Appendix for High-dimensional union support recovery in multivariate regression

A Proof of Lemma 1

We begin by noting that the block-regularized problem (2) is convex, and not differentiable for all B. In particular, denoting by β_{i} the $i^{\text {th }}$ row of B, the subdifferential of the norm ℓ_{1} / ℓ_{2}-block norm over row i takes the following form, which introduces the function ζ in the problem

$$
\left[\partial\|B\|_{\ell_{1} / \ell_{2}}\right]_{i}= \begin{cases}\zeta\left(\beta_{i}\right)=\frac{\beta_{i}}{\left\|\beta_{i}\right\|_{2}} & \text { if } \beta_{i} \neq \overrightarrow{0} \\ Z_{i} \quad \text { such that }\left\|Z_{i}\right\|_{2} \leq 1 & \text { otherwise }\end{cases}
$$

Using the notation β_{i} to denote a row of B and denoting by

$$
\mathcal{K}:=\left\{(w, v) \in \mathbb{R}^{K} \times \mathbb{R} \mid\|w\|_{2} \leq v\right\}
$$

the usual second-order cone (SOC), we can rewrite the original convex program (2) as the second order cone program (SOCP):

$$
\min _{\substack{B \in \mathbb{R}^{p \times K} \\ b \in \mathbb{R}^{p}}} \frac{1}{2 n}\|Y-X B\|_{F}^{2}+\lambda_{n} \sum_{i=1}^{p} b_{i} \quad \text { s.t. } \quad\left(\beta_{i}, b_{i}\right) \in \mathcal{K}, \quad 1 \leq i \leq p
$$

We now dualize the conic constraints [BV04], using conic Lagrange multipliers belonging to the dual cone $\mathcal{K}^{*}=\left\{(z, t) \in \mathbb{R}^{K+1} \mid z^{T} \mathbf{w}+v t \geq 0,(\mathbf{w}, v) \in \mathcal{K}\right\}$. The second-order cone \mathcal{K} is self-dual [BV04], so that the convex program (1^{\sharp}) is equivalent to

$$
\begin{aligned}
& \min _{\substack{B \in \mathbb{R}^{p} \times K \\
b \in \mathbb{R}^{p}}} \max _{\substack{z \in \mathbb{R}^{p \times K} \\
t \in \mathbb{R}^{p}}} \quad \frac{1}{2 n}\|Y-X B\|_{F}^{2}+\lambda_{n} \sum_{i=1}^{p} b_{i}-\lambda_{n} \sum_{i=1}^{p}\left(-z_{i}^{T} \beta_{i}+t_{i} b_{i}\right) \\
& \text { s.t. } \quad\left(z_{i}, t_{i}\right) \in \mathcal{K}, \quad 1 \leq i \leq p .
\end{aligned}
$$

where Z is the matrix whose $i^{\text {th }}$ row is z_{i}.
The advantage of an SOCP formulation is that it avoids manipulating the subdifferentials directly and replaces them conveniently with their counterparts arising from duality. In fact, the dual of $\left(1^{\sharp}\right)$ is also an SOCP, with conic variables $\left(Z_{i}, t_{i}\right) \in \mathbb{R}^{K} \times \mathbb{R}^{+}$associated to each conic constraint. Moreover,
as we show next, the variable Z_{i} coincides at optimality with an element of $\left[\partial\|B\|_{\ell_{1} / \ell_{2}}\right]_{i}$ which is characterized by the KKT conditions.

Indeed, since the original program is convex and strictly feasible, strong duality holds and any pair of primal $\left(B^{\star}, b^{\star}\right)$ and dual solutions $\left(Z^{\star}, t^{\star}\right)$ has to satisfy the Karush-Kuhn-Tucker conditions:

$$
\begin{array}{r}
\left\|\beta_{i}^{\star}\right\|_{2} \leq b_{i}^{\star}, \\
\left\|z_{i}^{\star}\right\|_{2} \leq t_{i}^{\star}, \\
1<i<p \\
z_{B}^{\star T}\left[\frac{1}{2 n}\|Y-X B\|_{i}^{\star}-t_{i}^{\star} b_{i}^{\star}=0,\right. \\
1<i<p \\
\left.\right|_{B=B^{\star}}+\lambda_{n} Z^{\star}=0 \\
\lambda_{n}\left(1-t_{i}^{\star}\right)=0
\end{array}
$$

Since equations $\left(2^{\sharp} \mathrm{c}\right)$ and $\left(2^{\sharp} \mathrm{e}\right)$ impose the constraints $t_{i}^{\star}=1$ and $b_{i}^{\star}=\left\|\beta_{i}^{\star}\right\|_{2}$, a primal-dual solution to this conic program is determined by $\left(B^{\star}, Z^{\star}\right)$.

Any solution satisfying the conditions in Lemma 1 also satisfies these KKT conditions, since equation (6b) and the definition (6c) are equivalent to equation ($2^{\sharp} \mathrm{d}$), and equation (6a) and the combination of conditions (6d) and (6c) imply that the complementary slackness equations (22^{\sharp} c) hold for each primaldual conic pair $\left(\beta_{i}, z_{i}\right)$.

