Appendix for High-dimensional union support
recovery in multivariate regression

A Proof of Lemma 1

We begin by noting that the block-regularized problem (2) is convex, and not
differentiable for all B. In particular, denoting by 3; the i*" row of B, the
subdifferential of the norm ¢;/fs-block norm over row i takes the following
form, which introduces the function ¢ in the problem

N _Bi . ' o
DBl i = P mm if 3 £ 0
Ve Z; such that || Z;]]2 <1 otherwise.

Using the notation 3; to denote a row of B and denoting by
K:={(w,v) e RE xR | |w]2 < v}

the usual second-order cone (SOC), we can rewrite the original convex pro-
gram (2) as the second order cone program (SOCP):
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Beck i=1

b € RP
We now dualize the conic constraints [BV04], using conic Lagrange multipli-
ers belonging to the dual cone K* = {(z,t) € REH|2Tw + ot > 0, (w,v) € K}.
The second-order cone K is self-dual [BV04], so that the convex program (1%)
is equivalent to
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b eRP t € RP - -

s.t. (zi,t;) e K, 1<i<p.

where Z is the matrix whose it? row is z;.
The advantage of an SOCP formulation is that it avoids manipulating the
subdifferentials directly and replaces them conveniently with their counterparts
arising from duality. In fact, the dual of (1%) is also an SOCP, with conic
variables (Z;,t;) € RE x R* associated to each conic constraint. Moreover,



as we show next, the variable Z; coincides at optimality with an element of
[01|Bll4, y¢,li which is characterized by the KKT conditions.

Indeed, since the original program is convex and strictly feasible, strong
duality holds and any pair of primal (B*,b*) and dual solutions (Z*,t*) has to
satisfy the Karush-Kuhn-Tucker conditions:

18112 < bf, l<i<p (2a)
27l <87, 1<i<p (2°b)
2B -t =0, 1<i<p (2%c)
1

Vo gV - XBIE]| ez 2k

2n B=B*
An(1—17) =0 (2%e)
Since equations (2%c) and (2fe) impose the constraints tf = 1 and b* = ||37||2,

a primal-dual solution to this conic program is determined by (B*, Z*).

Any solution satisfying the conditions in Lemma 1 also satisfies these KKT
conditions, since equation (6b) and the definition (6¢) are equivalent to equa-
tion (2fd), and equation (6a) and the combination of conditions (6d) and (6c)
imply that the complementary slackness equations (2%c) hold for each primal-
dual conic pair (f;, 2;)-

Now consider some other primal solution B when combined with the opti-
mal dual solution Z, the pair (B, Z) must satisfy the KKT conditions [Ber95].
But since for j € S¢, we have ||2;|]2 < 1, then the complementary slackness con-
dition (2%c) implies that for all j € S, Bj = (. This fact in turn implies that the
primal solution B must also be a solution to the restricted convex program (7),
obtained by only considering the covariates in the set S or equivalently by set-
ting Bge = O0gc. But since s < n by assumption, the matrix XgXS is strictly
positive definite with probability one, and therefore the restricted convex pro-
gram (7) has a unique solution B§ = Bg. We have thus shown that a solution
(§, 2) to the program (2) that satisfies the conditions of Lemma 1, if it exists,
must be unique.

B Inequalities with block-matrix norms

In general, the two families of matrix norms that we have introduced, || - ||, 4
and ||-[|, /,, are distinct, but they coincide in the following useful special case:

Lemma B.0.1. For 1 <p < oo and for r defined by 1/r +1/p =1 we have
Illese, = I llso,r
Proof. Indeed, if al denotes the i row of A, then

max max|y’a;| = max [Ayle = A,

A = lp = ; ai =
| Heoc/zp m?XHaZ”P max, max Yi i lyll-<1 @ lyll-<1

ly:ll-<1

O



Two immediate consequences that we find useful in the case p = r = 2 are
the following:

Corollary B.0.1. For matrices A € R™*"™ and Z € R"*", we have
1AZ,_ s, = NIAZllo,r < I Allso, 01 Zlloc,r = I Alloo, 0 121l /e, - (3)
Corollary B.0.2.

FAlL < Wl oo N Ao, » = s 1All,_ e, -

C Analysis of £(Ug): proof of Lemma 2

This section is devoted to the analysis of the event £(Ug) from equation (9),
and proves Lemma 2. We rewrite Ug as:

S o1 . ~ I & 1
—M(Zss) ' Zs,  with W::%(ESS) 2 XTW.

