Appendix for High-dimensional union support recovery in multivariate regression

A Proof of Lemma 1

We begin by noting that the block-regularized problem (2) is convex, and not differentiable for all B. In particular, denoting by β_i the i^{th} row of B, the subdifferential of the norm ℓ_1/ℓ_2 -block norm over row i takes the following form, which introduces the function ζ in the problem

$$[\partial \|B\|_{\ell_1/\ell_2}]_i = \begin{cases} \zeta(\beta_i) = \frac{\beta_i}{\|\beta_i\|_2} & \text{if } \beta_i \neq \vec{0} \\ Z_i & \text{such that } \|Z_i\|_2 \le 1 & \text{otherwise.} \end{cases}$$

Using the notation β_i to denote a row of B and denoting by

$$\mathcal{K} := \{ (w, v) \in \mathbb{R}^K \times \mathbb{R} \mid \|w\|_2 \le v \}$$

the usual second-order cone (SOC), we can rewrite the original convex program (2) as the second order cone program (SOCP):

$$\min_{\substack{B \in \mathbb{R}^{p \times K} \\ b \in \mathbb{R}^{p}}} \frac{1}{2n} \left\| Y - XB \right\|_{F}^{2} + \lambda_{n} \sum_{i=1}^{p} b_{i} \quad \text{s.t.} \quad (\beta_{i}, b_{i}) \in \mathcal{K}, \quad 1 \le i \le p \quad (1^{\sharp})$$

We now dualize the conic constraints [BV04], using conic Lagrange multipliers belonging to the dual cone $\mathcal{K}^* = \{(z,t) \in \mathbb{R}^{K+1} | z^T \mathbf{w} + vt \ge 0, (\mathbf{w}, v) \in \mathcal{K}\}$. The second-order cone \mathcal{K} is self-dual [BV04], so that the convex program (1^{\sharp}) is equivalent to

$$\min_{\substack{B \in \mathbb{R}^{p \times K} \\ b \in \mathbb{R}^{p}}} \max_{\substack{Z \in \mathbb{R}^{p \times K} \\ t \in \mathbb{R}^{p}}} \frac{1}{2n} \| Y - XB \|_{F}^{2} + \lambda_{n} \sum_{i=1}^{p} b_{i} - \lambda_{n} \sum_{i=1}^{p} \left(-z_{i}^{T} \beta_{i} + t_{i} b_{i} \right) \\$$
s.t. $(z_{i}, t_{i}) \in \mathcal{K}, \quad 1 \leq i \leq p.$

m

where Z is the matrix whose i^{th} row is z_i .

The advantage of an SOCP formulation is that it avoids manipulating the subdifferentials directly and replaces them conveniently with their counterparts arising from duality. In fact, the dual of (1^{\sharp}) is also an SOCP, with conic variables $(Z_i, t_i) \in \mathbb{R}^K \times \mathbb{R}^+$ associated to each conic constraint. Moreover,

as we show next, the variable Z_i coincides at optimality with an element of $[\partial \|B\|_{\ell_1/\ell_2}]_i$ which is characterized by the KKT conditions.

Indeed, since the original program is convex and strictly feasible, strong duality holds and any pair of primal (B^*, b^*) and dual solutions (Z^*, t^*) has to satisfy the Karush-Kuhn-Tucker conditions:

$$\|\beta_i^{\star}\|_2 \le b_i^{\star}, \quad 1 < i < p \tag{2πa}$$

$$||z_i^{\star}||_2 \le t_i^{\star}, \quad 1 < i < p$$
 (2^{\$\pm b})

$$z_i^{\star T} \beta_i^{\star} - t_i^{\star} b_i^{\star} = 0, \quad 1 < i < p \tag{2\(\mathef{z}\)} c$$

$$\nabla_B \left[\frac{1}{2n} \left\| Y - XB \right\|_F^2 \right] \Big|_{B=B^\star} + \lambda_n Z^\star = 0$$
(2[#]d)

$$\lambda_n (1 - t_i^\star) = 0 \tag{2$$$2$}$$

Since equations $(2^{\sharp}c)$ and $(2^{\sharp}e)$ impose the constraints $t_i^{\star} = 1$ and $b_i^{\star} = \|\beta_i^{\star}\|_2$, a primal-dual solution to this conic program is determined by (B^{\star}, Z^{\star}) .

