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Abstract. Binocular stereo is the process of obtaining depth information from a pair of left and
right views of a scene. We present a new approach to compute the disparity map by solving a
global optimization problem that models occlusions, discontinuities, and epipolar-line interac-
tions. In the model, geometric constraints require every disparity discontinuity along the epipolar
line in one eye toalwayscorrespond to an occluded region in the other eye, while at the same
time encouraging smoothness across epipolar lines. Smoothing coefficients are adjusted accord-
ing to the edge and junction information. For some well-defined set of optimization functions,
we can map the optimization problem to a maximum-flow problem on a directed graph in a novel
way, which enables us to obtain a global solution in a polynomial time. Experiments confirm the
validity of this approach.

1 Introduction

Binocular stereo is the process of obtaining depth information from a pair of left and right images,
which may be obtained biologically or via a pair of cameras. The fundamental issues in stereo are:
(i) how the geometry and calibration of the stereo system are determined, (ii) what primitives are
matched between the two images, (iii) what a priori assumptions are made about the scene to deter-
mine the disparity, (iv) how the disparity map is computed, and (v) how the depth is calculated from
the disparity.

Here we assume that (i) is solved, and hence the correspondence between epipolar lines (see Fig.1)
in the two images are known. Answering question (v) involves determining the camera parameters,
triangulation between the cameras, and an error analysis, for which we refer the reader to [10]. We
focus on problems (ii), (iii), and (iv) in this paper.

Main contributions of this paper to these problems are summarized as follows:

(ii) A stereo algorithm solely based on matching pixels from the left and right views tends to have
difficulties precisely locating the discontinuities. To remedy this problem, we use intensity edges
and junctions as cues for the depth discontinuities. The significance of junctions to stereo has
been pointed out in [1, 16]. Our new approach uses edges and junctions in a uniform manner
where “ordinary” pixels, edge pixels, and junction pixels increasingly suggest discontinuities in
this order. Although a use of window features can also accommodate for this problem, it requires
another set of parameters to estimate their size and shape [15].

(iii) Various algorithms, as in the cooperative stereo [17], have proposed a priori assumptions on the
solution, includingsmoothnessto bind nearby pixels anduniquenessto inhibit multiple matches.
Occlusions and discontinuities must also be modeled to explain the geometry of the multiple-
view image formation [3, 11]. Another aspect of stereo geometry is the interdependence between
epipolar lines. This topic is often neglected because of a lack of optimal algorithms. We show that
it is possible to account for all of these assumptions, including occlusions, discontinuities, and
epipolar-line interactions, in computing the optimal solution. However, this result is under some
restricted set of optimization functions and we discuss the scope of its applicability.
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Fig. 1. A pair of frames (eyes) and an epipolar line in the left frame.

(iv) Our method is a new use of the maximum-flow algorithm to find a globally optimal solution,
which is represented by a cut of adirectedgraph that models a symmetric stereo (symmetric
with respect to the left and right views.) We will describe the limitations imposed on the prior
knowledge of surfaces to allow the use of the maximum-flow algorithm. More precisely, it can be
shown that, to model interactions between epipolar lines, or discontinuities and occlusions along
them, only convex functions can be used in the way described in this paper. Thus, for instance,
the cost for discontinuities must be at least linear on the size of the discontinuities. Roy and
Cox [22] introduced maximum-flow algorithms onundirectedgraphs for stereo, a more limited
set than directed graphs, to compute disparity maps. They also claimed the approach to be a
generalization of the dynamic programming algorithm. While our approach is also motivated by
their work, we will show that their algorithm has several limitations in the ability to model stereo,
e.g., no guarantee of ordering or uniqueness, no model for occlusions and discontinuities, and that
it cannot be called a generalization of the dynamic programming algorithms in a strict sense.

1.1 Testing Stereo Algorithms

Evaluation of stereo theories and algorithms is a difficult task. Stereo must deliver accurate disparity
maps. While obtaining real image results that “look” good is a definite necessity, looking good is not
enough to guarantee a high stereo quality. A careful examination of the disparity map is necessary.

