
Appendix for High-dimensional union support

recovery in multivariate regression

A Proof of Lemma 1

We begin by noting that the block-regularized problem (2) is convex, and not
differentiable for all B. In particular, denoting by βi the ith row of B, the
subdifferential of the norm `1/`2-block norm over row i takes the following
form, which introduces the function ζ in the problem

[∂ ‖B‖`1/`2
]i =

{
ζ(βi) = βi

‖βi‖2 if βi 6= ~0

Zi such that ‖Zi‖2 ≤ 1 otherwise.

Using the notation βi to denote a row of B and denoting by

K : = {(w, v) ∈ RK × R | ‖w‖2 ≤ v}
the usual second-order cone (SOC), we can rewrite the original convex pro-
gram (2) as the second order cone program (SOCP):

min
B ∈ Rp×K

b ∈ Rp

1
2n
|||Y −XB|||2F + λn

p∑

i=1

bi s.t. (βi, bi) ∈ K, 1 ≤ i ≤ p (1])

We now dualize the conic constraints [BV04], using conic Lagrange multipli-
ers belonging to the dual cone K∗ = {(z, t) ∈ RK+1| zT w + vt ≥ 0, (w, v) ∈ K}.
The second-order cone K is self-dual [BV04], so that the convex program (1])
is equivalent to

min
B ∈ Rp×K

b ∈ Rp

max
Z ∈ Rp×K

t ∈ Rp

1
2n
|||Y −XB|||2F + λn

p∑

i=1

bi − λn

p∑

i=1

(−zT
i βi + ti bi

)

s.t. (zi, ti) ∈ K, 1 ≤ i ≤ p.

where Z is the matrix whose ith row is zi.
The advantage of an SOCP formulation is that it avoids manipulating the

subdifferentials directly and replaces them conveniently with their counterparts
arising from duality. In fact, the dual of (1]) is also an SOCP, with conic
variables (Zi, ti) ∈ RK × R+ associated to each conic constraint. Moreover,
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as we show next, the variable Zi coincides at optimality with an element of
[∂ ‖B‖`1/`2

]i which is characterized by the KKT conditions.
Indeed, since the original program is convex and strictly feasible, strong

duality holds and any pair of primal (B?, b?) and dual solutions (Z?, t?) has to
satisfy the Karush-Kuhn-Tucker conditions:

‖β?
i ‖2 ≤ b?

i , 1 < i < p (2]a)
‖z?

i ‖2 ≤ t?i , 1 < i < p (2]b)

z?
i

T β?
i − t?i b

?
i = 0, 1 < i < p (2]c)

∇B

[
1
2n
|||Y −XB|||2F

]∣∣∣∣
B=B?

+ λnZ? = 0 (2]d)

λn(1− t?i ) = 0 (2]e)

Since equations (2]c) and (2]e) impose the constraints t?i = 1 and b?
i = ‖β?

i ‖2,
a primal-dual solution to this conic program is determined by (B?, Z?).

Any solution satisfying the conditions in Lemma 1 also satisfies these KKT
conditions, since equation (6b) and the definition (6c) are equivalent to equa-
tion (2]d), and equation (6a) and the combination of conditions (6d) and (6c)
imply that the complementary slackness equations (2]c) hold for each primal-
dual conic pair (βi, zi).

Now consider some other primal solution B̃; when combined with the opti-
mal dual solution Ẑ, the pair (B̃, Ẑ) must satisfy the KKT conditions [Ber95].
But since for j ∈ Sc, we have ‖ẑj‖2 < 1, then the complementary slackness con-
dition (2]c) implies that for all j ∈ Sc, β̃j = 0. This fact in turn implies that the
primal solution B̃ must also be a solution to the restricted convex program (7),
obtained by only considering the covariates in the set S or equivalently by set-
ting BSc = 0Sc . But since s < n by assumption, the matrix XT

S XS is strictly
positive definite with probability one, and therefore the restricted convex pro-
gram (7) has a unique solution B?

S = B̂S . We have thus shown that a solution
(B̂, Ẑ) to the program (2) that satisfies the conditions of Lemma 1, if it exists,
must be unique.