Any solution satisfying the conditions in Lemma 1 also satisfies these KKT conditions, since equation (6b) and the definition (6c) are equivalent to equation ($2^{\sharp}d$), and equation (6a) and the combination of conditions (6d) and (6c) imply that the complementary slackness equations ($2^{\sharp}c$) hold for each primal-dual conic pair (β_i, z_i).

Now consider some other primal solution \tilde{B} ; when combined with the optimal dual solution \hat{Z} , the pair (\tilde{B}, \hat{Z}) must satisfy the KKT conditions [Ber95]. But since for $j \in S^c$, we have $\|\hat{z}_j\|_2 < 1$, then the complementary slackness condition $(2^{\sharp}c)$ implies that for all $j \in S^c$, $\tilde{\beta}_j = 0$. This fact in turn implies that the primal solution \tilde{B} must also be a solution to the restricted convex program (7), obtained by only considering the covariates in the set S or equivalently by setting $B_{S^c} = 0_{S^c}$. But since s < n by assumption, the matrix $X_S^T X_S$ is strictly positive definite with probability one, and therefore the restricted convex program (7) has a unique solution $B_S^* = \hat{B}_S$. We have thus shown that a solution (\hat{B}, \hat{Z}) to the program (2) that satisfies the conditions of Lemma 1, if it exists, must be unique.

B Inequalities with block-matrix norms

In general, the two families of matrix norms that we have introduced, $\|\cdot\|_{p,q}$ and $\|\cdot\|_{\ell_q/\ell_b}$, are distinct, but they coincide in the following useful special case:

Lemma B.0.1. For $1 \le p \le \infty$ and for r defined by 1/r + 1/p = 1 we have

$$\|\cdot\|_{\ell_{\infty}/\ell_{p}} = \|\cdot\|_{\infty,r}$$

Proof. Indeed, if a_i^T denotes the i^{th} row of A, then

$$\|A\|_{\ell_{\infty}/\ell_{p}} = \max_{i} \|a_{i}\|_{p} = \max_{i} \max_{\|y_{i}\|_{r} \le 1} y_{i}^{T} a_{i} = \max_{\|y\|_{r} \le 1} \max_{i} |y^{T} a_{i}| = \max_{\|y\|_{r} \le 1} \|Ay\|_{\infty} = \|A\|_{\infty, r}$$

Two immediate consequences that we find useful in the case p = r = 2 are the following:

Corollary B.0.1. For matrices $A \in \mathbb{R}^{m \times n}$ and $Z \in \mathbb{R}^{n \times r}$, we have

$$\|AZ\|_{\ell_{\infty}/\ell_{p}} = \|AZ\|_{\infty,r} \le \|A\|_{\infty,\infty} \|Z\|_{\infty,r} = \|A\|_{\infty,\infty} \|Z\|_{\ell_{\infty}/\ell_{p}}.$$
(3[#])

Corollary B.0.2.

$$\| A \|_{r} \leq \| I_m \|_{r,\infty} \| A \|_{\infty,r} = s^{1/r} \| A \|_{\ell_{\infty}/\ell_{r}}$$

C Analysis of $\mathcal{E}(U_S)$: proof of Lemma 2

This section is devoted to the analysis of the event $\mathcal{E}(U_S)$ from equation (9), and proves Lemma 2. We rewrite U_S as:

$$U_S = \widehat{\Sigma}_{SS}^{-\frac{1}{2}} \frac{\widetilde{W}}{\sqrt{n}} - \lambda_n (\widehat{\Sigma}_{SS})^{-1} \widehat{Z}_S, \quad \text{with} \quad \widetilde{W} := \frac{1}{\sqrt{n}} (\widehat{\Sigma}_{SS})^{-\frac{1}{2}} X_S^T W.$$

Using this representation and the triangle inequality, we get $||U_S||_{\ell_{\infty}/\ell_2} \leq T_1 + T_2$ where $T_1 := \left\| (\widehat{\Sigma}_{SS})^{-\frac{1}{2}} \frac{\widetilde{W}}{\sqrt{n}} \right\|_{\ell_{\infty}/\ell_2}$ is a variance term due to the noise, and $T_2 := \lambda_n \left\| (\widehat{\Sigma}_{SS})^{-1} \widehat{Z}_S \right\|_{\ell_{\infty}/\ell_2}$ is a bias term coming from the regularization.

C.1 Bias term

Using inequality (3^{\$\$}), we have $T_2 \leq \lambda_n \| (\widehat{\Sigma}_{SS})^{-1} \|_{\infty} \| \widehat{Z}_S \|_{\ell_{\infty}/\ell_2} \leq \lambda_n \| (\widehat{\Sigma}_{SS})^{-1} \|_{\infty}$ because, by construction, $\| \widehat{Z}_S \|_{\ell_{\infty}/\ell_2} \leq 1$.