One method of comparison would be to test all current stereo algorithms against each other. How-
ever, not only is it difficult to have access to most stereo algorithms, the criteria of comparisons are
also unclear.

Alternatively, let us assume we have a ground-truth solution. Then we can compare the disparity
map resulting from the algorithm against the ground truth by computing some measure of the error.
Usually, ground truth is available only for synthetic examples. Synthetic examples can be created to
capture geometrical scene properties, such as occlusions, discontinuities, and junctions, to maximize
the information they provide about a stereo theory/algorithm. On the other hand, synthetic images
generally lack realistic intensity information that accurately reflects such properties as textures, reflec-
tivity, and illuminations. Thus, while it would take very sophisticated measures to study illumination
and reflectivity-related issues with synthetic images, even the simplest synthetic examples using only
black and white pixels can be quite instrumental to study the prior models of stereo geometry and the
role of edges and junctions.

Two kinds of synthetic imagery are of special interest.

1. Random-dot stereograms (see Fig.7): They remove intensity considerations and essentially lack
any features. The disambiguation and solution are derived by the prior model of surfaces. It is
interesting to note that an occluded region in one of the pair of images is created by adding
random dots to an empty region and, therefore, does not have a good correspondence in the other
image.



Occlusions, Discontinuities, and Epipolar Lines in Stereo 3

2. Illusory Surfaces (see Fig.6): These are very important synthetic images to complement the
random-dot stereograms, since they crucially require the study of edge and junction features as
well as the way in which they relate to occlusions and discontinuities. The following issues de-
serve our attention: (a) the formation of discontinuities where no intensity edges are present, (b)
the choice between front parallel panes with discontinuities and tilted planes, and (c) the role of
epipolar-line interactions. In contrast to the random-dot stereograms, occluded regions are com-
posed of pixels that in terms of feature match can have good correspondences, which however the
geometrical constraints would not allow.

Finally, let us emphasize that the ultimate test of a stereo algorithm is its performance on real
image pairs. We do address all these experimental issues in this paper.

1.2 Background and Comparison to Previous Work

A number of researchers, including Julesz [14]; Marr and Poggio [17]; Pollard, Mayhew and Frisby
[21]; Grimson [13]; Kanade and Okutomi [15]; Ayache [2]; Roy and Cox [22], have addressed the
problem of binocular stereo matching without explicitly modeling occlusions and its relation to dis-
continuities.

There is now abundant psychophysical evidence [1, 12, 19] that the human visual system does
take advantage of the detection of occluded regions to obtain depth information. The earliest attempts
to model occlusions and its relation to discontinuities, in Geiger, Ladendorf and Yuille [11], and
independently in Belhumeur and Mumford [3], had a limitation that they restrict the optimization
function to account only for interactions along the epipolar lines. Malik [16] brought attention to the
role of junctions in stereo, together with Anderson’s experiments [1]. Our use of junctions in this
paper is limited to the detection of discontinuities.

As for optimization, Roy and Cox [22] presented the study of epipolar-line interaction through the
use of maximum-flow algorithm, where they claimed that the algorithm provides a generalization of
the dynamic programming algorithm to the two-dimensional stereo. We point out that their algorithm
does not model discontinuities and occlusions and that their algorithm obliges occlusion regions to
have a match. Thus, for example, their algorithm would have difficulties with random-dot stereograms,
where occluded regions do not have any good correspondence. Also, their method provides no guar-
antee of unique match, but almost always results in undesirable multiple matches, which it eliminates
in an ad-hoc way. Moreover, contrary to their claim, the maximum-flow algorithms cannot be a gen-
eralization of the dynamic programming. We show that this way of using maximum-flow algorithm
cannot model non-convex functions and, as a result, it cannot use sublinear penalties for discontinu-
ities. Though our proposed maximum-flow algorithm is still limited in the same way, it guarantees
the ordering constraint (or monotonicity of the solution) and uniqueness of the match, and can model
occlusions, discontinuities, and epipolar-line interactions. When non-convex costs are needed, we
propose the use of the dynamic programming algorithms, but at the expense of approximate solution
when accounting for the epipolar-line interactions.