B Inequalities with block-matrix norms

In general, the two families of matrix norms that we have introduced, ||| · |||p, q

and ‖·‖`a/`b
, are distinct, but they coincide in the following useful special case:

Lemma B.0.1. For 1 ≤ p ≤ ∞ and for r defined by 1/r + 1/p = 1 we have

‖·‖`∞/`p
= ||| · |||∞, r.

Proof. Indeed, if aT
i denotes the ith row of A, then

‖A‖`∞/`p
= max

i
‖ai‖p = max

i
max
‖yi‖r≤1

yT
i ai = max

‖y‖r≤1
max

i
|yT ai| = max

‖y‖r≤1
‖Ay‖∞ = |||A|||∞, r.
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Two immediate consequences that we find useful in the case p = r = 2 are
the following:

Corollary B.0.1. For matrices A ∈ Rm×n and Z ∈ Rn×r, we have

‖AZ‖`∞/`p
= |||AZ|||∞, r ≤ |||A|||∞,∞|||Z|||∞, r = |||A|||∞,∞ ‖Z‖`∞/`p

. (3])

Corollary B.0.2.

|||A|||r ≤ |||Im|||r,∞ |||A|||∞, r = s1/r ‖A‖`∞/`p
.

C Analysis of E(US): proof of Lemma 2

This section is devoted to the analysis of the event E(US) from equation (9),
and proves Lemma 2. We rewrite US as:

US = Σ̂−
1
2

SS

W̃√
n
− λn(Σ̂SS)−1ẐS , with W̃ : =

1√
n

(Σ̂SS)−
1
2 XT

S W.

Using this representation and the triangle inequality, we get ‖US‖`∞/`2
≤ T1+T2

where T1 :=
∥∥∥(Σ̂SS)−

1
2 W̃√

n

∥∥∥
`∞/`2

is a variance term due to the noise, and T2 :=

λn

∥∥∥(Σ̂SS)−1ẐS

∥∥∥
`∞/`2

is a bias term coming from the regularization.

C.1 Bias term

Using inequality (3]), we have T2 ≤ λn

∣∣∣
∣∣∣
∣∣∣ (Σ̂SS)−1

∣∣∣
∣∣∣
∣∣∣
∞

∥∥∥ẐS

∥∥∥
`∞/`2

≤ λn

∣∣∣
∣∣∣
∣∣∣ (Σ̂SS)−1

∣∣∣
∣∣∣
∣∣∣
∞

because, by construction,
∥∥∥ẐS

∥∥∥
`∞/`2

≤ 1.

Therefore

T2

λn
≤ ∣∣∣∣∣∣ (ΣSS)−1

∣∣∣∣∣∣
∞+

∣∣∣
∣∣∣
∣∣∣ (Σ̂SS)−1 − (ΣSS)−1

∣∣∣
∣∣∣
∣∣∣
∞
≤ Dmax+

√
s
∣∣∣
∣∣∣
∣∣∣ (Σ̂SS)−1 − (ΣSS)−1

∣∣∣
∣∣∣
∣∣∣
2

But the whitened random matrix X̃S := Σ−1/2
SS XS has i.i.d. standard Gaus-

sian entries and satisfies:
∣∣∣
∣∣∣
∣∣∣ (Σ̂SS)−1 − (ΣSS)−1

∣∣∣
∣∣∣
∣∣∣
2
≤ ∣∣∣∣∣∣ (ΣSS)−1

∣∣∣∣∣∣
2

∣∣∣
∣∣∣
∣∣∣ (X̃T

S X̃S/n)−1 − Is

∣∣∣
∣∣∣
∣∣∣
2
≤ 1

Cmin

∣∣∣
∣∣∣
∣∣∣ (X̃T

S X̃S/n)−1 − Is

∣∣∣
∣∣∣
∣∣∣
2
,

From concentration results in random matrix theory [DS01], for s/n → 0, with
probability 1− exp(−Θ(n)),we have

∣∣∣
∣∣∣
∣∣∣ (X̃T

S X̃S/n)−1 − Is

∣∣∣
∣∣∣
∣∣∣
2

≤ O
(√

s

n

)
and therefore

T2

λn
≤ Dmax +O

(
s√
n

)
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C.2 Noise term

On the other hand, conditionally on XS , the other term, T1, is a maximum of
χ-distributed random variables, and using concentration results for χ2 random
variables and for spectral matrix norms, we have