Therefore

$$\frac{T_2}{\lambda_n} \le \left\| \| (\Sigma_{SS})^{-1} \| \|_{\infty} + \left\| \| (\widehat{\Sigma}_{SS})^{-1} - (\Sigma_{SS})^{-1} \| \right\|_{\infty} \le D_{\max} + \sqrt{s} \left\| \| (\widehat{\Sigma}_{SS})^{-1} - (\Sigma_{SS})^{-1} \| \right\|_2$$

But the whitened random matrix $\widetilde{X}_S := \Sigma_{SS}^{-1/2} X_S$ has i.i.d. standard Gaussian entries and satisfies:

$$\left\| (\widehat{\Sigma}_{SS})^{-1} - (\Sigma_{SS})^{-1} \right\|_{2} \leq \left\| (\Sigma_{SS})^{-1} \right\|_{2} \left\| (\widetilde{X}_{S}^{T} \widetilde{X}_{S}/n)^{-1} - I_{s} \right\|_{2} \leq \frac{1}{C_{\min}} \left\| (\widetilde{X}_{S}^{T} \widetilde{X}_{S}/n)^{-1} - I_{s} \right\|_{2},$$

From concentration results in random matrix theory [DS01], for $s/n \to 0$, with probability $1 - \exp(-\Theta(n))$, we have

$$\left\| \left(\widetilde{X}_{S}^{T} \widetilde{X}_{S}/n \right)^{-1} - I_{s} \right\|_{2} \leq \mathcal{O}\left(\sqrt{\frac{s}{n}}\right) \text{ and therefore } \frac{T_{2}}{\lambda_{n}} \leq D_{\max} + \mathcal{O}\left(\frac{s}{\sqrt{n}}\right)$$

C.2 Noise term

On the other hand, conditionally on X_S , the other term, T_1 , is a maximum of χ -distributed random variables, and using concentration results for χ^2 random variables and for spectral matrix norms, we have

Lemma C.2.1. With probability $1 - \mathcal{O}\left(\exp(-\Theta(\log s))\right)$, $T_1^2 \geq \frac{8K}{C_{\min}} \frac{\log s}{n}$

Proof. Note that conditioned on X_S , we have $(\operatorname{vec}(\widetilde{W}) \mid X_S) \sim N(\vec{0}_{s \times K}, I_s \otimes I_K)$ where $\operatorname{vec}(A)$ denotes the vectorization of matrix A. Using this fact and the definition of the block ℓ_{∞}/ℓ_2 norm,

$$T_{1} = \max_{i \in S} \left\| e_{i}^{T} (\widehat{\Sigma}_{SS})^{-\frac{1}{2}} \frac{\widetilde{W}}{\sqrt{n}} \right\|_{2}$$
$$\leq \left\| \left\| (\widehat{\Sigma}_{SS})^{-1} \right\|_{2}^{1/2} \left[\frac{1}{n} \max_{i \in S} \zeta_{i}^{2} \right]^{1/2}$$

which defines ζ_i^2 as independent χ^2 variates with K degrees of freedom. Using the tail bound in Lemma E.0.1 with $t = 2K \log s > K$, we have

$$\mathbb{P}\left[\frac{1}{n}\max_{i\in S}\zeta_i^2 \ge \frac{4K\log s}{n}\right] \le \exp\left(-2K\log s\left(1-2\sqrt{\frac{1}{2\log s}}\right)\right) \to 0.$$

Defining the event $\mathcal{T} := \left\{ \left\| \| (\widehat{\Sigma}_{SS})^{-1} \| \right\|_2 \leq \frac{2}{C_{\min}} \right\}$, we have $\mathbb{P}[\mathcal{T}] \geq 1 - 2 \exp(-\Theta(n))$, again using concentration results from random matrix theory [DS01]. Therefore,

$$\mathbb{P}\left[T_{1} \ge \sqrt{\frac{8K\log s}{C_{\min}n}}\right] \le \mathbb{P}\left[T_{1} \ge \sqrt{\frac{8K\log s}{C_{\min}n}} \middle| \mathcal{T}\right] + \mathbb{P}[\mathcal{T}^{c}]$$
$$\le \mathbb{P}\left[\frac{1}{n}\max_{i\in S}\zeta_{i}^{2} \ge \frac{4K\log s}{n}\right] + 2\exp(-\Theta(n))$$
$$= \mathcal{O}\left(\exp(-\Theta(\log s))\right) \to 0.$$

Combining noise and bias terms yields that, under assumption A3 and conditions (5) of Theorem 1, with probability $1 - \exp(-\Theta(\log s))$, we have

$$\|U_S\|_{\ell_{\infty}/\ell_2} \leq \mathcal{O}\left(\sqrt{\frac{(\log s)}{n}}\right) + \lambda_n \left(D_{\max} + \mathcal{O}\left(\sqrt{\frac{s^2}{n}}\right)\right).$$

which proves lemma 2.