2 Matching and Surface Reconstruction

Here we describe our stereo model so that in the next section we can discuss the optimization issues.

2.1 Matching Features

We use gray-level pixels, edgeness, and cornerity as features. While we assume the error in the cor-
respondence is solely based on gray-level values, the detection of discontinuities is helped by the
intensity edges (edgeness) and, even more, by junctions (cornerity). That is, our model assumes that
depth discontinuities are more likely to occur in the presence of edges, and of junctions even more.
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If featureIL
e;l at pixel l on epipolar linee, or pixel (e; l), in the left image matches featureIR

e;r at

pixel (e; r) in the right image, thenk IL
e;l � IR

e;r k should be small, wherek � k is some measure of feature
distance. We assume a dense set of features, though it would be easy to extend the model to include
sparse features like edges.

As in [11, 17], we use a matching processMe
l ;r that is 1 if the feature at pixel(e; l) in the left eye

matches the feature at pixel(e; r) in the right eye, and 0 otherwise. Given a pair of left and right image
IL andIR, we define the input cost of the matching processM by

Einput(M j IL; IR) = ∑
l ;r;e

Me
l ;r k IL

e;l � IR
e;r k ; (1)

wherel = 0; : : : ;N�1 andr = 0; : : : ;N�1 are indices that scan the left and right images along the
epipolar linese= 0; : : : ;N�1 for N�N square images.

This model, in principle, can be derived from an image formation model. For example, in the
case wherek � k is the Euclidean norm, (1) assumes that the pixelsIL

e;l and IR
e;r are related by the

relationIL
e;l = IR

e;r +x for corresponding pointsl andr, wherex is a random variable distributed with

P(x) = e�x2
=
p

2π.

2.2 Uniqueness, Occlusion and Disparity

In order to prohibit multiple matches, we impose auniquenessconstraint:

N�1

∑
l=0

Me
l ;r � 1 for all r and

N�1

∑
r=0

Me
l ;r � 1 for all l : (2)

Notice that this guarantees that there can be at most one match per feature, while also allowing un-
matched features to exist.

Remark: It is important to account for scenes composed of tilted planes. In the discretized setting,
image pairs of tilted planes exhibit less pixels in one image than in the other. This property will force
the pairing to break the uniqueness constraint. When thinking in a continuous setting, the concept
of uniqueness is not broken by tilted planes, but in the discrete setting it is. When we describe the
mapping of the model to the maximum-flow problem, we will account for multiple matching in the
presence of tilted plane.

Occlusion and Disparity: For a stereoscopic image pair we define occlusions to be regions in one
image that have no match in the other image. These may occur as a result of occlusions in the 3-D
scene (see Fig.2.) We first define an occlusion fieldOL

e;l andOR
e;r as

OL
e;l (M) = 1�

N�1

∑
r=0

Me
l ;r and OR

e;r(M) = 1�
N�1

∑
l=0

Me
l ;r :

Due to uniqueness constraint (2), the occluded pixels are the ones with this field 1, when no matches
occur.

Now, we define a disparity fieldDL
e;l andDR

e;r as

DL
e;l (M) =

N�1

∑
r=0

Me
l ;r(r� l) if OL

e;l = 0 and

DR
e;r(M) =

N�1

∑
l=0

Me
l ;r(r� l) if OR

e;r = 0 ;
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for unoccluded pixels and then linearly interpolate for occluded pixels, assuming the boundary con-
dition DL

e;�1(M) = DL
e;N(M) = DR

e;�1(M) = DR
e;N(M) = 0. Then, it can be shown that the following

holds:
N�1

∑
l=0

DL
e;l (M) =

N�1

∑
r=0

DR
e;r(M) :

Since these two variablesO(M) andD(M) are functions of the matching processM, our model is
completely determined byM.
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Fig. 2. (a) A polyhedron (shaded area) with self-occluding regions and with a discontinuity in the surface-
orientation at feature D and a depth discontinuity at feature C. (b) A diagram of left and right images (1D
slice) for the image of the ramp above. Notice that occlusions always correspond to discontinuities. Dark lines
indicates where match occurs

2.3 The Monotonicity / Ordering constraint

Themonotonicityconstraint is a variant of the ordering constraint. It differs slightly from the standard
ordering constraint because it requires neighboring points to match.