Now consider some other primal solution \widetilde{B}; when combined with the optimal dual solution \widehat{Z}, the pair ($\widetilde{B}, \widehat{Z}$) must satisfy the KKT conditions [Ber95]. But since for $j \in S^{c}$, we have $\left\|\hat{z}_{j}\right\|_{2}<1$, then the complementary slackness condition $\left(2^{\sharp} \mathrm{c}\right)$ implies that for all $j \in S^{c}, \widetilde{\beta}_{j}=0$. This fact in turn implies that the primal solution \widetilde{B} must also be a solution to the restricted convex program (7), obtained by only considering the covariates in the set S or equivalently by setting $B_{S^{c}}=0_{S^{c}}$. But since $s<n$ by assumption, the matrix $X_{S}^{T} X_{S}$ is strictly positive definite with probability one, and therefore the restricted convex program (7) has a unique solution $B_{S}^{\star}=\widehat{B}_{S}$. We have thus shown that a solution $(\widehat{B}, \widehat{Z})$ to the program (2) that satisfies the conditions of Lemma 1 , if it exists, must be unique.

B Inequalities with block-matrix norms

In general, the two families of matrix norms that we have introduced, $\left\|\|\cdot\|_{p, q}\right.$ and $\|\cdot\|_{\ell_{a} / \ell_{b}}$, are distinct, but they coincide in the following useful special case:
Lemma B.0.1. For $1 \leq p \leq \infty$ and for r defined by $1 / r+1 / p=1$ we have

$$
\|\cdot\|_{\ell_{\infty} / \ell_{p}}=\|\cdot\|_{\infty, r} .
$$

Proof. Indeed, if a_{i}^{T} denotes the $i^{\text {th }}$ row of A, then
$\|A\|_{\ell_{\infty} / \ell_{p}}=\max _{i}\left\|a_{i}\right\|_{p}=\max _{i} \max _{\left\|y_{i}\right\|_{r} \leq 1} y_{i}^{T} a_{i}=\max _{\|y\|_{r} \leq 1} \max _{i}\left|y^{T} a_{i}\right|=\max _{\|y\|_{r} \leq 1}\|A y\|_{\infty}=\|A\|_{\infty, r}$.

Two immediate consequences that we find useful in the case $p=r=2$ are the following:

Corollary B.0.1. For matrices $A \in \mathbb{R}^{m \times n}$ and $Z \in \mathbb{R}^{n \times r}$, we have

$$
\|A Z\|_{\ell_{\infty} / \ell_{p}}=\|A Z\|_{\infty, r} \leq\|A\|_{\infty, \infty}\|Z\|_{\infty, r}=\|A\|_{\infty, \infty}\|Z\|_{\ell_{\infty} / \ell_{p}} .
$$

Corollary B.0.2.

$$
\|A\|_{r} \leq\left\|I_{m}\right\|_{r, \infty}\|A\|_{\infty, r}=s^{1 / r}\|A\|_{\ell_{\infty} / \ell_{p}}
$$

C Analysis of $\mathcal{E}\left(U_{S}\right)$: proof of Lemma 2

This section is devoted to the analysis of the event $\mathcal{E}\left(U_{S}\right)$ from equation (9), and proves Lemma 2. We rewrite U_{S} as:

$$
U_{S}=\widehat{\Sigma}_{S S}^{-\frac{1}{2}} \frac{\widetilde{W}}{\sqrt{n}}-\lambda_{n}\left(\widehat{\Sigma}_{S S}\right)^{-1} \widehat{Z}_{S}, \quad \text { with } \quad \widetilde{W}:=\frac{1}{\sqrt{n}}\left(\widehat{\Sigma}_{S S}\right)^{-\frac{1}{2}} X_{S}^{T} W
$$

Using this representation and the triangle inequality, we get $\left\|U_{S}\right\|_{\ell_{\infty} / \ell_{2}} \leq T_{1}+T_{2}$ where $T_{1}:=\left\|\left(\widehat{\Sigma}_{S S}\right)^{-\frac{1}{2}} \frac{\widetilde{W}}{\sqrt{n}}\right\|_{\ell_{\infty} / \ell_{2}}$ is a variance term due to the noise, and $T_{2}:=$ $\lambda_{n}\left\|\left(\widehat{\Sigma}_{S S}\right)^{-1} \widehat{Z}_{S}\right\|_{\ell_{\infty} / \ell_{2}}$ is a bias term coming from the regularization.

C. 1 Bias term

Using inequality $\left(3^{\sharp}\right)$, we have $T_{2} \leq \lambda_{n}\| \|\left(\widehat{\Sigma}_{S S}\right)^{-1}\| \|_{\infty}\left\|\widehat{Z}_{S}\right\|_{\ell_{\infty} / \ell_{2}} \leq \lambda_{n}\left\|\left(\widehat{\Sigma}_{S S}\right)^{-1}\right\|_{\infty}$ because, by construction, $\left\|\widehat{Z}_{S}\right\|_{\ell_{\infty} / \ell_{2}} \leq 1$.