D Analysis of $\mathcal{E}(V_{S^c})$: proofs.

By definition of the model (1) and by construction of the primal-dual pair $(\overline{B}, \overline{Z})$, the following conditional independence hold, and play a key role in the following analysis.

$$W \perp\!\!\!\perp X_{S^c} \mid X_S, \qquad \widehat{Z}_S \perp\!\!\!\perp X_{S^c} \mid X_S, \quad \text{and} \quad \widehat{Z}_S \perp\!\!\!\perp X_{S^c} \mid \{X_S, W\}.$$

D.1 Proof of Lemma 3

Statement of lemma 3:

- 1. Under assumption A2, $T'_1 \leq 1 \gamma$.
- 2. Under conditions (5) of Theorem 1, $T'_2 = o_p(1)$.

Both terms T'_1 and T'_2 rely on the matrix expectations $\mathbb{E}[V|X_S]$ and $\mathbb{E}[V|X_S, W]$ which lemmas D.2.1 and D.2.2 show to be respectively:

$$\mathbb{E}\left[V \mid X_S\right] = -\lambda_n \Sigma_{S^c S} \Sigma_{SS}^{-1} \mathbb{E}\left[\widehat{Z}_S \mid X_S\right] \quad \text{and} \quad \mathbb{E}\left[V \mid X_S, W\right] = -\frac{\lambda_n}{n} \Sigma_{S^c S} \Sigma_{SS}^{-1} \widehat{Z}_S$$

For $T'_1 = \|\mathbb{E}[V \mid X_S]\|_{\ell_{\infty}/\ell_2}$, using the matrix-norm inequality (3[#]) and then Jensen's inequality yields the announced result:

$$T'_{1} = \|\Sigma_{S^{c}S}\Sigma_{SS}^{-1}\mathbb{E}[\widehat{Z}_{S}|X_{S}]\|_{\ell_{\infty}/\ell_{2}} \le \|\|\Sigma_{S^{c}S}\Sigma_{SS}^{-1}\|\|_{\infty}\mathbb{E}[\|\widehat{Z}_{S}\|_{\ell_{\infty}/\ell_{2}}|X_{S}] \le (1-\gamma).$$

For $T_2' = \|\mathbb{E}\left[V \mid X_S\right] - \mathbb{E}\left[V \mid X_S, W\right]\|_{\ell_{\infty}/\ell_2}$, using again inequality (3^{\sharp}) , we have

$$T_{2}' \leq \left\| \left\| \Sigma_{S^{c}S} (\Sigma_{SS})^{-1} \right\| \right\|_{\infty} \left\| \widehat{Z}_{S} - \mathbb{E} \left[\widehat{Z}_{S} | X_{S} \right] \right\|_{\ell_{\infty}/\ell_{2}}$$
$$\leq (1 - \gamma) \mathbb{E} \left[\left\| \widehat{Z}_{S} - Z_{S}^{*} \right\|_{\ell_{\infty}/\ell_{2}} \right] + (1 - \gamma) \left\| \widehat{Z}_{S} - Z_{S}^{*} \right\|_{\ell_{\infty}/\ell_{2}}$$

But Lemma D.2.3, which relates the consistency of the primal variables to the consistency of dual variables, shows that $\|\widehat{Z}_S - Z_S^*\|_{\ell_{\infty}/\ell_2} = o_p(1)$, so that the (sub)gradients of the regularization are consistent on the support S. This shows that $T'_2 = o_p(1)$.

