kq) = an(kp)kn
q + · · · + a1(kp)kq + a0(kp),

G2(kp, kq) = bm(kp)km
q + · · · + b1(kp)kq + b0(kp),

where ai(kp) and bi(kp) are univariate polynomials with
real coefficients, and an(kp), bm(kp) are not identically zero,
with n > 0 and m > 0. In this situation, the resultant of
G1 and G2 with respect to the variable kq (we denote
it by Reskq (G1,G2)) is defined as the determinant of the
(n + m) × (n + m) Sylvester matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an(kp) an−1(kp) · · · a0(kp) 0 · · · 0

0 an(kp) an−1(kp) · · · a0(kp) · · · 0

...
. . .

. . .
...

0 0 · · · an(kp) an−1(kp) · · · a0(kp)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

m

bm(kp) bm−1(kp) · · · b0(kp) 0 · · · 0

0 bm(kp) bm−1(kp) · · · b0(kp) · · · 0

...
. . .

. . .
...

0 0 · · · bm(kp) bm−1(kp) · · · b0(kp)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that Reskq (G1,G2) is a real univariate polyno-
mial in the variable kp . Therefore, the variable kq has been
eliminated. For our purposes, the main applicable properties
on resultants are the following.

Theorem 1 Let G1(kp, kq),G2(kp, kq) as above, and let
G(kp) = Reskq (G1,G2). Then, it holds that

1. G(kp) is identically zero if and only if G1 and G2 have a
common non-constant factor.

2. If (λ,μ) ∈ C
2 is a common root G1 and G2 then

G(λ) = 0.
3. If G(λ) = 0 then one of the following statements holds

3.1. an(λ) = bm(λ) = 0,

3.2. ∃μ ∈ C such that (λ,μ) is a common root of G1

and G2.

Proof See Theorem 4.3.3, p. 98, in [14]. �

The geometrical meaning of Theorem 1 is as follows (see
Sect. 2.3 in [16] for further details). Let G1,G2 and G be as
above. Then we can see G1 and G2 as curves in the kpkq -
coordinate plane C

2. In this situation, the roots of G are the
kp-coordinates of the intersection points of the two curves
(see Fig. 1). Moreover, the real roots of G contain the kp-
coordinate of the real intersection points of the two curves.

In order to apply Theorem 1, first, note that in the con-
struction of Reskq (G1,G2), we have required that

degkq
(G1) > 0 and degkq

(G2) > 0. Let us see that this as-
sumption is not a loss of generality for our purposes. Indeed,
if degkq

(G1) = 0 (similarly if degkq
(G2) = 0), then G1 only

depends on kp . Then, if degkq
(G2) = 0, G2 is also univariate

and the real solutions of {G1(kp) = G2(kp) = 0} are the real
roots of the greatest common divisor of both polynomials.
On the other hand, if degkq

(G2) > 0, for each real root α of
the univariate polynomial G1(kp), one has to determine the
real roots of the univariate polynomial G2(α, kq). That is,
if degkq

(G1) = 0,degkq
(G2) > 0, the real solutions of the

Fig. 1 Geometric interpretation of the resultant G = Reskq (G1,G2)
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system {G1(kp) = G2(kp, kq) = 0} are

{(α,βα) ∈ R
2 |G1(α) = 0,G2(α,βα) = 0}.

Moreover, if the following conditions are satisfied:

(i) the conditions on the degree are fulfilled (i.e.
degkq

(G1) > 0 and degkq
(G2) > 0),

(ii) gcd(G1,G2) = 1 (i.e. the greatest common divisor of
both polynomials is 1),

(iii) and either an(kp) or bm(kp) is a constant polynomial
(note that an and bm are, by definition, not identically
zero),

then Theorem 1 implies that all the solutions (in the
particular the real ones) of the system {G1(kp, kq) =
0,G2(kp, kq) = 0} can be obtained from the roots of G(kp);
this process is known as the lifting process.

We have already seen that hypothesis (i) (see above) can
be assumed w.l.o.g. Let us see how to proceed in general
with hypotheses (ii) and (iii).