Therefore
$\frac{T_{2}}{\lambda_{n}} \leq\| \|\left(\Sigma_{S S}\right)^{-1}\| \|_{\infty}+\left\|\left(\widehat{\Sigma}_{S S}\right)^{-1}-\left(\Sigma_{S S}\right)^{-1}\right\|_{\infty} \leq D_{\max }+\sqrt{s}\left\|\left(\widehat{\Sigma}_{S S}\right)^{-1}-\left(\Sigma_{S S}\right)^{-1}\right\|_{2}$
But the whitened random matrix $\widetilde{X}_{S}:=\Sigma_{S S}^{-1 / 2} X_{S}$ has i.i.d. standard Gaussian entries and satisfies:

$$
\left\|\left(\widehat{\Sigma}_{S S}\right)^{-1}-\left(\Sigma_{S S}\right)^{-1}\right\|_{2} \leq\left\|\left(\Sigma_{S S}\right)^{-1}\right\|_{2}\left\|\left(\widetilde{X}_{S}^{T} \widetilde{X}_{S} / n\right)^{-1}-I_{s}\right\|_{2} \leq \frac{1}{C_{\min }}\left\|\left(\widetilde{X}_{S}^{T} \widetilde{X}_{S} / n\right)^{-1}-I_{s}\right\|_{2},
$$

From concentration results in random matrix theory [DS01], for $s / n \rightarrow 0$, with probability $1-\exp (-\Theta(n))$, we have

$$
\left\|\left(\widetilde{X}_{S}^{T} \widetilde{X}_{S} / n\right)^{-1}-I_{s}\right\|_{2} \leq \mathcal{O}\left(\sqrt{\frac{s}{n}}\right) \text { and therefore } \frac{T_{2}}{\lambda_{n}} \leq D_{\max }+\mathcal{O}\left(\frac{s}{\sqrt{n}}\right)
$$

C. 2 Noise term

On the other hand, conditionally on X_{S}, the other term, T_{1}, is a maximum of χ-distributed random variables, and using concentration results for χ^{2} random variables and for spectral matrix norms, we have

Lemma C.2.1. With probability $1-\mathcal{O}(\exp (-\Theta(\log s))), \quad T_{1}{ }^{2} \geq \frac{8 K}{C_{\text {min }}} \frac{\log s}{n}$
Proof. Note that conditioned on X_{S}, we have $\left(\operatorname{vec}(\widetilde{W}) \mid X_{S}\right) \sim N\left(\overrightarrow{0}_{s \times K}, I_{s} \otimes\right.$ I_{K}) where $\operatorname{vec}(A)$ denotes the vectorization of matrix A. Using this fact and the definition of the block ℓ_{∞} / ℓ_{2} norm,

$$
\begin{aligned}
T_{1} & =\max _{i \in S}\left\|e_{i}^{T}\left(\widehat{\Sigma}_{S S}\right)^{-\frac{1}{2}} \frac{\widetilde{W}}{\sqrt{n}}\right\|_{2} \\
& \leq\left\|\left(\widehat{\Sigma}_{S S}\right)^{-1}\right\|_{2}^{1 / 2}\left[\frac{1}{n} \max _{i \in S} \zeta_{i}^{2}\right]^{1 / 2},
\end{aligned}
$$

which defines ζ_{i}^{2} as independent χ^{2} variates with K degrees of freedom. Using the tail bound in Lemma E. 0.1 with $t=2 K \log s>K$, we have

$$
\mathbb{P}\left[\frac{1}{n} \max _{i \in S} \zeta_{i}^{2} \geq \frac{4 K \log s}{n}\right] \leq \exp \left(-2 K \log s\left(1-2 \sqrt{\frac{1}{2 \log s}}\right)\right) \rightarrow 0
$$

Defining the event $\mathcal{T}:=\left\{\left\|\left(\widehat{\Sigma}_{S S}\right)^{-1}\right\|_{2} \leq \frac{2}{C_{\text {min }}}\right\}$, we have $\mathbb{P}[\mathcal{T}] \geq 1-2 \exp (-\Theta(n))$, again using concentration results from random matrix theory [DS01]. Therefore,

$$
\begin{aligned}
\mathbb{P}\left[T_{1} \geq \sqrt{\frac{8 K \log s}{C_{\min } n}}\right] & \leq \mathbb{P}\left[\left.T_{1} \geq \sqrt{\frac{8 K \log s}{C_{\min } n}} \right\rvert\, \mathcal{T}\right]+\mathbb{P}\left[\mathcal{T}^{c}\right] \\
& \leq \mathbb{P}\left[\frac{1}{n} \max _{i \in S} \zeta_{i}^{2} \geq \frac{4 K \log s}{n}\right]+2 \exp (-\Theta(n)) \\
& =\mathcal{O}(\exp (-\Theta(\log s))) \rightarrow 0
\end{aligned}
$$

Combining noise and bias terms yields that, under assumption $A 3$ and conditions (5) of Theorem 1, with probability $1-\exp (-\Theta(\log s))$, we have

$$
\left\|U_{S}\right\|_{\ell_{\infty} / \ell_{2}} \leq \mathcal{O}\left(\sqrt{\frac{(\log s)}{n}}\right)+\lambda_{n}\left(D_{\max }+\mathcal{O}\left(\sqrt{\frac{s^{2}}{n}}\right)\right)
$$

which proves lemma 2.