D.2 Technical lemmas

Lemma D.2.1. $\mathbb{E}[V \mid X_S] = -\lambda_n \Sigma_{S^c S} \Sigma_{SS}^{-1} \mathbb{E}[\widehat{Z}_S | X_S].$

Proof. Using the conditional independencies $W \perp \!\!\!\perp X_{S^c} \mid X_S$ and $\hat{Z}_S \perp \!\!\!\perp X_{S^c} \mid X_S$, we have

$$\mathbb{E}\left[V \mid X_S\right] = \mathbb{E}\left[X_{S^c}^T \mid X_S\right] \left(\left[\Pi_S - I_n\right] \frac{\mathbb{E}\left[W \mid X_S\right]}{n} - \lambda_n \frac{X_S}{n} \left(\widehat{\Sigma}_{SS}\right)^{-1} \mathbb{E}\left[\widehat{Z}_S \mid X_S\right]\right).$$

Since $\mathbb{E}[W|X_S] = 0$, the first term vanishes, and using $\mathbb{E}[X_{S^c}^T|X_S] = \sum_{S^c S} \sum_{SS}^{-1} X_S^T$, we obtain the announced expression.

Lemma D.2.2. $\mathbb{E}[V \mid X_S, W] = -\frac{\lambda_n}{n} \Sigma_{S^c S} \Sigma_{SS}^{-1} \widehat{Z}_S.$

Proof. Appealing to the conditional independence $\widehat{Z}_S \perp \!\!\!\perp X_{S^c} \mid \{X_S, W\}$, we have

$$\mathbb{E}\left[V \mid X_S, W\right] = \mathbb{E}\left[X_{S^c}^T \mid X_S, W\right] \left(\left[\Pi_S - I_n\right] \frac{W}{n} - \lambda_n \frac{X_S}{n} \left(\widehat{\Sigma}_{SS}\right)^{-1} \mathbb{E}\left[\widehat{Z}_S \mid X_S, W\right]\right).$$

Observe that $\mathbb{E}[\widehat{Z}_S|X_S, W] = \widehat{Z}_S$ because (X_S, W) uniquely specifies \widehat{B}_S through the convex program (7), and the triple (X_S, W, \widehat{B}_S) defines \widehat{Z}_S through equation (6b). Moreover, the noise term disappears because the kernel of the orthogonal projection matrix $(I_n - \Pi_S)$ is the same as the range space of X_S , and

$$\mathbb{E}[X_{S^c}^T \mid X_S, W][\Pi_S - I_n] = \mathbb{E}[X_{S^c}^T \mid X_S][\Pi_S - I_n] \\ = \Sigma_{S^c S} \Sigma_{SS}^{-1} X_S^T[\Pi_S - I_n] = 0.$$

The result follows from the fact that $\mathbb{E}[X_{S^c}^T \mid X_S, W] = \mathbb{E}[X_{S^c}^T \mid X_S] = \Sigma_{S^c S} \Sigma_{SS}^{-1} X_S^T$.

Lemma D.2.3. Define the matrix $\Delta \in \mathbb{R}^{s \times K}$ with rows $\Delta_i := U_i / \|\beta_i^*\|_2$. As long as $\|\Delta_i\|_2 \leq 1/2$ for all row indices $i \in S$, we have

$$\left\|\widehat{Z}_S - \zeta(B_S^*)\right\|_{\ell_{\infty}/\ell_2} \leq 4 \left\|\Delta\right\|_{\ell_{\infty}/\ell_2}$$

Hence $\|\Delta\|_{\ell_{\infty}/\ell_2} = o_p(1)$ (shown in Sec. 3.1) implies that $\|\widehat{Z}_S - \zeta(B_S^*)\|_{\ell_{\infty}/\ell_2} = o_p(1)$.

Proof. From lemma 2, the condition $\|\Delta_i\|_2 \leq 1/2$ implies that $\hat{\beta}_i \neq \vec{0}$ and hence $\hat{Z}_i = \hat{\beta}_i / \|\hat{\beta}_i\|_2$ for all rows $i \in S$. Therefore, using the notation $Z_i^* = \beta_i^* / \|\beta_i^*\|_2$ we have

$$\begin{aligned} \widehat{Z}_{i} - Z_{i}^{*} &= \frac{\beta_{i}}{\|\widehat{\beta}_{i}\|_{2}} - Z_{i}^{*} = \frac{Z_{i}^{*} + \Delta_{i}}{\|Z_{i}^{*} + \Delta_{i}\|_{2}} - Z_{i}^{*} \\ &= Z_{i}^{*} \left(\frac{1}{\|Z_{i}^{*} + \Delta_{i}\|_{2}} - 1\right) + \frac{\Delta_{i}}{\|Z_{i}^{*} + \Delta_{i}\|_{2}} \end{aligned}$$