Lemma C.2.1. With probability 1−O (exp(−Θ(log s))) , T1
2 ≥ 8K

Cmin

log s
n

Proof. Note that conditioned on XS , we have (vec(W̃ ) | XS) ∼ N(~0s×K , Is ⊗
IK) where vec(A) denotes the vectorization of matrix A . Using this fact and
the definition of the block `∞/`2 norm,

T1 = max
i∈S

∥∥∥∥∥eT
i (Σ̂SS)−

1
2

W̃√
n

∥∥∥∥∥
2

≤
∣∣∣
∣∣∣
∣∣∣ (Σ̂SS)−1

∣∣∣
∣∣∣
∣∣∣
1/2

2

[
1
n

max
i∈S

ζ2
i

]1/2

,

which defines ζ2
i as independent χ2 variates with K degrees of freedom. Using

the tail bound in Lemma E.0.1 with t = 2K log s > K, we have

P
[

1
n

max
i∈S

ζ2
i ≥

4K log s

n

]
≤ exp

(
−2K log s

(
1− 2

√
1

2 log s

))
→ 0.

Defining the event T : =
{∣∣∣

∣∣∣
∣∣∣ (Σ̂SS)−1

∣∣∣
∣∣∣
∣∣∣
2
≤ 2

Cmin

}
, we have P[T ] ≥ 1−2 exp(−Θ(n)),

again using concentration results from random matrix theory [DS01]. Therefore,

P

[
T1 ≥

√
8K log s

Cminn

]
≤ P

[
T1 ≥

√
8K log s

Cminn

∣∣∣∣∣ T
]

+ P[T c]

≤ P
[

1
n

max
i∈S

ζ2
i ≥

4K log s

n

]
+ 2 exp(−Θ(n))

= O (exp(−Θ(log s))) → 0.

Combining noise and bias terms yields that, under assumption A3 and con-
ditions (5) of Theorem 1, with probability 1− exp(−Θ(log s)), we have

‖US‖`∞/`2
≤ O

(√
(log s)

n

)
+ λn

(
Dmax +O

(√
s2

n

))
.

which proves lemma 2.
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D Analysis of E(VSc): proofs.

By definition of the model (1) and by construction of the primal-dual pair (B̂, Ẑ),
the following conditional independence hold, and play a key role in the following
analysis.

W⊥⊥XSc | XS , ẐS⊥⊥XSc | XS , and ẐS⊥⊥XSc | {XS ,W}.

D.1 Proof of Lemma 3

Statement of lemma 3:

1. Under assumption A2, T ′1 ≤ 1− γ.

2. Under conditions (5) of Theorem 1, T ′2 = op(1).

Both terms T ′1 and T ′2 rely on the matrix expectations E [V |XS ] and E [V |
XS ,W ] which lemmas D.2.1 and D.2.2 show to be respectively:

E [V | XS ] = −λnΣScSΣ−1
SSE [ẐS |XS ] and E [V | XS ,W ] = −λn

n
ΣScSΣ−1

SSẐS .

For T ′1 = ‖E [V | XS ]‖`∞/`2
, using the matrix-norm inequality (3]) and then

Jensen’s inequality yields the announced result:

T ′1 = ‖ΣScSΣ−1
SSE [ẐS |XS ]‖`∞/`2 ≤

∣∣∣∣∣∣ ΣScSΣ−1
SS

∣∣∣∣∣∣
∞ E [‖ẐS‖`∞/`2 |XS ] ≤ (1− γ).

For T ′2 = ‖E [V | XS ]− E [V | XS ,W ]‖`∞/`2
, using again inequality (3]),

we have

T ′2 ≤ ∣∣∣∣∣∣ ΣScS(ΣSS)−1
∣∣∣∣∣∣
∞ ‖ẐS − E [ẐS |XS ]‖`∞/`2

≤ (1− γ)E
[∥∥∥ẐS − Z∗S

∥∥∥
`∞/`2

]
+ (1− γ)

∥∥∥ẐS − Z∗S
∥∥∥

`∞/`2

But Lemma D.2.3, which relates the consistency of the primal variables to the
consistency of dual variables, shows that

∥∥∥ẐS − Z∗S
∥∥∥

`∞/`2
= op(1), so that the

(sub)gradients of the regularization are consistent on the support S. This shows
that T ′2 = op(1).