Using this representation and the triangle inequality, we get |Us|l,_ ., < T1+T2

Us = 3

SI=

where T} = H(iss)_% % . is a variance term due to the noise, and T :=
2
An (iss)’lésHZ p is a bias term coming from the regularization.
oo 2

C.1 Bias term

|G 7], =2
oo Zw/éz

Using inequality (3%), we have Tp < A, ‘ (iss)_l m

oo

ZsH <1.
4

because, by construction, ’ <
oo/ l2

Therefore
) ) )
3 SN @ss) ot || G977 = 5907 < Dt V5 | S5 = (507

But the whitened random matrix )~(s = 2;;/2XS has i.i.d. standard Gaus-
sian entries and satisfies:

1
<
2 Cmin

H‘ (Ess)7 - (Ess)_lm2 < || Zss)7 M, H‘ (XIXs/n)™t —1I,

From concentration results in random matrix theory [DS01], for s/n — 0, with
probability 1 — exp(—O(n)),we have

s Ts s
< \/ = =< -~
< O < n) and therefore NS Dpax +0O < \/ﬁ>

| x5 -],

| (XEXs/m -1,

2

)



C.2 Noise term

On the other hand, conditionally on Xg, the other term, 77, is a maximum of
x-distributed random variables, and using concentration results for y? random
variables and for spectral matrix norms, we have

. . 2 8K 1
Lemma C.2.1. With probability 1 — O (exp(—O(logs))), Ti" > & - =&
Proof. Note that conditioned on Xg, we have (vec(AW/) | Xs) ~ N(Osxr, Is ®
Ix) where vec(A) denotes the vectorization of matrix A . Using this fact and

the definition of the block ¢, /¢3 norm,

w
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1/2 {1
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el (Sss)7?

77 = max
€S
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&, [mes
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which defines ¢? as independent y? variates with K degrees of freedom. Using
the tail bound in Lemma E.0.1 with t = 2K log s > K, we have

1 4K'1 [ 1
P fmaxﬁzﬁ < exp|—2Klogs|1—2 — 0
n ies n 2log s

Defining the event 7 : = {m (igs)_l HL < ij }, we have P[7T] > 1-2exp(—0(n)),

again using concentration results from random matrix theory [DS01]. Therefore,

8K log s 8K log s
PITh>y————| < P|Th>y//——|T|+PT°
' Cminn ] - b= Cminn * [ ]
1 4K'1
< P [ max (7 > ogs] + 2exp(—O(n))

n ies n
= O (exp(—BO(logs))) — 0.

O

Combining noise and bias terms yields that, under assumption A3 and con-
ditions (5) of Theorem 1, with probability 1 — exp(—©(log s)), we have

1 2
1Us]l, /eQS(o( (Ogs)>+xn (Dmax+o< S))
o n n

which proves lemma 2.



D Analysis of £(Vse): proofs.

By definition of the model (1) and by construction of the primal-dual pair (E Z ),
the following conditional independence hold, and play a key role in the following
analysis.

W Xge | Xg,  Zsll Xge | Xg, and Zgll Xge

{XSaW}'

D.1 Proof of Lemma 3

Statement of lemma 3:

1. Under assumption A2, T{ <1 —~.
2. Under conditions (5) of Theorem 1, T4 = o,(1).

Both terms 77 and T3 rely on the matrix expectations E [V |Xg] and E [V |
Xg, W] which lemmas D.2.1 and D.2.2 show to be respectively:

EETREPN A 15
E[V | Xs] = —AZsesEgsE [Z5] Xs] and E[V | Xg,W]= —;”256525;25.

For T{ = [[E[V" [ Xs]ll__ /e, using the matrix-norm inequality (3%) and then
Jensen’s inequality yields the announced result:
T = ||Zs5es%55E [Zs1 X5 lewsen < || Sse5Z55 ]| Bl Zs e en 1 Xs] < (1 =)

For Ty = [[E[V | Xs] —E[V | Xs,W]ll,_ s, » using again inequality (3%),
we have

T;

IN

l Zses(Zss) |Zs — E[Zs| Xs] e s

< (1—7)1@“‘25—2; ]+(1—7) HZS—Z;

N

KOQ/ZQ Zoo/e2

But Lemma D.2.3, which relates the consistency of the primal variables to the

= 0p(1), so that the
eoo/ZQ
(sub)gradients of the regularization are consistent on the support S. This shows

that T3 = o,(1).

consistency of dual variables, shows that H/Z\S - 75

D.2 Technical lemmas
Lemma D.2.1. E[V | Xg] = =\, Zses054E [Z5]| Xs).