D Analysis of $\mathcal{E}\left(V_{S^{c}}\right)$: proofs.

By definition of the model (1) and by construction of the primal-dual pair (\widehat{B}, \widehat{Z}), the following conditional independence hold, and play a key role in the following analysis.

$$
W \Perp X_{S^{c}}\left|X_{S}, \quad \widehat{Z}_{S} \Perp X_{S^{c}}\right| X_{S}, \quad \text { and } \quad \widehat{Z}_{S} \Perp X_{S^{c}} \mid\left\{X_{S}, W\right\} .
$$

D. 1 Proof of Lemma 3

Statement of lemma 3:

1. Under assumption $A 2, T_{1}^{\prime} \leq 1-\gamma$.
2. Under conditions (5) of Theorem 1, $T_{2}^{\prime}=o_{p}(1)$.

Both terms T_{1}^{\prime} and T_{2}^{\prime} rely on the matrix expectations $\mathbb{E}\left[V \mid X_{S}\right]$ and $\mathbb{E}[V \mid$ $\left.X_{S}, W\right]$ which lemmas D.2.1 and D.2.2 show to be respectively:
$\mathbb{E}\left[V \mid X_{S}\right]=-\lambda_{n} \Sigma_{S^{c} S} \Sigma_{S S}^{-1} \mathbb{E}\left[\widehat{Z}_{S} \mid X_{S}\right] \quad$ and $\quad \mathbb{E}\left[V \mid X_{S}, W\right]=-\frac{\lambda_{n}}{n} \Sigma_{S^{c} S} \Sigma_{S S}^{-1} \widehat{Z}_{S}$.
For $T_{1}^{\prime}=\left\|\mathbb{E}\left[V \mid X_{S}\right]\right\|_{\ell_{\infty} / \ell_{2}}$, using the matrix-norm inequality $\left(3^{\sharp}\right)$ and then Jensen's inequality yields the announced result:
$T_{1}^{\prime}=\left\|\Sigma_{S^{c} S} \Sigma_{S S}^{-1} \mathbb{E}\left[\widehat{Z}_{S} \mid X_{S}\right]\right\|_{\ell_{\infty} / \ell_{2}} \leq\| \| \Sigma_{S^{c} S} \Sigma_{S S}^{-1}\| \|_{\infty} \mathbb{E}\left[\left\|\widehat{Z}_{S}\right\|_{\ell_{\infty} / \ell_{2}} \mid X_{S}\right] \leq(1-\gamma)$.
For $T_{2}^{\prime}=\left\|\mathbb{E}\left[V \mid X_{S}\right]-\mathbb{E}\left[V \mid X_{S}, W\right]\right\|_{\ell_{\infty} / \ell_{2}}$, using again inequality $\left(3^{\sharp}\right)$, we have

$$
\begin{aligned}
T_{2}^{\prime} & \leq\left\|\Sigma_{S^{c} S}\left(\Sigma_{S S}\right)^{-1}\right\|\left\|_{\infty}\right\| \widehat{Z}_{S}-\mathbb{E}\left[\widehat{Z}_{S} \mid X_{S}\right] \|_{\ell_{\infty} / \ell_{2}} \\
& \leq(1-\gamma) \mathbb{E}\left[\left\|\widehat{Z}_{S}-Z_{S}^{*}\right\|_{\ell_{\infty} / \ell_{2}}\right]+(1-\gamma)\left\|\widehat{Z}_{S}-Z_{S}^{*}\right\|_{\ell_{\infty} / \ell_{2}}
\end{aligned}
$$

But Lemma D.2.3, which relates the consistency of the primal variables to the consistency of dual variables, shows that $\left\|\widehat{Z}_{S}-Z_{S}^{*}\right\|_{\ell_{\infty} / \ell_{2}}=o_{p}(1)$, so that the (sub)gradients of the regularization are consistent on the support S. This shows that $T_{2}^{\prime}=o_{p}(1)$.

D. 2 Technical lemmas

Lemma D.2.1. $\mathbb{E}\left[V \mid X_{S}\right]=-\lambda_{n} \Sigma_{S^{c} S} \Sigma_{S S}^{-1} \mathbb{E}\left[\widehat{Z}_{S} \mid X_{S}\right]$.
Proof. Using the conditional independencies $W \Perp X_{S^{c}} \mid X_{S}$ and $\widehat{Z}_{S} \Perp X_{S^{c}} \mid X_{S}$, we have
$\mathbb{E}\left[V \mid X_{S}\right]=\mathbb{E}\left[X_{S^{c}}^{T} \mid X_{S}\right]\left(\left[\Pi_{S}-I_{n}\right] \frac{\mathbb{E}\left[W \mid X_{S}\right]}{n}-\lambda_{n} \frac{X_{S}}{n}\left(\widehat{\Sigma}_{S S}\right)^{-1} \mathbb{E}\left[\widehat{Z}_{S} \mid X_{S}\right]\right)$.
Since $\mathbb{E}\left[W \mid X_{S}\right]=0$, the first term vanishes, and using $\mathbb{E}\left[X_{S^{c}}^{T} \mid X_{S}\right]=\Sigma_{S^{c} S} \Sigma_{S S}^{-1} X_{S}^{T}$, we obtain the announced expression.