D.2 Technical lemmas

Lemma D.2.1. E [V | XS ] = −λnΣScSΣ−1
SSE [ẐS |XS ].

Proof. Using the conditional independencies W⊥⊥XSc |XS and ẐS⊥⊥XSc |XS ,
we have

E [V | XS ] = E [XT
Sc |XS ]

(
[ΠS − In]

E [W |XS ]
n

− λn
XS

n
(Σ̂SS)−1E [ẐS |XS ]

)
.

Since E [W |XS ] = 0, the first term vanishes, and using E [XT
Sc |XS ] = ΣScSΣ−1

SSXT
S ,

we obtain the announced expression.
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Lemma D.2.2. E [V | XS ,W ] = −λn

n ΣScSΣ−1
SSẐS.

Proof. Appealing to the conditional independence ẐS⊥⊥XSc | {XS ,W}, we
have

E [V | XS ,W ] = E [XT
Sc | XS ,W ]

(
[ΠS − In]

W

n
− λn

XS

n
(Σ̂SS)−1E [ẐS |XS ,W ]

)
.

Observe that E [ẐS |XS , W ] = ẐS because (XS ,W ) uniquely specifies B̂S through
the convex program (7), and the triple (XS ,W, B̂S) defines ẐS through equa-
tion (6b). Moreover, the noise term disappears because the kernel of the or-
thogonal projection matrix (In − ΠS) is the same as the range space of XS ,
and

E [XT
Sc | XS , W ][ΠS − In] = E [XT

Sc | XS ][ΠS − In]
= ΣScSΣ−1

SSXT
S [ΠS − In] = 0.

The result follows from the fact that E [XT
Sc | XS ,W ] = E [XT

Sc | XS ] =
ΣScSΣ−1

SSXT
S .

Lemma D.2.3. Define the matrix ∆ ∈ Rs×K with rows ∆i : = Ui/‖β∗i ‖2. As
long as ‖∆i‖2 ≤ 1/2 for all row indices i ∈ S, we have

∥∥∥ẐS − ζ(B∗
S)

∥∥∥
`∞/`2

≤ 4 ‖∆‖`∞/`2
.

Hence ‖∆‖`∞/`2
=op(1) (shown in Sec. 3.1) implies that

∥∥∥ẐS−ζ(B∗
S)

∥∥∥
`∞/`2

=

op(1).

Proof. From lemma 2 , the condition ‖∆i‖2 ≤ 1/2 implies that β̂i 6= ~0 and hence
Ẑi = β̂i/‖β̂i‖2 for all rows i ∈ S. Therefore, using the notation Z∗i = β∗i /‖β∗i ‖2
we have

Ẑi − Z∗i =
β̂i

‖β̂i‖2
− Z∗i =

Z∗i + ∆i

‖Z∗i + ∆i‖2 − Z∗i

= Z∗i

(
1

‖Z∗i + ∆i‖2 − 1
)

+
∆i

‖Z∗i + ∆i‖2 .

Note that, for z6=0, g(z, δ) = 1
‖z+δ‖2 is differentiable with respect to δ, with

gradient ∇δ g(z, δ) = − z+δ
2‖z+δ‖32 . By the mean-value theorem, there exists h ∈

[0, 1] such that

1
‖z + δ‖2 − 1 = g(z, δ)− g(z, 0) = ∇δ g(z, hδ)T δ = − (z + hδ)T δ

2‖z + hδ‖32
,
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which implies that there exists hi ∈ [0, 1] such that

‖Ẑi − Z∗i ‖2 ≤ ‖Z∗i ‖2
|(Z∗i + hi∆i)T ∆i|
2‖Z∗i + hi∆i‖32

+
‖∆i‖2

‖Z∗i + ∆i‖2
≤ ‖∆i‖2

2‖Z∗i + hi∆i‖22
+

‖∆i‖2
‖Z∗i + ∆i‖2 . (4])

We note that ‖Z∗i ‖2 = 1 and ‖∆i‖2 ≤ 1
2 imply that ‖Z∗i +hi∆i‖2 ≥ 1

2 . Combined
with inequality (4]), we obtain ‖Ẑi − Z∗i ‖2 ≤ 4‖∆i‖2, which proves the lemma.