The monotonicity constraint is defined as follows:

Monotonicity Constraint: For every match(e; l ; r) such that Me
lr = 1,

Me
NL

e;l ;N
R
e;r

= 1 (3)

holds, where

NL
e;l = max(fl 0j l 0 < l ;OL

e;l 0 = 0g)
NR

e;r = max(fr 0j r 0 < r;OR
e;r 0 = 0g) :

We call the matchNe
l ;r = (e;NL

e;l ;N
R
e;r) theneighbor matchto match(e; l ; r).

The criteria to choose the optimal matching are based on the prior knowledge of surfaces as well
as on the data matching term. We will formalize it next.
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2.4 Surface Reconstruction

We now specify a prior model for surfaces in the scene. Depth changes are usually small compared to
the viewer distance, except at depth discontinuities. Thus, we would like surfaces to be smooth, yet
like to allow for large depth changes to occur. Since there is a simple trigonometric relation between
disparity and depth, we consider the same constraint to hold for disparities. This can be modeled by
some cost functionEsurfacedepending upon the disparity change∇vD(M) and∇hD(M). We define
the disparity change∇vD(M) along the epipolar line, which is defined only at unoccluded pixels, as
follows:

∇vDe
l ;r = DL

e;l �DL
e;NL

e;l
= (l �NL

e;l )+(r�NR
e;r) = DR

e;r �DR
e;NR

e;r
;

and we define the terms as:

∇vDL
e;l = l �NL

e;l ∇vDR
e;r = r�NR

e;r :

Next, we define the disparity change∇hD(M) across the epipolar line as:

∇hDL
e;l = DL

e;l �DL
e�1;l ; and

∇hDR
e;r = DR

e;r �DR
e�1;r :

We can now define the cost functionEsurfaceas

Esurface(M j IL ; IR) = ∑
e;l ;r

Me
l ;r

n
µvL

e;l ;rF(∇vDL
e;l )+µvR

e;l ;rF(∇vDR
e;r)

+ µhL
e;l ;rF(∇hDL

e;l )+µhR
e;l ;rF(∇hDR

e;r)
o

; (4)

where the functionF(x) penalizes for the size of the disparity changesx. The parametersµvL andµhL

control the smoothing in the left image along and across epipolar lines, respectively. Analogously,µvR

andµhR control the smoothing in the right image along and across epipolar lines.
These smoothing parameters vary according to intensity edges and junction information. The edge

information affects the parameters as

µvL
e;l ;r ∝

γ
γ+(∆vIR

e;r)
2 ; µhL

e;l ;r ∝
γ

γ+(∆hIR
e;r)

2 ;

µvR
e;l ;r ∝

γ
γ+(∆vIL

e;l )
2
; µhR

e;l ;r ∝
γ

γ+(∆hIL
e;l )

2
:

whereγ is a parameter to be estimated, and∆vIL
e;l = IL

e;l � IL
e;l�1, ∆hIL

e;l = IL
e;l � IL

e�1;l , ∆vIR
e;r = IR

e;r �
IR
e;r�1, and∆hIR

e;r = IR
e;r � IR

e�1;r.
Large image gradients in one image reduce the smoothing coefficients and facilitate discontinuities

in the other image to occur. To further reduce the cost of discontinuities occurring at junctions (without
affecting the edge information,) we write

µvL
e;l ;r = µ

γ
γ+(∆vIR

e;r)
2

n
γ

γ+(∆hIR
e;r )

2 +
γ

γ+(∆hIR
e;r�1)

2

+ γ
γ+(∆hIR

e�1;r )
2 +

γ
γ+(∆hIR

e�1;r�1)
2

o
;

so that corners have even lower cost for discontinuities along either direction. We define the other
smoothing parameters analogously.