Lemma D.2.2. $\mathbb{E}\left[V \mid X_{S}, W\right]=-\frac{\lambda_{n}}{n} \Sigma_{S^{c} S} \Sigma_{S S}^{-1} \widehat{Z}_{S}$.
Proof. Appealing to the conditional independence $\widehat{Z}_{S} \Perp X_{S^{c}} \mid\left\{X_{S}, W\right\}$, we have
$\mathbb{E}\left[V \mid X_{S}, W\right]=\mathbb{E}\left[X_{S^{c}}^{T} \mid X_{S}, W\right]\left(\left[\Pi_{S}-I_{n}\right] \frac{W}{n}-\lambda_{n} \frac{X_{S}}{n}\left(\widehat{\Sigma}_{S S}\right)^{-1} \mathbb{E}\left[\widehat{Z}_{S} \mid X_{S}, W\right]\right)$.
Observe that $\mathbb{E}\left[\widehat{Z}_{S} \mid X_{S}, W\right]=\widehat{Z}_{S}$ because $\left(X_{S}, W\right)$ uniquely specifies \widehat{B}_{S} through the convex program (7), and the triple ($X_{S}, W, \widehat{B}_{S}$) defines \widehat{Z}_{S} through equation (6b). Moreover, the noise term disappears because the kernel of the orthogonal projection matrix $\left(I_{n}-\Pi_{S}\right)$ is the same as the range space of X_{S}, and

$$
\begin{aligned}
\mathbb{E}\left[X_{S^{c}}^{T} \mid X_{S}, W\right]\left[\Pi_{S}-I_{n}\right] & =\mathbb{E}\left[X_{S^{c}}^{T} \mid X_{S}\right]\left[\Pi_{S}-I_{n}\right] \\
& =\Sigma_{S^{c} S} \Sigma_{S S}^{-1} X_{S}^{T}\left[\Pi_{S}-I_{n}\right]=0
\end{aligned}
$$

The result follows from the fact that $\mathbb{E}\left[X_{S^{c}}^{T} \mid X_{S}, W\right]=\mathbb{E}\left[X_{S^{c}}^{T} \mid X_{S}\right]=$ $\Sigma_{S^{c} S} \Sigma_{S S}^{-1} X_{S}^{T}$.

Lemma D.2.3. Define the matrix $\Delta \in \mathbb{R}^{s \times K}$ with rows $\Delta_{i}:=U_{i} /\left\|\beta_{i}^{*}\right\|_{2}$. As long as $\left\|\Delta_{i}\right\|_{2} \leq 1 / 2$ for all row indices $i \in S$, we have

$$
\left\|\widehat{Z}_{S}-\zeta\left(B_{S}^{*}\right)\right\|_{\ell_{\infty} / \ell_{2}} \leq 4\|\Delta\|_{\ell_{\infty} / \ell_{2}}
$$

Hence $\|\Delta\|_{\ell_{\infty} / \ell_{2}}=o_{p}(1)$ (shown in Sec. 3.1) implies that $\left\|\widehat{Z}_{S}-\zeta\left(B_{S}^{*}\right)\right\|_{\ell_{\infty} / \ell_{2}}=$ $o_{p}(1)$.

Proof. From lemma 2 , the condition $\left\|\Delta_{i}\right\|_{2} \leq 1 / 2$ implies that $\widehat{\beta}_{i} \neq \overrightarrow{0}$ and hence $\widehat{Z}_{i}=\widehat{\beta}_{i} /\left\|\widehat{\beta}_{i}\right\|_{2}$ for all rows $i \in S$. Therefore, using the notation $Z_{i}^{*}=\beta_{i}^{*} /\left\|\beta_{i}^{*}\right\|_{2}$ we have

$$
\begin{aligned}
\widehat{Z}_{i}-Z_{i}^{*} & =\frac{\widehat{\beta}_{i}}{\left\|\widehat{\beta}_{i}\right\|_{2}}-Z_{i}^{*}=\frac{Z_{i}^{*}+\Delta_{i}}{\left\|Z_{i}^{*}+\Delta_{i}\right\|_{2}}-Z_{i}^{*} \\
& =Z_{i}^{*}\left(\frac{1}{\left\|Z_{i}^{*}+\Delta_{i}\right\|_{2}}-1\right)+\frac{\Delta_{i}}{\left\|Z_{i}^{*}+\Delta_{i}\right\|_{2}}
\end{aligned}
$$