Proof. Using the conditional independencies WL Xg. | Xg and ZSJ_L Xge | Xs,
we have

EWIXs] An% (Ess)7'E [ZS|XS]> :

BV | Xs] = EWXEIXS] (s - 1070

Since E [IW]|Xg] = 0, the first term vanishes, and using E [X%. | Xg] = Yges X g5 X2,
we obtain the announced expression. O




Lemma D.2.2. E[V | Xg, W] = —22%4.4%51 7s.

Proof. Appealing to the conditional independence Zsll Xge | {Xs, W}, we
have

w
E[V | Xs,W] = E[XZ | Xs,W] ([HS—In]n

Xs & \1is
— A= (Bss) 1IE[ZS|XS,W]> .
Observe that E [25|XS, W] = ZS because (Xg, W) uniquely specifies Es through
the convex program (7), and the triple (Xg, W, Bg) defines Zg through equa-
tion (6b). Moreover, the noise term disappears because the kernel of the or-
thogonal projection matrix (I, — IIg) is the same as the range space of Xg,
and

E[XE | Xs,W]llls —I,] = E[XL | Xs][lls — I,]
= Yges¥geXe s —1I,] = 0.

The result follows from the fact that E[XZ. | Xg,W] = E[XZ | Xs] =
YgesUgaXE. O

Lemma D.2.3. Define the matriz A € R*K with rows A; := U, /|| B¢]l2. As
long as |As||2 < 1/2 for all row indices i € S, we have

HZs—C(BE)HZ s < 4[All, e, -

Hence [|All, 0, =0p(1) (shown in Sec. 3.1) implies that HES—C(Bg)
op(1).

Proof. From lemma 2 , the condition [|A;]]; < 1/2 implies that j; # 0 and hence
Z; = Bi/]|B:ll2 for all rows i € S. Therefore, using the notation Z; = 5;/||6; |2
we have

‘Zoo/ZZZ

B-z = L= Ato g
H@HQ ||Zz +AiH2

- g ( 1 1) + 2
i \0Zr + Al 1Z; + Adlle”
Note that, for z#0, g(z,d) = m

—ﬁ. By the mean-value theorem, there exists h €
2

is differentiable with respect to &, with
gradient Vs g(z,9) =
[0, 1] such that

1
Iz + 6]l

(z+ ho)Ts

1= g(275) - g(Z,O) = V§ g(zvha)T(s = _m7
2



which implies that there exists h; € [0, 1] such that

[(ZF + hiA)T A n A2
212y + hiAill3 1127 + Adll2
1Al A2

= " + . (4%)
2012 + hidill3 1125 4 Al

1Zi = Z{ |2

A

12712

We note that || Z} ||> = 1 and || A2 < 3 imply that || Z;+h;A;||2 > 2. Combined
with inequality (4%), we obtain ||Z; — Z; |2 < 4||A;]|2, which proves the lemma.

O
D.3 Proof of Lemma 4

We begin by noting that conditionally on X and W, each vector V; € RE is
normally distributed. Since Cov(XW) | Xg, W) = (Eg¢5);; I, We have

COV(Vj | Xs,W) = M, (EsclS)jj

where the K x K matrix M,, = M, (Xg, W) is given by

N o1
M, = ;nZ§(Zss) 1Zs+ﬁWT(HS—In)W- (5%)

In the expression of M,,, the cross terms of the form W7 (Ilg — In)(igg)’lés
vanish in the previous expression because of the same orthogonality arguments
as in the proof of lemma D.2.2. Conditionally on W and Xg, the matrix M, is
fixed, and we have

d
(IV; —E[V; | Xs, W[5 W,Xs) = (25c|s)jj§jTMn§j-
where & ~ N(Og, I).

D.4 Proof of Lemma 5

Statement of lemma 5:
Under the conditions (5) of Theorem 1, || M,, — M*||, = o, (|| M*||, ) where

* A?L * — * * B*
M= AT (Ses)7 25, so that | ar], =33 Y

Consequently, for any § > 0 the following event T (§) has probability converging
to 1.