• Hypothesis (ii). If gcd(G1,G2) = D �= 1, dividing G1,G2

by D one gets two new polynomials, say G∗
1 and G∗

2, ful-
filling the gcd condition, and the solutions of {G1 = 0,
G2 = 0} are the solutions of D = 0 union the finitely
many solutions of {G∗

1 = 0,G∗
2 = 0}. Moreover, note that

since in our case the polynomials come from empirical
data the most expectable situation is that the polynomials
are coprime, i.e. its gcd is 1.

• Hypothesis (iii). If none of the polynomials an(kp),
bm(kp) is constant, one can check whether taking kp as a
main variable the property holds. If for none of the vari-
ables kp and kq the requirement holds, then one can al-
ways apply a linear change of coordinates such that the
new polynomials verify the property; note that applying
the inverse of the linear change of coordinates to the so-
lutions of the new system one gets the solutions of the
initial one. In order to deterministically choose this linear
change of coordinate, we proceed as follows: we express
one of the polynomials, say G1, as a sum of homogenous
polynomials (recall that a bivariate polynomial H(kp, kq)

is homogeneous of degree r is H(tkp, tkq) = t rH(kp, kq)

where t is a new variable):

G1(kp, kq) = Hr(kp, kq) + · · · + H1(kp, kq)

+ H0(kp, kq),

where Hi is homogeneous of degree i. So, Hi collects
all terms in G1 of total degree i; or equivalently Hi is the
i-degree part of the Taylor expansion of G1 around (0,0).
In this situation, if (1, b) ∈ R

2 is such that Hr(b,1) �= 0
then

G1(kp + bkq, kq) = Hr(b,1)kr
q + terms of lower degree,

and therefore the requirement is achieved.

The next proposition shows that, in our case, hypothesis
(iii) holds except for some non realistic point distribution
configuration.

Proposition 2 If for some line l, the points {((rl,i )pxl,i ,

(rl,i )
pyl,i )}i=1,...,Nl

are not aligned, then hypothesis (iii)
holds.

Proof From (4), in the particular case of the distortion
model, one has that

∂Ê(kp, kq)

∂kq

= b3(kp)k3
q + b2(kp)k2

q + b1(kp)kq + b0(kq)

where

b3(kp) = 4
1

N

N∑
l=1

(Al
ppBl

pp − (Cl
pp)2).

Therefore b3(kp) is constant, and since Al
ppBl

pp −
(Cl

pp)2 ≥ 0, then b3(kp) = 0 if and only if for every line

l, the points ((rl,i )
pxl,i − (rl,i )pxl,i , (rl,i )

pyl,i − (rl,i )pyl,i )

lie on a line. In particular for each line l, there exist al, bl

such that, for each i,

al((rl,i )
pxl,i − (rl,i )pxl,i) + bl((rl,i )

pyl,i − (rl,i )pyl,i ) = 0

and therefore points ((rl,i )
pxl,i , (rl,i )

pyl,i ) lie on a line. So
we conclude the statement of the proposition and hypothesis
(iii) holds. �

Remark We observe that if for all lines l, the points
{((rl,i )pxl,i , (rl,i )

pyl,i )}i=1,...,Nl
are aligned then the lens

distortion of all lines is completely corrected using the trans-
formation
(

x̂

ŷ

)
= rp

(
x

y

)
= (

(x − xc)
2 + (y − yc)

2) p
2

(
x

y

)
. (5)

However this transformation does not fit model (1) except
in the case (xc, yc) = (0,0) because in (5) the distance r

is computed with respect to (xc, yc) but the points (x, y)

and (x̂, ŷ) are not translated with respect to (xc, yc) as
in (1). The case (xc, yc) = (0,0) is an unrealistic config-
uration because, in practice, in real images, the distortion
center is located near the pixel image center (far beyond
(0, 0)). On the other hand, we observe that we can switch
the roles of p and q in the analysis and if for one line
l, the points {((rl,i )pxl,i , (rl,i )

pyl,i)}i=1,...,Nl
are aligned

and {((rl,i )qxl,i , (rl,i )
qyl,i )}i=1,...,Nl

are also aligned (with
p �= q) then we easily conclude that the line has a trivial con-
figuration, that is the line is composed of just 1 or 2 points or
the points {(xl,i , yl,i )}i=1,...,Nl

lie in a line passing by (0,0).
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Summarizing, one can derive the following algorithm to
compute the real solutions of

S :=
{

∂Ê(kp, kq)

∂kp

= 0,
∂Ê(kp, kq)

∂kq

= 0

}
,

where we assume w.l.o.g. that hypotheses (i), (ii), and (iii)
hold. Note that, once these solutions are known, minimiz-
ing the distortion error measure function Ê(kp, kq), in the
compact set of analysis, is trivial.