Note that, for $z \neq 0, g(z, \delta)=\frac{1}{\|z+\delta\|_{2}}$ is differentiable with respect to δ, with gradient $\nabla_{\delta} g(z, \delta)=-\frac{z+\delta}{2\|z+\delta\|_{2}^{3}}$. By the mean-value theorem, there exists $h \in$ $[0,1]$ such that

$$
\frac{1}{\|z+\delta\|_{2}}-1=g(z, \delta)-g(z, 0)=\nabla_{\delta} g(z, h \delta)^{T} \delta=-\frac{(z+h \delta)^{T} \delta}{2\|z+h \delta\|_{2}^{3}},
$$

which implies that there exists $h_{i} \in[0,1]$ such that

$$
\begin{align*}
\left\|\widehat{Z}_{i}-Z_{i}^{*}\right\|_{2} & \leq\left\|Z_{i}^{*}\right\|_{2} \frac{\left|\left(Z_{i}^{*}+h_{i} \Delta_{i}\right)^{T} \Delta_{i}\right|}{2\left\|Z_{i}^{*}+h_{i} \Delta_{i}\right\|_{2}^{3}}+\frac{\left\|\Delta_{i}\right\|_{2}}{\left\|Z_{i}^{*}+\Delta_{i}\right\|_{2}} \\
& \leq \frac{\left\|\Delta_{i}\right\|_{2}}{2\left\|Z_{i}^{*}+h_{i} \Delta_{i}\right\|_{2}^{2}}+\frac{\left\|\Delta_{i}\right\|_{2}}{\left\|Z_{i}^{*}+\Delta_{i}\right\|_{2}}
\end{align*}
$$

We note that $\left\|Z_{i}^{*}\right\|_{2}=1$ and $\left\|\Delta_{i}\right\|_{2} \leq \frac{1}{2}$ imply that $\left\|Z_{i}^{*}+h_{i} \Delta_{i}\right\|_{2} \geq \frac{1}{2}$. Combined with inequality $\left(4^{\sharp}\right)$, we obtain $\left\|\widehat{Z}_{i}-Z_{i}^{*}\right\|_{2} \leq 4\left\|\Delta_{i}\right\|_{2}$, which proves the lemma.

D. 3 Proof of Lemma 4

We begin by noting that conditionally on X_{S} and W, each vector $V_{j} \in \mathbb{R}^{K}$ is normally distributed. Since $\operatorname{Cov}\left(X^{(j)} \mid X_{S}, W\right)=\left(\Sigma_{S^{c} \mid S}\right)_{j j} I_{n}$, we have

$$
\operatorname{Cov}\left(V_{j} \mid X_{S}, W\right)=M_{n}\left(\Sigma_{S^{c} \mid S}\right)_{j j}
$$

where the $K \times K$ matrix $M_{n}=M_{n}\left(X_{S}, W\right)$ is given by

$$
M_{n}:=\frac{\lambda_{n}^{2}}{n} \widehat{Z}_{S}^{T}\left(\widehat{\Sigma}_{S S}\right)^{-1} \widehat{Z}_{S}+\frac{1}{n^{2}} W^{T}\left(\Pi_{S}-I_{n}\right) W
$$

In the expression of M_{n}, the cross terms of the form $W^{T}\left(\Pi_{S}-I_{n}\right)\left(\widehat{\Sigma}_{S S}\right)^{-1} \widehat{Z}_{S}$ vanish in the previous expression because of the same orthogonality arguments as in the proof of lemma D.2.2. Conditionally on W and X_{S}, the matrix M_{n} is fixed, and we have

$$
\left(\left\|V_{j}-\mathbb{E}\left[V_{j} \mid X_{S}, W\right]\right\|_{2}^{2} \mid W, X_{S}\right) \quad \stackrel{d}{=}\left(\Sigma_{S^{c} \mid S}\right)_{j j} \xi_{j}^{T} M_{n} \xi_{j}
$$

where $\xi_{j} \sim N\left(\overrightarrow{0}_{K}, I_{K}\right)$.

D. 4 Proof of Lemma 5

Statement of lemma 5:
Under the conditions (5) of Theorem 1, \|\| $M_{n}-M^{*} \|_{2}=o_{p}\left(\left\|M^{*}\right\|_{2}\right)$ where

$$
M^{*}=\frac{\lambda_{n}^{2}}{n}\left(Z_{S}^{*}\right)^{T}\left(\Sigma_{S S}\right)^{-1} Z_{S}^{*}, \quad \text { so that } \quad\left\|M^{*}\right\|_{2}=\lambda_{n}^{2} \frac{\psi\left(B^{*}\right)}{n}
$$

Consequently, for any $\delta>0$ the following event $\mathcal{T}(\delta)$ has probability converging to 1 .

$$
\mathcal{T}(\delta):=\left\{\left\|M_{n}\right\|_{2} \leq \lambda_{n}^{2} \frac{\psi\left(B^{*}\right)}{n}(1+\delta)\right\} .
$$

With $Z_{S}^{*}=\zeta\left(B_{S}^{*}\right)$, define the $K \times K$ random matrix

$$
M_{n}^{*}:=\frac{\lambda_{n}^{2}}{n}\left(Z_{S}^{*}\right)^{T}\left(\widehat{\Sigma}_{S S}\right)^{-1} Z_{S}^{*}+\frac{1}{n^{2}} W^{T}\left(I_{n}-\Pi_{S}\right) W
$$

and note that (using standard results on Wishart matrices [And84])

$$
\mathbb{E}\left[M_{n}^{*}\right]=\frac{\lambda_{n}^{2}}{n-s-1}\left(Z_{S}^{*}\right)^{T}\left(\Sigma_{S S}\right)^{-1} Z_{S}^{*}+\sigma^{2} \frac{n-s}{n^{2}} I_{K}
$$