D.3 Proof of Lemma 4

We begin by noting that conditionally on XS and W , each vector Vj ∈ RK is
normally distributed. Since Cov(X(j) | XS , W ) = (ΣSc|S)jj In, we have

Cov(Vj | XS , W ) = Mn (ΣSc|S)jj

where the K ×K matrix Mn = Mn(XS ,W ) is given by

Mn : =
λ2

n

n
ẐT

S (Σ̂SS)−1ẐS +
1
n2

WT (ΠS − In)W. (5])

In the expression of Mn, the cross terms of the form WT (ΠS − In)(Σ̂SS)−1ẐS

vanish in the previous expression because of the same orthogonality arguments
as in the proof of lemma D.2.2. Conditionally on W and XS , the matrix Mn is
fixed, and we have

( ‖Vj − E [Vj | XS , W ]‖22 |W,XS

) d=
(
ΣSc |S

)
jj

ξT
j Mnξj .

where ξj ∼ N(~0K , IK).

D.4 Proof of Lemma 5

Statement of lemma 5:
Under the conditions (5) of Theorem 1, |||Mn −M∗|||2 = op (|||M∗|||2 ) where

M∗ =
λ2

n

n
(Z∗S)T (ΣSS)−1Z∗S , so that |||M∗|||2 = λ2

n

ψ(B∗)
n

.

Consequently, for any δ > 0 the following event T (δ) has probability converging
to 1.

T (δ) : =
{
|||Mn|||2 ≤ λ2

n

ψ(B∗)
n

(1 + δ)
}

.

With Z∗S = ζ(B∗
S), define the K ×K random matrix

M∗
n : =

λ2
n

n
(Z∗S)T (Σ̂SS)−1Z∗S +

1
n2

WT (In −ΠS)W

7



and note that (using standard results on Wishart matrices [And84])

E [M∗
n] =

λ2
n

n− s− 1
(Z∗S)T (ΣSS)−1Z∗S + σ2 n− s

n2
IK .

To bound Mn from M∗ in spectral norm, we use the triangle inequality:

|||Mn −M∗|||2 ≤ |||Mn −M∗
n|||2 + |||M∗

n − E [M∗
n]|||2 + |||E [M∗

n]−M∗|||2 (6])

First, we have |||M∗
n − E [M∗

n]|||2 ≤ T †1 + T †2 where

T †1 =
λ2

n

n
|||Z∗S |||22

∣∣∣∣
∣∣∣∣
∣∣∣∣

n

n− s− 1
(ΣSS)−1 − (Σ̂SS)−1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

= op

(
λ2

ns

n

)
,

since |||Z∗S |||22 ≤ s, and
∣∣∣
∣∣∣
∣∣∣ n

n−s−1 (ΣSS)−1 − (Σ̂SS)−1
∣∣∣
∣∣∣
∣∣∣
2

= op(1), and

T †2 : =
1
n2

∣∣∣∣∣∣ WT (In −ΠS)W − σ2(n− s)IK

∣∣∣∣∣∣
2

= Op

(
1
n

)
= op

(
λ2

ns

n

)
,

since λ2
ns → +∞. Overall, we conclude that

|||M∗
n − E [M∗

n]|||2 = op

(
λ2

ns

n

)
. (7])

Then considering the first term in decomposition (6]), we have

|||M∗
n −Mn|||2 =

λ2
n

n

∣∣∣
∣∣∣
∣∣∣ Z∗SΣ̂−1

SSZ∗S − ẐSΣ̂−1
SSẐS

∣∣∣
∣∣∣
∣∣∣
2

=
λ2

n

n

∣∣∣
∣∣∣
∣∣∣ Z∗SΣ̂−1

SS(Z∗S − ẐS) + (Z∗S − ẐS)Σ̂−1
SS(Z∗S + (ẐS − Z∗S))