70) = {1, <2 220 i),

With Z§ = ((BY), define the K x K random matrix

* )‘2 * <« — * 1
M: = #(ZS)T(ZSS) 1ZS+EWT(I”—HS)W



and note that (using standard results on Wishart matrices [And84])

* >\2 * — *
E[M;] = n_isn_l(zs)T(Ess) ‘Zs+o°

n —
n2

® I

To bound M,, from M™* in spectral norm, we use the triangle inequality:

I Mo = My < | Mo = M, + 1 My = E MG, + I E[M,] - M, (67)

A2 s
= O —_—
2 "\n /)’

1 (Tss) T - (iss)JW = 0p(1), and

2

First, we have || M; — E [M?][l, < T + T where

A2 ) _
h = Znyz: ——(Bgs) = (Zss) 7!
1 M Zsls || == (Ess) (Ess)

‘ n

since || Z§ |\|§ < s, and

TS = LW, - T W - o Lell, = 0, (L) = o (222
I oom LW - - o s, = 0, (L) = o, (252,
since A\2s — +o00. Overall, we conclude that
. " As
1 -EDEIL = o (222). (7)
Then considering the first term in decomposition (6), we have
* )‘31 xa—1 7% 7 w—-17
1M - Moy = 22| 2585825 - 255552 )
)\31 * 0 — * rd * 7\ — * > *
= ‘H Z5555(25 — Zs) + (Zs — Zs)S55(28 + (Zs — Zs))‘HQ
A2 [l e - -
< sl 7 -2, Crzz | 2z - 2]

Moreover, since H’ igémQ = O0p(1), ]| Z5|l, = Op(V/5),

25 = Zs|, = v5 |25 - 75|,
2
from Corollary B.0.2 and HZg — ZSH@ p = 0,(1) from Lemma D.2.3, we con-
oo 2
clude that

oo /L2
N A2s
1805 = 20,0 =y (22°)). )

For the matrix M*, we have

1y = 2w + % (1= 2) = oy [RUED] o

n—s—1 n n n

Therefore || M*||, = ©(A2s/n). Moreover, since

1 1 9 o (Al o? s\ [(Ais
(n‘n_s_1>%¢<3>—°( n ) and (1= 2) =02




using the first condition (5) on A, we have
1 - Bl = o (222 (107

Combining bounds (7%), (8%), (10%) in the decomposition (6%) and (9%) shows
that || M,, — M*||, = o, (]| M*||,) so that we can conclude that for any ¢ > 0
the event

¢(B7)

76) i= {IMall, <22 52 (1+0) )

n
has probability converging to 1.

D.5 Proof of Lemma 6

Statement of lemma 6:
If there exists v > 0, such that t*(n, B*) > (1+ v)log(p — s), then

P [max 1612 > 2t*<n,B*>} ~0.
jES*®

Note that t* — +oo under the specified scaling of (n,p,s). By applying
Lemma E.0.1 from Appendix E on large deviations for x? variates with t =
t*(n, B*), we obtain

BTy >~ | T() < (p—s) exp (—t* [1—2\/5Dg<p—s> exp (—t* (1-9)).

for (n,p,s) sufficiently large. Thus, the bound (11%) tends to zero as long as
there exists v > 0 such that we have (1 —9)t*(n,B*) > (1 +v)log(p — s), or
equivalently and as claimed

146
1-0

Cj;" 24(B) log(p — 5)].

—~
~

n > (1+v)

~

E Large deviations for y?-variates

Lemma E.0.1. Let Z1,...,Z,, be i.i.d. x*-variates with d degrees of freedom.
Then for all t > d, we have

d
m . _ _ z #
]P)[i=1,?fm Ziz 2] < mexp ( t{l 2\/;} ) (11%)

Proof. Given a central y2-variate X with d degrees of freedom, Laurent and
Massart [LM98] prove that P[X —d > 2vdx 4 2z] < exp(—z), or equivalently

P[XZa+(Va+vVd?] < exp(-a),



valid for all z > 0. Setting \/z + Vd = V't, we have

P[X > 2t] (%) P [X > (Vi—Vd)? + t} < exp(—(Vt — Vd)?)

< exp(—t 4 2Vtd)
exp (—t [1 — 2\/3]) ,

where inequality (a) follows since v/t > V/d by assumption. Thus, the claim (11%)
follows by the union bound. O
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