The final optimization cost is then given by

E(M j IL ; IR) = Einput(M j IL; IR)+Esurface(M j IL ; IR) : (5)
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We can see this cost as the energy of a Gibbs probability distribution

Pstereo(M j IL ; IR) =
1
Z

e�E(M j IL
;IR) ;

whereZ is a normalization constant.
Observe that our theory, given by (1) and (4), is symmetric with respect to the two eyes. This is

necessary to ensure that the full information can be extracted from occlusions. Moreover, the mono-
tonicity constraint (3) will be applied as a hard constraint to simplify the optimization of the cost.

We will show in Sect.3 that the maximum-flow algorithm naturally lands to this theory but it
restricts the functionF(x) to be a convex function. To account for this limitation, we will consider
F(x) = jxj, since, among the convex functions, it penalizes least for largejxj.

3 Mapping the Optimization Problem to a Maximum-flow Problem

In this section, we explain the stereo-matching architecture that utilizes the maximum-flow algorithm
to obtain the globally optimal matching, with respect to the energy (5), between left and right image.

3.1 The Directed Graph

We devise a directed graph and let a cut represent a matching so that the minimum cut corresponds to
the optimal matching. The formulation explicitly handles the occlusion and is completely symmetric
with respect to left and right, up to the reversal of all edges, under which the solution is invariant.

LetM be the set of all possible matching between pixels, i.e.,M = f(e; l ; r) j e; l ; r 2 [0; : : :N�1]g.
We define a directed graphG= (V;E) as follows:

V = fue
lr j (e; l ; r) 2 M g[fve

lr j (e; l ; r) 2 M g[fs; tg
E = EM [EC[EP[EE:

In addition to the sources and the sinkt, the graph has two verticesue
lr andve

lr for each possible
matching(e; l ; r) 2 M . The setE of edges is divided into subsetsEM, EC, EP, andEE, each associ-
ated with a capacity with a precise meaning in terms of the model (5), which we will explain in the
following subsections.

We denote a directed edge from vertexu to vertexv as(u;v). Each edge(u;v) has a nonnegative
capacityc(u;v) � 0. A cut of G is a partition ofV into subsetsS andT = V nS such thats2 S and
t 2 T (see Fig.3). When two vertices of an edge(u;v) is separated by a cut withu 2 S andv 2 T,
we say that the edge is cut. This is the only case that the costc(u;v) of the edge contributes to the
total cost, i.e., if the cut is through the edge(u;v) with u2 T andv2 S, the cost isc(v;u), which is
in general different fromc(u;v). It is well known that by solving a maximum-flow problem one can
obtain aminimum cut, a cut that minimizes the total cost∑u2S;v2T c(u;v) over all cuts. (See [9] for
details.)

Note that, in this formulation, we use a directed graph while in the method of [22] it suffices to
use an undirected graph. The use of the directed graph is crucial to enforce the uniqueness constraint
(2) and the ordering/monotonicity constraint (3).

Let us now explain each set of edgesEM, EC, EP, andEE.

3.2 Matching Edges

Each pair of vertices are connected by a directed edge(ue
lr ;v

e
lr ) with a capacityk IL

e;l � IR
e;r k. This edge

is called amatching edgeand we denote the set of matching edges byEM:

EM = f(ue
lr ;v

e
lr ) j (e; l ; r) 2 M g :
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Fig. 3. An epipolar slice of the graph representing the stereo model, where we perform a maximum-flow algo-
rithm. The full graph is naturally represented as three dimensional, with the third axis parametrizing epipolar
lines. Edges are given by pairs of graph nodes(u;v). A cut of the graph can be thought of as a surface that sepa-
rates the two parts, and restrict to a curve (a path) in an epipolar slice. The optimal cut is the one that minimizes
the sum of the capacities associated with the cut edges. In this example, we illustrate a cut (solution) that yields
the matches(l ; r) = (0;0);(1;1);(3;2), and(4;3) and assign an occlusion to gray (white) pixel 2 (4) in the left
(right) image. In the following figures we explain each type of edge/capacity.
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If a matching edge(ue
lr ;v

e
lr ) is cut, we interpret this to represent a match between pixels(e; l) and

(e; r), i.e.,Me
l ;r = 1. Thus, the sum of the capacities associated with the cut matching edges is exactly

Einput in (5), which is defined in (1). Figure 3 shows the nodes and matching edges on an epipolar line.
The cut shown represents a matchf(l ; r)g= f(0;0);(1;1);(3;2);(4;3)g.