∣∣∣
∣∣∣
∣∣∣
2

≤ λ2
n

n

∣∣∣
∣∣∣
∣∣∣ Σ̂−1

SS

∣∣∣
∣∣∣
∣∣∣
2

∣∣∣
∣∣∣
∣∣∣ Z∗S − ẐS

∣∣∣
∣∣∣
∣∣∣
2

(
2 |||Z∗S |||2 +

∣∣∣
∣∣∣
∣∣∣ Z∗S − ẐS

∣∣∣
∣∣∣
∣∣∣
2

)

Moreover, since
∣∣∣
∣∣∣
∣∣∣ Σ̂−1

SS

∣∣∣
∣∣∣
∣∣∣
2

= Op(1), |||Z∗S |||2 = Op(
√

s),
∣∣∣
∣∣∣
∣∣∣ Z∗S − ẐS

∣∣∣
∣∣∣
∣∣∣
2
≤ √

s
∥∥∥Z∗S − ẐS

∥∥∥
`∞/`2

from Corollary B.0.2 and
∥∥∥Z∗S − ẐS

∥∥∥
`∞/`2

= op(1) from Lemma D.2.3, we con-

clude that

|||M∗
n −Mn|||2 = op

(
λ2

ns

n

)
. (8])

For the matrix M∗, we have

|||M∗|||2 =
λ2

n

n− s− 1
ψ(B∗) +

σ2

n

(
1− s

n

)
= (1 + o(1))

[
λ2

nψ(B∗)
n

]
. (9])

Therefore |||M∗|||2 = Θ(λ2
ns/n). Moreover, since

(
1
n
− 1

n− s− 1

)
λ2

n ψ(B∗) = o

(
λ2

n s

n

)
, and

σ2

n

(
1− s

n

)
= o

(
λ2

n s

n

)
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using the first condition (5) on λn, we have

|||M∗ − E [M∗
n]|||2 = o

(
λ2

ns

n

)
(10])

Combining bounds (7]), (8]), (10]) in the decomposition (6]) and (9]) shows
that |||Mn −M∗|||2 = op (|||M∗|||2 ) so that we can conclude that for any δ > 0
the event

T (δ) : =
{
|||Mn|||2 ≤ λ2

n

ψ(B∗)
n

(1 + δ)
}

has probability converging to 1.

D.5 Proof of Lemma 6

Statement of lemma 6:
If there exists ν > 0, such that t∗(n,B∗) > (1 + ν) log(p− s), then

P
[
max
j∈Sc

‖ξj‖22 ≥ 2t∗(n,B∗)
]
→ 0 .

Note that t∗ → +∞ under the specified scaling of (n, p, s). By applying
Lemma E.0.1 from Appendix E on large deviations for χ2 variates with t =
t∗(n,B∗), we obtain

P[T ′3 ≥ γ | T (δ)] ≤ (p−s) exp

(
−t∗

[
1− 2

√
K

t∗

])
≤ (p−s) exp (−t∗ (1− δ)) ,

for (n, p, s) sufficiently large. Thus, the bound (11]) tends to zero as long as
there exists ν > 0 such that we have (1− δ) t∗(n, B∗) > (1 + ν) log(p− s), or
equivalently and as claimed

n > (1 + ν)
(1 + δ)
(1− δ)

Cmax

γ2
[2ψ(B∗) log(p− s)] .

E Large deviations for χ2-variates

Lemma E.0.1. Let Z1, . . . , Zm be i.i.d. χ2-variates with d degrees of freedom.
Then for all t > d, we have

P[ max
i=1,...,m

Zi ≥ 2t] ≤ m exp
(
− t

[
1− 2

√
d

t

])
. (11])

Proof. Given a central χ2-variate X with d degrees of freedom, Laurent and
Massart [LM98] prove that P[X − d ≥ 2

√
d x + 2x] ≤ exp(−x), or equivalently

P
[
X ≥ x + (

√
x +

√
d)2

]
≤ exp(−x),

9



valid for all x > 0. Setting
√

x +
√

d =
√

t, we have

P[X ≥ 2t]
(a)

≤ P
[
X ≥ (

√
t−

√
d)2 + t

]
≤ exp(−(

√
t−

√
d)2)

≤ exp(−t + 2
√

td)

= exp

(
−t

[
1− 2

√
d

t

])
,

where inequality (a) follows since
√

t ≥
√

d by assumption. Thus, the claim (11])
follows by the union bound.
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