1. Determine G1 := ∂Ê
∂kp

and G2 := ∂Ê
∂kq

.
2. Determine G(kp) := Reskq (G1,G2) and approximate

the real roots of G(kp). Let R = {α1, . . . , αs} be the set
of real roots of G.

3. For each α ∈ R approximate the common real roots of
the univariate polynomials G1(α, kq) and G2(α, k2). Let
Rα be the set of these real common roots.

4. The real solutions of S are {(α,βα) |α ∈ R and βα ∈ Rα}.
In the general case, i.e. when working with s > 2 vari-

ables, say kp1, . . . , kps , the problem cannot be approached
so directly by means of resultants. Nevertheless, one can ap-
ply Gröbner basis techniques or multivariate-resultants (see
[17] and [14] for further information). Of course, Gröbner
basis techniques can also be applied to the case of two vari-
ables but, in that case, we find more suitable the resultant-
based method. The basic idea of Gröbner basis, as a tool
for solving algebraic systems, is to provide a new algebraic
system of equations equivalent to S (i.e. with the same so-
lutions) but much simpler, and such that it has a suitable
structure (“triangular") to compute the solutions. Roughly
speaking, Gröbner basis can be seen as a generalization of
the Gaussian elimination when the equations are not linear.
We leave, as future research work, the applications of the
Gröbner basis method to the current problem.

4 The Algorithm

Using the technique presented above, we can estimate any
pair kp, kq (p,q ≥ 1) of the distortion parameters. In fact we
can update any previous distortion parameter estimation by
optimizing any pair of distortion parameters. Indeed, given
an estimation k of the distortion parameters, we can write

(
x̂l,i − xc

ŷl,i − yc

)

=
⎛
⎝ Nk∑

j=0

kj (ri)
j + εp (ri)

p + εq (ri)
q

⎞
⎠

(
xl,i − xc

yl,i − yc

)
,

where εp, εq are additive update of kp, kq . We can minimize
the lens distortion measure Ê(k) with respect to εp, εq using

the algebraic approach presented in the above section. Once
εp, εq are estimated we can update kp and kq just by adding
εp, εq .

The distortion parameters k are computed setting k0 = 1.
In order to yield undistorted points as close as possible to
the distorted ones we estimate a zoom factor to minimize
the sum of the square distance between the distorted and the
corrected (undistorted) points. Let s be such zoom factor,
then we have:
(

x̂ − xc

ŷ − yc

)
= sL(r)

(
x − xc

y − yc

)

we minimize:

H(s) =
N∑

l=1

Nl∑
i=1

(
x̂l,i − xl,i

)2 + (
ŷl,i − yl,i

)2

an straightforward computation leads to

H(s) =
N∑

l=1

Nl∑
i=1

⎛
⎝s

Nk∑
j=0

kn
j

(
rl,i

)j+1 − rl,i

⎞
⎠

2

the minimum of the above function is attained in

smin =
∑N

l=1
∑Nl

i=1

∑Nk

j=0 kn
j (rl,i )

j+2

∑N
l=1

∑Nl

i=1(
∑Nk

j=0 kn
j (rl,i )j+1)2

and finally we update the polynomial L(r) (i.e. k) by multi-
plying all the coefficients by smin (that is kn

j = skn
j ∀j ).

An interesting advantage of this approach is that the res-
olution of the undistorted image is similar to the resolution
of the original (distorted) image. This is a very useful prop-
erty if we need to generate the undistorted image from the
original distorted one.