Note that pixel 2 in the left image has no matching pixel in the right image, as well as pixel 4 in
the right image, that is, these pixels are occluded. This is how the formulation represents occlusions
and discontinuities, whose costs are accounted for bypenalty edges.

(a)

v(l+1)(r+1)

vl (r + 1)

v(l+1) r

ul (r + 1)

vl r

ul r (b)

v(l+1)(r+1)

vl (r + 1)

v(l+1) r

ul (r + 1)

vl r

ul r

Fig. 4. (a) A matching edgeis here represented by a black arrow, and we show a cut through a matching edge
(ue

lr ;ve
lr ). This capacity, given byk IL

e;l � IR
e;r k, provides the cost for the first term of the stereo-energy cost.

(b) Penalty edges are represented by dark arrows. Every time a cut crosses these edges the cost is given by its
capacity, which are given by eitherµvL

e;l ;r or µvR
e;l ;r . By crossing consecutive penalty capacities, the cost is added

linearly, accounting for the functionF(x) = jxj. Here, the cut crosses the penalty edge(v(l+1)(r+1);ul(r+1)) with

costµvR
e;l+1;r+1, accounting for the occlusion of pixelr +1 on the right image.

3.3 Penalty Edges (Discontinuity, Occlusions, and Tilts)

Penalty edges are classified in four categories:

EP = EL [E0
L [ER[E0

R

EL = f(ve
lr ;u

e
l(r+1)) j (e; l ; r) 2 M ; r < N�1g[

f(s;ue
l0) j e; l 2 [0: : :N�1]g[

f(ve
l(N�1); t) j e; l 2 [0: : :N�1]g

E0
L = f(ue

l(r+1);v
e
lr ) j (e; l ; r) 2 M ; r < N�1g

ER = f(ve
lr ;u

e
(l�1)r) j (e; l ; r) 2 M ; l > 0g[

f(s;ue
(N�1)r) j e; r 2 [0: : :N�1]g[

f(ve
0r ; t) j e; r 2 [0: : :N�1]g

E0
R = f(ue

(l�1)r ;v
e
lr ) j (e; l ; r) 2 M ; l > 0g

These edges are for paying for discontinuities and occlusions. Edges inEL are cut whenever a
pixel in the left image has no matching pixel in the right image. For instance, if pixel(e; l) in the left
image has no match, exactly one of the edges of the form(ve

lr ;u
e
l(r+1)), (s;u

e
l0), or (ve

l(N�1); t) is cut
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(see Fig.4(b).) By setting the capacity for these edges, we control the smoothness along the epipolar
line. Similarly, an edge inER corresponds to an occlusion in the right image. The penalty is given
by the smoothing coefficientsµvL

e;l ;r for a edge(ve
l(r�1);u

e
lr ) in EL andµvR

e;l ;r for a edge(ve
lr ;u

e
(l�1)r) in

ER. By crossing consecutive penalty capacities the cost is added linearly, accounting for the function
F(x) = jxj.

Edges inE0
L are cut when a pixel in the left image matches two or more pixels in the right

image. This corresponds to a tilted surface. Since every edge(ue
l(r+1);v

e
lr ) in E0

L has an opposite

edge(ve
lr ;u

e
l(r+1)) in EL, by setting the capacity of(ue

l(r+1);v
e
lr ) higher or lower than the capacity

of (ve
lr ;u

e
l(r+1)), we can favor or disfavor tilted surface solution over occlusion/discontinuity solution.