Note that, for $z \neq 0$, $g(z, \delta) = \frac{1}{\|z+\delta\|_2}$ is differentiable with respect to δ , with gradient $\nabla_{\delta} g(z, \delta) = -\frac{z+\delta}{2\|z+\delta\|_2^3}$. By the mean-value theorem, there exists $h \in [0, 1]$ such that

$$\frac{1}{\|z+\delta\|_2} - 1 = g(z,\delta) - g(z,0) = \nabla_{\delta} g(z,h\delta)^T \delta = -\frac{(z+h\delta)^T \delta}{2\|z+h\delta\|_2^3},$$

which implies that there exists $h_i \in [0, 1]$ such that

$$\begin{aligned} \|\widehat{Z}_{i} - Z_{i}^{*}\|_{2} &\leq \|Z_{i}^{*}\|_{2} \frac{|(Z_{i}^{*} + h_{i}\Delta_{i})^{T}\Delta_{i}|}{2\|Z_{i}^{*} + h_{i}\Delta_{i}\|_{2}^{3}} + \frac{\|\Delta_{i}\|_{2}}{\|Z_{i}^{*} + \Delta_{i}\|_{2}} \\ &\leq \frac{\|\Delta_{i}\|_{2}}{2\|Z_{i}^{*} + h_{i}\Delta_{i}\|_{2}^{2}} + \frac{\|\Delta_{i}\|_{2}}{\|Z_{i}^{*} + \Delta_{i}\|_{2}}. \end{aligned}$$

$$(4^{\sharp})$$

We note that $||Z_i^*||_2 = 1$ and $||\Delta_i||_2 \le \frac{1}{2}$ imply that $||Z_i^* + h_i \Delta_i||_2 \ge \frac{1}{2}$. Combined with inequality (4^{\sharp}) , we obtain $||\widehat{Z}_i - Z_i^*||_2 \le 4 ||\Delta_i||_2$, which proves the lemma.

D.3 Proof of Lemma 4

We begin by noting that conditionally on X_S and W, each vector $V_j \in \mathbb{R}^K$ is normally distributed. Since $\text{Cov}(X^{(j)} \mid X_S, W) = (\Sigma_{S^c \mid S})_{jj} I_n$, we have

 $\operatorname{Cov}(V_j \mid X_S, W) = M_n (\Sigma_{S^c \mid S})_{jj}$

where the $K \times K$ matrix $M_n = M_n(X_S, W)$ is given by

$$M_n := \frac{\lambda_n^2}{n} \widehat{Z}_S^T (\widehat{\Sigma}_{SS})^{-1} \widehat{Z}_S + \frac{1}{n^2} W^T (\Pi_S - I_n) W.$$
 (5[#])

In the expression of M_n , the cross terms of the form $W^T(\Pi_S - I_n)(\widehat{\Sigma}_{SS})^{-1}\widehat{Z}_S$ vanish in the previous expression because of the same orthogonality arguments as in the proof of lemma D.2.2. Conditionally on W and X_S , the matrix M_n is fixed, and we have

$$\left(\|V_j - \mathbb{E}[V_j \mid X_S, W]\|_2^2 | W, X_S \right) \stackrel{d}{=} \left(\Sigma_{S^c \mid S} \right)_{jj} \xi_j^T M_n \xi_j.$$

where $\xi_j \sim N(\vec{0}_K, I_K)$.

D.4 Proof of Lemma 5

Statement of lemma 5:

Under the conditions (5) of Theorem 1, $\|M_n - M^*\|_2 = o_p(\|M^*\|_2)$ where

$$M^* = \frac{\lambda_n^2}{n} (Z_S^*)^T (\Sigma_{SS})^{-1} Z_S^*, \text{ so that } ||| M^* |||_2 = \lambda_n^2 \frac{\psi(B^*)}{n}.$$

Consequently, for any $\delta > 0$ the following event $\mathcal{T}(\delta)$ has probability converging to 1.

$$\mathcal{T}(\delta) := \left\{ \| M_n \| _2 \le \lambda_n^2 \, \frac{\psi(B^*)}{n} \, (1+\delta) \right\}.$$

With $Z_S^* = \zeta(B_S^*)$, define the $K \times K$ random matrix

$$M_n^* := \frac{\lambda_n^2}{n} (Z_S^*)^T (\widehat{\Sigma}_{SS})^{-1} Z_S^* + \frac{1}{n^2} W^T (I_n - \Pi_S) W$$

and note that (using standard results on Wishart matrices [And84])

$$\mathbb{E}[M_n^*] = \frac{\lambda_n^2}{n-s-1} (Z_S^*)^T (\Sigma_{SS})^{-1} Z_S^* + \sigma^2 \frac{n-s}{n^2} I_K$$