Therefore the derived algorithm for performing the nu-
merical experiments can be structured in the following steps:

1. We compute the edges of the image using an edge detec-
tion algorithm with subpixel precision.

2. We select some collections of edge points corresponding
to different 3D straight segments, that will be used to fit
the distortion parameters.

3. We initialize k = (1,0, . . . ,0)T .
4. We choose any pair p,q ∈ Z (1 ≤ p,q ≤ Nk) and we

optimize kp, kq using the proposed algebraic technique.
5. We update k using a zoom factor such that distorted and

undistorted points are as close as possible.

In order to compute the image edges we can use any stan-
dard edge detector algorithm (see for instance [18, 19]).

Remark (Point coordinates normalization) It is well known
that when we deal with algebraic methods (see for instance
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[5]) it is usually better to normalize the point coordinates be-
fore computing the algebraic solution of the problem. Fol-
lowing this strategy, as a first step, we normalize the edge
points (xi, yi) using the transformation

x′
l,i = (xl,i − xc)

A
, y′

l,i = (yl,i − yc)

A
,

where A is given by

A =
√∑N

l=1
∑Nl

i=1(xl,i − xc)2 + (yl,i − yc)2

2(N1 + N2 + · · · + NN)

and we compute the distortion parameters k′
i for the normal-

ized edge points {(x′
l,i , y

′
l,i )}Ni=1. Finally, in order to recover

the distortion parameters ki for the original edge points we
have just to take into account that following the above ex-
pressions and (1) we have that

kj = k′
j

(A)j
.

4.1 Inversion of the Radial Distortion Model

For some applications we need to invert the radial distortion
model. For instance, to build the undistorted version of the
image it is usually better to use the inverted of the radial
distortion model. So we look for a radial function G(r̂) such
that(

x − xc

y − yc

)
= G(r̂)

(
x̂ − xc

ŷ − yc

)
,

where

r̂ =
√

(x̂ − xc)2 + (ŷ − yc)2.

From the above expression we obtain that

r = G(r̂)r̂.

On the other hand we have(
x̂ − xc

ŷ − yc

)
= L(r)

(
x − xc

y − yc

)

and therefore

r̂ = L
(
G(r̂)r̂

)
G(r̂)r̂.

So we conclude that G(r̂) is a root of the polynomial

P(λ) = 1 − L(λr̂)λ = 1 −
Nk∑
j=0

kj r̂
j λj+1.

In order to minimize the distance between the distorted
and undistorted points, we choose, among all possible real
roots of P(λ), the one nearest to 1.

4.2 Implementation Details and Computational
Complexity

To implement the minimization algorithm we have pre-
sented in the previous section we use standard C language.
We observe that we need just an algorithm to compute the
determinant of an sparse 6 × 6 polynomial matrix of degree
bounded by 3 which provides always a polynomial of de-
gree at most 9 and an algorithm to compute real polynomial
roots, so the numerical implementation is quite simple and
we do not need to use sophisticated symbolic tools which
suffers of numerical accuracy problems when we deal with
general floating point arithmetic.

In order to compute the polynomial determinant, one
only needs to take into account that it is an addition of
products of the matrix entries. More precisely, we have pro-
ceeded as follows: we have implemented the basic poly-
nomial arithmetic, i.e. very simple functions for executing
polynomial multiplication and addition/subtraction, as well
as the usual recursive algorithm for matrix determinant esti-
mation. We observe that the only difference with the scalar
matrix case is that the matrix elements are polynomials so
when we have to multiply (or add) matrix elements we use
the predefined polynomial operations.

To compute the polynomial roots we use the standard
Jenkins-Traub real polynomial root algorithm.

From a computational complexity point of view, we ob-
serve that the computational cost of the algorithm depends
on the number of edge points used for the different lines
(given by M = ∑N

l=1 Nl). In our algorithm implementation,
these edge points are used only in the computation of the
matrix Al,Bl and Cl defined in (3). Once these matrix are
computed, we built the coefficients of the polynomial (4).
The structure of this polynomial is independent of the num-
ber of edge points, so we can conclude that the computa-
tional complexity of the algorithm is linear in the number
of line edge points M . We also observe that, in the case we
want to compute higher polynomial degree lens distortion
model using in an iterative way the proposed technique by
updating different polynomial coefficients in each iteration,
the computational complexity of the model is O(M + I )

where I is the number of iterations. We observe that in the
usual standard iterative techniques (as gradient descent), the
computational complexity is O(M · I ).