To strictly enforce the uniqueness constraint (2), we can make the capacity of the edge infinity, which
cannot be done in an undirected graph.

F(x) must be convex:We briefly outline a proof thatF(x) has to be convex. We assume a uniformity
of the cost, i.e.,F(x) is the same everywhere in the system. The cost of a cut is the sum of the
capacities of the edges crossed by the cut. This sum can only increase the cost by the amount of
each capacity, since the capacity is non-negative. The size of the discontinuity defines the minimum
number of edges that is crossed, and as the graph becomes more connected, the number of edges only
increases, adding up the cost of a discontinuity more. The sum guarantees at least a linear cost, for the
minimum connectivity used here, which represents the functionF(x) = jxj. This proves that we cannot
use non-convex functions asF(x) and in particular cannot penalize for discontinuities or occlusions
sublinearly.

In a graph with more connectivity, this cost can grow faster than lineality and so other convex
functions can be created. Our interest is to have costs that increase the least with the discontinuity
size and hence to have as few edges as possible, which also is helpful to improve the efficiency of
the algorithm. This is a limitation of the use of the maximum-flow algorithm that is not present in
dynamic programming algorithms (e.g., [11]). While there is this limitation, our experiments do yield
good solution with the linear costF(x) = jxj.

(a)

l

ue +1
l r

v e
l r

ue
l ( r + 1)

ue + 1
( l + 1)( r + 2)

v e + 1
( l + 1)( r + 2)

v e
l ( r + 1)

r

Cut

e

v e +1
l r

(b)

v(l+1)(r+1)

vl (r + 1)

v(l+1) r

ul (r + 1)

vl r

ul r

Fig. 5. (a) This figure shows a piece of the full three dimensional graph. Epipolar edges account for the epipolar-
line interactions. They are represented by thick arrows. A cut is shown through two epipolar edges. (b) Constraint
edges are depicted as dashed arrows. They enforce the monotonicity or ordering constraint (3), i.e., the edge
capacity are set to infinity so that the optimal (minumum) cut does not cut them.
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3.4 Epipolar edges

Epipolar edges are the only edges across epipolar lines. They simply connects vertices with the same
(l ; r) in both directions:

EE = f(ue
lr ;u

e+1
lr ) j (e; l ; r) 2 M ;e< N�1g[

f(ue+1
lr ;ue

lr ) j (e; l ; r) 2 M ;e< N�1g[
f(ve

lr ;v
e+1
lr ) j (e; l ; r) 2 M ;e< N�1g[

f(ve+1
lr ;ve

lr ) j (e; l ; r) 2 M ;e< N�1g :

The capacity of an epipolar edge controls the smoothness of the solution across epipolar lines. In
one extreme, if the cost is zero, the matching on epipolar lines have no influence to each other. In the
other extreme, if the cost is infinity, all epipolar lines must have the same matching (see Fig.5(a).)

3.5 Constraint Edges

Constraint edges are for enforcing the monotonicity constraint (3) and defined as follows:

EC = f(ue
lr ;u

e
(l+1)r) j (e; l ; r) 2 M ; l < N�1g[

f(ue
lr ;u

e
l(r�1)) j (e; l ; r) 2 M ; r > 0g[

f(ve
lr ;v

e
(l+1)r) j (e; l ; r) 2 M ; l < N�1g[

f(ve
lr ;v

e
l(r�1)) j (e; l ; r) 2 M ; r > 0g :

The capacity of each constraint edge is set to infinity. Therefore, any cut with a finite total flow
cannot cut these edges. Note that, because the edges have directions, a constraint edge prevents only
one of two ways to cut them. In Fig.5(b), constraint edges are depicted as dashed arrows, and none
is cut. This cannot be done with undirected graphs, where having an edge with an infinite capacity is
equivalent to merging two vertices, and thus meaningless. This is why the algorithm in [22] cannot
guarantee the monotonicity/ordering constraint.