To bound M_{n} from M^{*} in spectral norm, we use the triangle inequality:

$$
\left\|M_{n}-M^{*}\right\|_{2} \leq\left\|M_{n}-M_{n}^{*}\right\|_{2}+\left\|M_{n}^{*}-\mathbb{E}\left[M_{n}^{*}\right]\right\|_{2}+\left\|\mathbb{E}\left[M_{n}^{*}\right]-M^{*}\right\|_{2}\left(6^{\sharp}\right)
$$

First, we have $\left\|M_{n}^{*}-\mathbb{E}\left[M_{n}^{*}\right]\right\|_{2} \leq T_{1}^{\dagger}+T_{2}^{\dagger}$ where

$$
T_{1}^{\dagger}=\frac{\lambda_{n}^{2}}{n}\left\|Z_{S}^{*}\right\|_{2}^{2}\| \| \frac{n}{n-s-1}\left(\Sigma_{S S}\right)^{-1}-\left(\widehat{\Sigma}_{S S}\right)^{-1} \|_{2}=o_{p}\left(\frac{\lambda_{n}^{2} s}{n}\right)
$$

since $\left\|Z_{S}^{*}\right\|_{2}^{2} \leq s$, and $\left\|\frac{n}{n-s-1}\left(\Sigma_{S S}\right)^{-1}-\left(\widehat{\Sigma}_{S S}\right)^{-1}\right\|_{2}=o_{p}(1)$, and

$$
T_{2}^{\dagger}:=\frac{1}{n^{2}}\left\|W^{T}\left(I_{n}-\Pi_{S}\right) W-\sigma^{2}(n-s) I_{K}\right\|_{2}=\mathcal{O}_{p}\left(\frac{1}{n}\right)=o_{p}\left(\frac{\lambda_{n}^{2} s}{n}\right),
$$

since $\lambda_{n}^{2} s \rightarrow+\infty$. Overall, we conclude that

$$
\left\|M_{n}^{*}-\mathbb{E}\left[M_{n}^{*}\right]\right\|_{2}=o_{p}\left(\frac{\lambda_{n}^{2} s}{n}\right) .
$$

Then considering the first term in decomposition (6^{\sharp}), we have

$$
\begin{aligned}
\left\|M_{n}^{*}-M_{n}\right\|_{2} & =\frac{\lambda_{n}^{2}}{n}\left\|Z_{S}^{*} \widehat{\Sigma}_{S S}^{-1} Z_{S}^{*}-\widehat{Z}_{S} \widehat{\Sigma}_{S S}^{-1} \widehat{Z}_{S}\right\|_{2} \\
& =\frac{\lambda_{n}^{2}}{n}\left\|Z_{S}^{*} \widehat{\Sigma}_{S S}^{-1}\left(Z_{S}^{*}-\widehat{Z}_{S}\right)+\left(Z_{S}^{*}-\widehat{Z}_{S}\right) \widehat{\Sigma}_{S S}^{-1}\left(Z_{S}^{*}+\left(\widehat{Z}_{S}-Z_{S}^{*}\right)\right)\right\|_{2} \\
& \leq \frac{\lambda_{n}^{2}}{n}\| \| \widehat{\Sigma}_{S S}^{-1}\| \|_{2}\| \| Z_{S}^{*}-\widehat{Z}_{S} \|_{2}\left(2\left\|Z_{S}^{*}\right\|_{2}+\left\|Z_{S}^{*}-\widehat{Z}_{S}\right\| \|_{2}\right)
\end{aligned}
$$

Moreover, since $\left\|\widehat{\Sigma}_{S S}^{-1}\right\|_{2}=\mathcal{O}_{p}(1),\left\|Z_{S}^{*}\right\|_{2}=\mathcal{O}_{p}(\sqrt{s}),\left\|Z_{S}^{*}-\widehat{Z}_{S}\right\|_{2} \leq \sqrt{s}\left\|Z_{S}^{*}-\widehat{Z}_{S}\right\|_{\ell_{\infty} / \ell_{2}}$ from Corollary B.0.2 and $\left\|Z_{S}^{*}-\widehat{Z}_{S}\right\|_{\ell_{\infty} / \ell_{2}}=o_{p}(1)$ from Lemma D.2.3, we conclude that

$$
\left\|M_{n}^{*}-M_{n}\right\|_{2}=o_{p}\left(\frac{\lambda_{n}^{2} s}{n}\right) .
$$

For the matrix M^{*}, we have

$$
\left\|M^{*}\right\|_{2}=\frac{\lambda_{n}^{2}}{n-s-1} \psi\left(B^{*}\right)+\frac{\sigma^{2}}{n}\left(1-\frac{s}{n}\right)=(1+o(1))\left[\frac{\lambda_{n}^{2} \psi\left(B^{*}\right)}{n}\right] .
$$