5 Numerical Experiments

In order to validate the accuracy of the solution provided
by the proposed algebraic method, we will compare such
solution with the one obtained by minimizing the sum of
the squares of the distances from the undistorted points to
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the lines. This distortion measure have been used in [10] to
estimate the distortion parameters k and can be written as

D(k) = 1

N

N∑
l=1

1

Nl

Nl∑
i=1

(al x̂l,i + blŷl,i + cl)
2

a2
l + b2

l

(6)

where (x̂l,i , ŷl,i ) are the undistorted points using the dis-
tortion model provided by k, and where alx̂ + blŷ + cl is
the line that minimizes D(k) for a given choice of points
{(x̂l,i , ŷl,i )}i=1,...,Nl

.

We used an standard gradient descent method [20] to
minimize D(k) which has been applied to some standard
unconstrained optimization test problems to check its effi-
ciency. Main details of the gradient implementation are ex-
plained along this section.

The advantages of the proposed algebraic method are: it
is a direct method, it does not require iterations or distor-
tion parameters initialization and it can not be trapped in
local minima for the two-variable case, as it has been pre-
viously shown mathematically. On the other hand, as it will
be confirmed from the numerical experiments, the proposed
method is much faster than the iterative one when we deal
with a large number of line edge points.

In the numerical experiments we will assume that the dis-
tortion center (xc, yc) is the center of the image. In Fig. 2 we
show the images used to illustrate the performance of the al-
gebraic method. In the case of the calibration patterns we
use, we have printed them and taken photos of the printed
images with a wide-angle lens camera.

The advantage of these calibration patterns is that we can
easily identify the rectangles presented in the image, and

automatically select the edge segments and points we will
use for the estimation of the distortion model parameters.
In Fig. 3 the achieved results, for the planar lens distortion
calibration pattern, are shown.

The achieved quantitative results for the first calibration
pattern are presented in Table 1. We applied the method to
the even set of distortion parameters (k2 and k4) which is co-
herent with the fact that the even distortion parameters are
more relevant than the odd distortion parameters (see for in-
stance [4]). The odd distortion parameters are fixed to zero
(k1 = 0 and k3 = 0). The algebraic (distortion measure value
Ê(k)) and the numerical (distance function value D(k)) are
presented for the 2-degree polynomial (k0 and k2) and for
the 4-degree polynomial (k0, k2 and k4) for both methods
starting from the trivial setup (k = (1,0, . . . ,0)T ). So in the
case of 2-degree polynomial we assume k = (k0,0, k2)

T

and in the case of 4-degree polynomial we assume k =
(k0,0, k2,0, k4)

T . Ê(k) and D(k) (initial value and solu-
tions) are normalized to their setup values. The number of
iterations, the number of function evaluations and the CPU
time are also included. This CPU time (execution time) is for
the programs running on an one-core 2.4 GHz (2 GB RAM)
Intel PC machine. The gradient algorithm has been coded in
standard C language using double precision. It is important
to indicate that this CPU time does not include image pre-
processing (loading the image and capturing the points to
process) and postprocessing operations (normalization and
inverse radial transformation to represent the undistorted im-
age), hence, it is a real indication on the time needed for
obtaining the distortion parameters.

Fig. 2 Test images used in the
numerical experiments
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Fig. 3 Illustration of the results
obtained on the synthetic pattern
using the proposed technique

Table 1 Comparison between
algebraic method and numerical
method for the geometric
pattern starting from the trivial
solution (Number of lines: 20
and number of points: 11 each
line). The stop criteria for the
numerical method has been
established to a tolerance of
1e−4. D(k) and Ê(k) values
are normalized with respect to
the trivial setup