To bound M_n from M^* in spectral norm, we use the triangle inequality:

$$\| M_n - M^* \|_2 \leq \| M_n - M_n^* \|_2 + \| M_n^* - \mathbb{E} [M_n^*] \|_2 + \| \mathbb{E} [M_n^*] - M^* \|_2 (6^{\sharp})$$

First, we have $|\!|\!|\, M_n^* - \mathbb{E}\,[M_n^*] |\!|\!|_2 \leq T_1^\dagger + T_2^\dagger$ where

$$T_{1}^{\dagger} = \frac{\lambda_{n}^{2}}{n} \| Z_{S}^{*} \|_{2}^{2} \left\| \frac{n}{n-s-1} (\Sigma_{SS})^{-1} - (\widehat{\Sigma}_{SS})^{-1} \right\|_{2} = o_{p} \left(\frac{\lambda_{n}^{2} s}{n} \right),$$

since $||| Z_S^* |||_2^2 \le s$, and $|||| \frac{n}{n-s-1} (\Sigma_{SS})^{-1} - (\widehat{\Sigma}_{SS})^{-1} |||_2 = o_p(1)$, and

$$T_{2}^{\dagger} := \frac{1}{n^{2}} \| W^{T}(I_{n} - \Pi_{S})W - \sigma^{2}(n-s)I_{K} \|_{2} = \mathcal{O}_{p}\left(\frac{1}{n}\right) = o_{p}\left(\frac{\lambda_{n}^{2}s}{n}\right),$$

since $\lambda_n^2 s \to +\infty$. Overall, we conclude that

$$||| M_n^* - \mathbb{E}[M_n^*] ||_2 = o_p\left(\frac{\lambda_n^2 s}{n}\right). \tag{7\ddagger}$$

Then considering the first term in decomposition (6^{\sharp}) , we have

$$\| M_{n}^{*} - M_{n} \|_{2} = \frac{\lambda_{n}^{2}}{n} \| Z_{S}^{*} \widehat{\Sigma}_{SS}^{-1} Z_{S}^{*} - \widehat{Z}_{S} \widehat{\Sigma}_{SS}^{-1} \widehat{Z}_{S} \|_{2}$$

$$= \frac{\lambda_{n}^{2}}{n} \| Z_{S}^{*} \widehat{\Sigma}_{SS}^{-1} (Z_{S}^{*} - \widehat{Z}_{S}) + (Z_{S}^{*} - \widehat{Z}_{S}) \widehat{\Sigma}_{SS}^{-1} (Z_{S}^{*} + (\widehat{Z}_{S} - Z_{S}^{*})) \|_{2}$$

$$\le \frac{\lambda_{n}^{2}}{n} \| \widehat{\Sigma}_{SS}^{-1} \|_{2} \| Z_{S}^{*} - \widehat{Z}_{S} \|_{2} \left(2 \| Z_{S}^{*} \|_{2} + \| Z_{S}^{*} - \widehat{Z}_{S} \|_{2} \right)$$

Moreover, since $\left\| \widehat{\Sigma}_{SS}^{-1} \right\|_{2} = \mathcal{O}_{p}(1), \left\| Z_{S}^{*} \right\|_{2} = \mathcal{O}_{p}(\sqrt{s}), \left\| Z_{S}^{*} - \widehat{Z}_{S} \right\|_{2} \le \sqrt{s} \left\| Z_{S}^{*} - \widehat{Z}_{S} \right\|_{\ell_{\infty}/\ell_{2}}$ from Corollary B.0.2 and $\left\| Z_{S}^{*} - \widehat{Z}_{S} \right\|_{\ell_{\infty}/\ell_{2}} = o_{p}(1)$ from Lemma D.2.3, we conclude that

$$||| M_n^* - M_n |||_2 = o_p \left(\frac{\lambda_n^2 s}{n}\right).$$
(8[‡])

For the matrix M^* , we have

$$||| M^* |||_2 = \frac{\lambda_n^2}{n-s-1} \psi(B^*) + \frac{\sigma^2}{n} \left(1 - \frac{s}{n}\right) = (1 + o(1)) \left[\frac{\lambda_n^2 \psi(B^*)}{n}\right]. \tag{9\sharp}$$