Therefore $\left\|M^{*}\right\|_{2}=\Theta\left(\lambda_{n}^{2} s / n\right)$. Moreover, since

$$
\left(\frac{1}{n}-\frac{1}{n-s-1}\right) \lambda_{n}^{2} \psi\left(B^{*}\right)=o\left(\frac{\lambda_{n}^{2} s}{n}\right), \quad \text { and } \quad \frac{\sigma^{2}}{n}\left(1-\frac{s}{n}\right)=o\left(\frac{\lambda_{n}^{2} s}{n}\right)
$$

using the first condition (5) on λ_{n}, we have

$$
\left\|M^{*}-\mathbb{E}\left[M_{n}^{*}\right]\right\|_{2}=o\left(\frac{\lambda_{n}^{2} s}{n}\right)
$$

Combining bounds $\left(7^{\sharp}\right),\left(8^{\sharp}\right),\left(10^{\sharp}\right)$ in the decomposition $\left(6^{\sharp}\right)$ and $\left(9^{\sharp}\right)$ shows that $\left\|M_{n}-M^{*}\right\|_{2}=o_{p}\left(\left\|M^{*}\right\|_{2}\right)$ so that we can conclude that for any $\delta>0$ the event

$$
\mathcal{T}(\delta):=\left\{\left\|M_{n}\right\|_{2} \leq \lambda_{n}^{2} \frac{\psi\left(B^{*}\right)}{n}(1+\delta)\right\}
$$

has probability converging to 1 .

D. 5 Proof of Lemma 6

Statement of lemma 6:
If there exists $\nu>0$, such that $t^{*}\left(n, B^{*}\right)>(1+\nu) \log (p-s)$, then

$$
\mathbb{P}\left[\max _{j \in S^{c}}\left\|\xi_{j}\right\|_{2}^{2} \geq 2 t^{*}\left(n, B^{*}\right)\right] \rightarrow 0
$$

Note that $t^{*} \rightarrow+\infty$ under the specified scaling of (n, p, s). By applying Lemma E.0.1 from Appendix E on large deviations for χ^{2} variates with $t=$ $t^{*}\left(n, B^{*}\right)$, we obtain
$\mathbb{P}\left[T_{3}^{\prime} \geq \gamma \mid \mathcal{T}(\delta)\right] \leq(p-s) \exp \left(-t^{*}\left[1-2 \sqrt{\frac{K}{t^{*}}}\right]\right) \leq(p-s) \exp \left(-t^{*}(1-\delta)\right)$,
for (n, p, s) sufficiently large. Thus, the bound $\left(11^{\sharp}\right)$ tends to zero as long as there exists $\nu>0$ such that we have $(1-\delta) t^{*}\left(n, B^{*}\right)>(1+\nu) \log (p-s)$, or equivalently and as claimed

$$
n>(1+\nu) \frac{(1+\delta)}{(1-\delta)} \frac{C_{\max }}{\gamma^{2}}\left[2 \psi\left(B^{*}\right) \log (p-s)\right]
$$

E Large deviations for χ^{2}-variates

Lemma E.0.1. Let Z_{1}, \ldots, Z_{m} be i.i.d. χ^{2}-variates with d degrees of freedom. Then for all $t>d$, we have

$$
\mathbb{P}\left[\max _{i=1, \ldots, m} Z_{i} \geq 2 t\right] \leq m \exp \left(-t\left[1-2 \sqrt{\frac{d}{t}}\right]\right)
$$

Proof. Given a central χ^{2}-variate X with d degrees of freedom, Laurent and Massart [LM98] prove that $\mathbb{P}[X-d \geq 2 \sqrt{d x}+2 x] \leq \exp (-x)$, or equivalently

$$
\mathbb{P}\left[X \geq x+(\sqrt{x}+\sqrt{d})^{2}\right] \leq \exp (-x)
$$

valid for all $x>0$. Setting $\sqrt{x}+\sqrt{d}=\sqrt{t}$, we have

$$
\begin{aligned}
\mathbb{P}[X \geq 2 t] \stackrel{(a)}{\leq} \mathbb{P}\left[X \geq(\sqrt{t}-\sqrt{d})^{2}+t\right] & \leq \exp \left(-(\sqrt{t}-\sqrt{d})^{2}\right) \\
& \leq \exp (-t+2 \sqrt{t d}) \\
& =\exp \left(-t\left[1-2 \sqrt{\frac{d}{t}}\right]\right)
\end{aligned}
$$

where inequality (a) follows since $\sqrt{t} \geq \sqrt{d}$ by assumption. Thus, the claim (11 ${ }^{\sharp}$) follows by the union bound.

References

[And84] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley, New York, 1984.
[Ber95] D.P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, 1995.
[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge, UK, 2004.
[DS01] K. R. Davidson and S. J. Szarek. Local operator theory, random matrices, and Banach spaces. In Handbook of Banach Spaces, volume 1, pages 317-336. Elsevier, Amsterdan, NL, 2001.
[LM98] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, 28(5):1303-1338, 1998.