N = 4 Initial Value Solution N = 2 Solution N = 4

Algebraic Steepest descent Algebraic Steepest descent

k0 1 9.3374e−01 9.3313e−01 9.1696e−01 9.1799e−01

k2 0 1.1617e−07 1.1722e−07 1.6575e−07 1.6317e−07

k4 0 – – −2.5597e−14 −2.4600e−14

D(k) 1 0.013826 0.013728 0.003391 0.003357

Ê(k) 1 0.012033 0.012092 0.002805 0.002866

Number of iterations 1 2 1 6

Function evaluations – 25 – 145

CPU Time (ms) ≈ 0 ≈ 16 ≈ 15 ≈ 78

As it has been mentioned before, no iterations are needed
to get the solution using the algebraic method. If we look
at the CPU time, we can see that the algebraic method is
around five times faster than the steepest descent for the
4-degree polynomial case. However, for the 2-degree poly-
nomial case, the gradient descent iterative approach solves
the problem in two gradient iterations, which was also the
expected if we take into consideration the geometric profiles
of the distance function (see Figs. 4 and 6), but it requires
25 function evaluations and a measurable CPU time (the al-
gebraic method is practically instantaneous).

We use an standard gradient method (steepest descent
method) to minimize D(k) function after examining the

geometric profiles of the distance function, which is clearly
a smooth non convex function. However, we are aware
about the zigzagging behaviour close to the solution that a
simple gradient method exhibits (increasing the number of
function evaluations), which can be avoided using a conju-
gate method or a second order method (Newton or quasi-
Newton). An exact quadratic fit line search (TPP, three point
pattern condition) has been implemented for the inner lo-
cal search (see [20]). This local search approach provides
global convergence under appropriate assumptions such as
pseudoconvexity, which makes it useful for the problem we
are dealing with. This kind of search is normally used but,
as a main drawback, it requires a number of function eval-
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Fig. 4 Illustration of the
profiles of D(k) and Ê(k) with
respect to k2 and k4

uations higher than, for instance, a Newton search. When
applying the steepest descent algorithm, a first-order finite
difference method is used to estimate the numerical deriv-
atives. Results show that this simple derivative estimation
behaves well for all analyzed cases. When the gradients
are found using finite differences, a gradient will cost as
many function evaluations as there are nonzeros in the gra-
dient. Therefore, it can be said that all the function eval-
uations come mainly from the inner search (searching for
the TPP points which only need function evaluations). The
stopping criteria used is as follows: we run iterations un-
til (D(k) − D(k∗)/max(1,D(k∗)) is less than the speci-
fied accuracy, with D(k∗) being the previous solution and
D(k) the actual one. This is a normally used stopping cri-
teria for gradient-like methods (see for instance, [21]). We
remark that, as a main difference from the algebraic method
presented here, and inspired in the lens distortion measure
Ê(k), to numerically minimize the function D(k), no sim-
plification is needed.

As it can be deduced from the above results, if we con-
sider D(k) as the solution to compare with, one observes
that our algebraic approach suits well for all the analyzed
cases, with a relative error around 1% for the final D(k) and
Ê(k) values. Besides, the distortion error measure, Ê(k) is
reduced up to a factor of 1000 for the 4-degree polynomial

compared to the trivial solution. Therefore, through compar-
ing the solution precision attained between both methods,
the algebraic approach can be regarded as a valid outstand-
ing approach for the lens distortion problem.

To illustrate the visual effect of the obtained undistorted
image, we present in Fig. 3 (left bottom corner) the undis-
torted image using the lens distortion model with the lower
D(k) value given by k0 = 9.1696e−01, k2 = 1.6575e−07
and k4 = −2.5597e−14 (Table 1, last column). The cor-
rected image (undistorted) and the location of edges in the
distorted and undistorted image are also represented in the
same figure.