Therefore $|{\mskip-2.5mu}|{\mskip-2.5mu}| M^*|{\mskip-2.5mu}|_2 = \Theta(\lambda_n^2 s/n).$ Moreover, since

$$\left(\frac{1}{n} - \frac{1}{n-s-1}\right)\lambda_n^2 \psi(B^*) = o\left(\frac{\lambda_n^2 s}{n}\right), \quad \text{and} \quad \frac{\sigma^2}{n}\left(1 - \frac{s}{n}\right) = o\left(\frac{\lambda_n^2 s}{n}\right)$$

using the first condition (5) on λ_n , we have

$$||\!| M^* - \mathbb{E}\left[M_n^*\right] ||\!|_2 = o\left(\frac{\lambda_n^2 s}{n}\right) \tag{10\phi}$$

Combining bounds $(7^{\sharp}), (8^{\sharp}), (10^{\sharp})$ in the decomposition (6^{\sharp}) and (9^{\sharp}) shows that $||| M_n - M^* |||_2 = o_p(||| M^* |||_2)$ so that we can conclude that for any $\delta > 0$ the event

$$\mathcal{T}(\delta) := \left\{ \| M_n \|_2 \le \lambda_n^2 \frac{\psi(B^*)}{n} (1+\delta) \right\}$$

has probability converging to 1.

D.5 Proof of Lemma 6

Statement of lemma 6:

If there exists $\nu > 0$, such that $t^*(n, B^*) > (1 + \nu) \log(p - s)$, then

$$\mathbb{P}\left[\max_{j\in S^c} \|\xi_j\|_2^2 \ge 2t^*(n, B^*)\right] \to 0 \; .$$

Note that $t^* \to +\infty$ under the specified scaling of (n, p, s). By applying Lemma E.0.1 from Appendix E on large deviations for χ^2 variates with $t = t^*(n, B^*)$, we obtain

$$\mathbb{P}[T'_3 \ge \gamma \mid \mathcal{T}(\delta)] \le (p-s) \exp\left(-t^* \left[1 - 2\sqrt{\frac{K}{t^*}}\right]\right) \le (p-s) \exp\left(-t^* \left(1 - \delta\right)\right),$$

for (n, p, s) sufficiently large. Thus, the bound (11^{\sharp}) tends to zero as long as there exists $\nu > 0$ such that we have $(1 - \delta) t^*(n, B^*) > (1 + \nu) \log(p - s)$, or equivalently and as claimed

$$n > (1+\nu) \frac{(1+\delta)}{(1-\delta)} \frac{C_{\max}}{\gamma^2} \left[2 \psi(B^*) \log(p-s) \right].$$

E Large deviations for χ^2 -variates

Lemma E.0.1. Let Z_1, \ldots, Z_m be *i.i.d.* χ^2 -variates with d degrees of freedom. Then for all t > d, we have

$$\mathbb{P}[\max_{i=1,\dots,m} Z_i \ge 2t] \le m \exp\left(-t\left[1-2\sqrt{\frac{d}{t}}\right]\right).$$
(11[#])

Proof. Given a central χ^2 -variate X with d degrees of freedom, Laurent and Massart [LM98] prove that $\mathbb{P}[X - d \ge 2\sqrt{dx} + 2x] \le \exp(-x)$, or equivalently

$$\mathbb{P}\left[X \ge x + (\sqrt{x} + \sqrt{d})^2\right] \le \exp(-x),$$

valid for all x > 0. Setting $\sqrt{x} + \sqrt{d} = \sqrt{t}$, we have

$$\mathbb{P}[X \ge 2t] \stackrel{(a)}{\le} \mathbb{P}\left[X \ge (\sqrt{t} - \sqrt{d})^2 + t\right] \le \exp(-(\sqrt{t} - \sqrt{d})^2)$$
$$\le \exp(-t + 2\sqrt{td})$$
$$= \exp\left(-t\left[1 - 2\sqrt{\frac{d}{t}}\right]\right),$$

where inequality (a) follows since $\sqrt{t} \ge \sqrt{d}$ by assumption. Thus, the claim (11^{\ddagger}) follows by the union bound.

References

- [And84] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley, New York, 1984.
- [Ber95] D.P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, 1995.
- [BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge, UK, 2004.
- [DS01] K. R. Davidson and S. J. Szarek. Local operator theory, random matrices, and Banach spaces. In *Handbook of Banach Spaces*, volume 1, pages 317–336. Elsevier, Amsterdan, NL, 2001.
- [LM98] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, 28(5):1303–1338, 1998.