4 Implementation and Results

We implemented the architecture explained in the last section, with window features of small size
for the real-image experiments. For the maximum-flow algorithm, we used the standard push-relabel
method with global relabeling [8]. It took about 1 hour on 266Mhz Pentium II machine to compute
the results on real images (512� 512 pixels).

To see how the algorithm handles occlusions and discontinuities, we experimented with both
random-dot stereogram and illusory surface images. These experiments were particularly important
on the early phases of the work, when we needed to understand the role of each kind of edges and
capacities in the graph. For instance, letting disparity discontinuity more likely to be present at inten-
sity edges and junctions, as well as the epipolar-line interactions, was crucial for the performance of
the algorithm on the illusory figures. The experiments on random-dot stereograms were important as
they made it apparent that occluded regions do not match any region, and therefore having multiple
matches at these points as the algorithm in [22] does cannot possibly be right. Results are shown in
Fig.6 and Fig.7. In both cases, the program successfully found the occluded regions in both left and
right images. The correspondence diagram in Fig.7 shows the symmetric nature of our result.

We also tested the algorithm on real images. Figure 8 shows the result for imagesPentagon and
Fruits. The results are in support of the model – they “look good”. Notice that the small variance of
the height of the ground around the Pentagon can clearly be seen.
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Left Right

Result

Fig. 6. Illusory surface. Shown as result is the disparity map for the left image. The diagram on the right shows
the correspondence between left and right pixels for two epipolar lines. Note the symmetric nature of the result.

Left LeftRight Result

Fig. 7. Random-dot stereogram. Shown as result is the disparity map for the left image. Note the occluded region
(black) at the left of the rectangle.
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Left Right Left

Pentagon Result Fruits Result

Fig. 8. Results (disparity maps for the left image) on real imagesPentagon andFruits. Notice the small variance
of the height of the ground around the Pentagon can clearly be seen. Also, inPentagon, the disparity map is
slightly darker toward the bottom, suggesting that the pictures were not taken exactly over the site. InFruits, one
can check by doing stereo with own eyes that even the region in the middle of the cantaloupe that is giving a
background disparity is correct, i.e., there is some correlating noise present in both images.
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5 Conclusion

We have presented a new approach to compute the disparity map, by modeling occlusions, disconti-
nuities, and epipolar-line interactions, then optimally solving the problem in a polynomial time. We
have modeled binocular stereo, including the monotonicity/ordering constraint, mapped the model to
a directed graph and used a maximum-flow algorithm to globally optimize the problem. We have im-
proved on previous work, which either (i) models occlusion/discontinuities and ordering constraints,
but does not incorporates epipolar-line interactions, with, e.g., as the dynamic programming does,
or (ii) models epipolar-line interactions, but not ordering constraint or discontinuities, as in the case
of maximum-flow approach on undirected graphs. We have shown that the discontinuities/occlusions
cost have to be modeled by a convex function in order to map stereo to a directed graph, and thus used
the linear function, since it least penalizes for large discontinuities and offers simplicity (fewer edges
in the graph). The experiments support the model.

References

1. B. Anderson. The role of partial occlusion in stereopsis.Nature, 367:365–368, 1994.
2. N. Ayache.Artificial Vision for Mobile Robots. MIT Press. Cambridge, Mass., 1991.
3. P. N. Belhumeur and D. Mumford. A bayesian treatment of the stereo correspondence problem using half-

occluded regions. InProc. IEEE Conf. on Computer Vision and Pattern Recognition, 1992.
4. A. Blake and A. Zisserman.Visual Reconstruction. MIT Press, Cambridge, Mass., 1987.
5. P. Burt and B. Julesz. A disparity gradient limit for binocular fusion.Science, 208:615–617, 1980.
6. B. Cernushi-Frias, D. B. Cooper, Y. P. Hung, and P. Belhumeur. Towards a model-based bayesian theory for

estimating and recognizing parameterized 3d objects using two or more images taken from different positions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-11:1028–1052, 1989.

7. A. Champolle, D. Geiger, and S. Mallat. Un algorithme multi-´echelle de mise encorrespondance st´eréo bas´e
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