The corrected image is again shown in Fig. 4 (left top
corner). We can also see the D(k) and the Ê(k) profiles for
the 2-degree polynomial case (right top corner) which cor-
responds to the distortion parameters of Table 1, third col-
umn (k0 = 9.3374e−01, k1 = 0 and k2 = 1.1617e−07). To
draw both functions in an unique plot, D(k) and Ê(k) have
been normalized respect to their highest value. In that figure,
one notices the location of the Ê(k) optimal solution, which
lies close to D(k) global minimum, and hence validates our
proposal. It is included in the same figure (left bottom and
right bottom corner) a two dimensional representation and
the isocontours map of D(k) with respect to k2 and k4 for
the distortion parameters of the last column of Table 1. Note
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Fig. 5 Illustration of the
proposed technique on a real
image

Fig. 6 Illustration of the
profiles of D(k) and Ê(k) with
respect to k2 and k4
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Table 2 Comparison between
algebraic method and numerical
method for the 2 lines photo
starting from the trivial solution.
The stop criteria for the
numerical method has been
established to a tolerance of
1e−4. D(k) and Ê(k) values
are normalized with respect to
the trivial setup

N = 4 Initial Value Solution N = 2 Solution N = 4

Algebraic Steepest descent Algebraic Steepest descent

k0 1 8.2045e−01 8.2045e−01 8.4924e−01 8.4924e−01

k2 0 1.6117e−07 1.6803e−07 4.4743e−08 4.4456e−08

k4 0 – – 5.1485e−14 5.1687e−14

D(k) 1 0.071948 0.071077 0.002534 0.002534

Ê(k) 1 0.088919 0.090003 0.003357 0.003360

Number of iterations 1 2 1 5

Function evaluations – 37 – 140

CPU Time (ms) ≈ 0 ≈ 0 ≈ 0 ≈ 0

Fig. 7 Illustration of the
proposed technique on an
standard calibration pattern

that both functions are non convex which assures that a nu-
merical optimization algorithm (such a descent gradient) can
be trapped into the local minima.

Next results are for a photograph having an important
barrel distortion. The original image (width = 3872 pixels,
height = 2592 pixels) is shown in Fig. 2 (center) and re-
peated in Fig. 5 (left top corner) as well as the corrected
image. To remark the robustness of our implementation, we
tried to correct the distortion from a reduced number of
distorted sample points (eighteen), to be aligned along two
straight lines. We used a 2-degree and a 4-degree polyno-
mial in the distortion parameters ki to compare solutions.
The achieved quantitative results are presented in Table 2.
Results are similar to the above presented for the geomet-

ric pattern, therefore the algebraic approach remains valid
for all the cases. Once again, the quality of the solution im-
proves with the polynomial degree and Ê(k) is reduced up
to a factor of 1000 from the trivial solution. The number of
gradient iterations, number of function evaluations and the
CPU time have been dramatically reduced due to the number
of image data points to deal with are quite low (eighteen).

To finish we present the next result to show that the pro-
posed method works well for all kind of lines orientation. It
consists of a more complex geometric pattern (see Fig. 7) in-
cluding a set of diagonal lines (in the previous results, there
were only horizontal and vertical lines) and a considerable
number of data points (number of lines is 24 and the number
of points is around 400 each line). Results after applying the
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Table 3 Comparison between
algebraic method and numerical
method for the second
calibration pattern starting from
the trivial solution (Number of
lines: 24 and number of points:
around 400 each line). The stop
criteria for the numerical
method has been established to
a tolerance of 1e−4. D(k) and
Ê(k) values are normalized
with respect to the trivial setup

N = 4 Initial Value Solution N = 2 Solution N = 4

Algebraic Steepest descent Algebraic Steepest descent

k0 1 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

k2 0 1.3650e−07 1.3826e−07 1.7735e−07 1.7647e−07

k4 0 – – −7.9658e−14 −7.0131e−14

D(k) 1 0.043591 0.043442 0.031417 0.030210

Ê(k) 1 0.053891 0.053946 0.038441 0.038472

Number of iterations 1 2 1 14

Function evaluations – 26 – 322

CPU Time (s) ≈ 0 ≈ 0.4690 ≈ 0.0310 ≈ 5.6250

Table 4 Estimated distortion parameter and objective function value
after applying a steepest descent optimization algorithm from the al-
gebraic method solution for the second geometric pattern. The stop

criteria for the numerical method has been established to a tolerance of
1e−4. D(k) values are normalized with respect to the trivial setup

k0 k2 k4 D(k) Iterations Function evaluations CPU Time (s)

1.0000e+00 0 – 0.043442 2 26 ≈ 0.4690

1.0000e+00 1.3650e-07 – 0.043442 2 26 ≈ 0.4690

1.0000e+00 0 0 0.030210 14 322 ≈ 5.6250

1.0000e+00 1.7735e−07 −7.9658e−14 0.030181 2 28 ≈ 0.5000

Table 5 Dependency of CPU
time respect to stop criteria for
the numerical method applied to
minimize D(k) from the trivial
solution for the second
geometric pattern. D(k) values
are normalized with respect to
the trivial setup

N = 4 D(k) Iterations Function evaluations CPU Time (s)

Algebraic 3.141701491392861e−02 1 – ≈ 0.0310

|tol| = 1.0e−2 3.031493383334863e−02 7 155 ≈ 2.7030

|tol| = 1.0e−4 3.021124372302807e−02 14 322 ≈ 5.6250

|tol| = 1.0e−6 3.019263303802254e−02 29 670 ≈ 11.5620

|tol| = 1.0e−8 3.019263303802254e−02 29 670 ≈ 11.5940

algebraic and the numerical optimization method are listed
in Table 3. Similar conclusions as above can be considered
about the quality of the solutions, however, CPU time com-
parison between both methods reveals that for complex im-
ages, the algebraic method is around 180 times faster than
the gradient method which we consider as a another rele-
vant contribution of this work.

Due to the non convexity properties of the functions Ê(k)

and D(k), it seems reasonably to use the algebraic solution
as a starting point for a fast local minimizer algorithm to
improve the result. This is also another use of the proposed
method. The results after executing the descent algorithm
from the distortion parameters of Table 3 are listed in Ta-
ble 4 for the 2-degree and 4-degree polynomial cases. As it
was expected, there is no need to improve the solution for the
2-degree case because is a global solution. For the 4-degree
polynomial case, to get a final solution at a low CPU time,
it is advisable to first execute the algebraic method and then
to run a numerical method using the algebraic solution as

a starting point. Note that, to get the solution (0.030), the
steepest descent method requires 322 function evaluations
and 5.6250 seconds from the trivial solution k = 0. If the
gradient method starts from the algebraic solution (k0 =
1.0000e+00, k2 = 1.7735e−07, k4 = −7.9658e−14), it is
only necessary 28 function evaluations (it means a reduction
of a factor of 10) and 0.5310 seconds (0.0310+0.5000), that
is, a CPU reduction of a factor of 10.

A question of significance is how to choose the final tol-
erance when solving a optimization problem. If the tolerance
is too small, obtaining such a result can be very expensive
in computing time. If the tolerance is too large, the solu-
tion will be poorly defined. All the results provided by the
gradient algorithm were obtained with a tolerance of 1e−4.
This value has been established because it gives a reason-
ably compromise between solution precision and CPU time
as it is shown in Table 5. The gradient zigzagging behaviour
can be observed and, increasing the tolerance beyond 1e−4



J Math Imaging Vis (2009) 35: 36–50 49

implies more CPU time and little reduction of the objective
function value.

6 Conclusions

In this paper we present an algebraic approach to radial lens
distortion parameter estimation based on edge line rectifi-
cation. We propose a polynomial distortion error measure
based on the Cauchy-Schwarz inequality. We present an
algebraic analysis of the distortion error measure. From a
mathematical point of view the method is well founded, el-
egant and it provides a direct solution to the problem.

We have implemented the proposed method for 1 or 2
distortion parameter models. The distortion parameters are
obtained using the algebraic resultant-based method which
estimates the global minimum of the functional without it-
erations. The parameter model is also updated using a zoom
factor which minimizes the square distance between the dis-
torted and undistorted edge points.

The numerical experiments we have presented are very
promising. The lens distortion of the edge lines is strongly
reduced in the undistorted image and the barrel distortion is
properly removed. We show that the obtained algebraic min-
imum is very close to the solution obtained by minimizing
the square distance of the edge points to a straight line. We
have also shown that in the case we deal with a large num-
ber of edge points, the proposed algebraic method is much
faster than the usual gradient descent iterative method. An-
other important advantage of our method is that it does not
require initialization for the distortion parameter ki . In par-
ticular it can be used as initialization of the distortion para-
meters in bundle adjustment calibration techniques.
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