Introduction to Graphical models

Guillaume Obozinski

Ecole des Ponts - ParisTech

INIT/AERFAI Summer school on Machine Learning Benicàssim, June 26th 2017

Structured problems in HD

Structured problems in HD

SNIPs or SNPs = sites of variation in the genome (spelling mistakes) AGCTTGACTCCATGATGATGATT

Debo	AGCTTGAC	GCCA	TGATGATT
Jose	AGCTTGAC	TCCC	TGATGATT
Thomas	AGCTTGAC	GCCC	TGATGATT
Anupriya	AGCTTGAC	TCCA	TGATGATT
Robert	AGCTTGAC	GCCA	TGATGATT
Michelle	AGCTTGAC	TCCC	TGATGATT
Zhijun	AGCTTGAC	GCCC	TGATGATT

Karen

э

イロン イボン イヨン イヨン

Structured problems in HD

sites of variation in the genome					
(spelling mistakes)					
		_			
aren	AGCTTGAC	TCC	ATGA	TGATT	
ebo	AGCTTGAC	GCC	ATGA	TGATT	
se	AGCTTGAC	TCC	CTGA	TGATT	
omas	AGCTTGAC	GCC	CTGA	TGATT	
nupriya	AGCTTGAC	TCC	ATGA	TGATT	
obert	AGCTTGAC	GCC	ATGA	TGATT	

SNIDE OF SNDE -

G. Obozinski

Introduction to Graphical models

How to model the distribution of DNA sequences of length k?

∃ ► < ∃ ►</p>

How to model the distribution of DNA sequences of length k?

• Naive model $\rightarrow 4^n - 1$ parameters

How to model the distribution of DNA sequences of length k?

- Naive model $\rightarrow 4^n 1$ parameters
- Indépendant model $\rightarrow 3n$ parameters

How to model the distribution of DNA sequences of length k?

- Naive model $\rightarrow 4^n 1$ parameters
- Indépendant model $\rightarrow 3n$ parameters

First order Markov chain:

How to model the distribution of DNA sequences of length k?

- Naive model $\rightarrow 4^n 1$ parameters
- Indépendant model $\rightarrow 3n$ parameters

First order Markov chain:

Second order Markov chain:

How to model the distribution of DNA sequences of length k?

- Naive model $\rightarrow 4^n 1$ parameters
- Indépendant model $\rightarrow 3n$ parameters

First order Markov chain:

Second order Markov chain:

Number of parameters $\mathcal{O}(n)$ for chains of length n.

How to model the distribution of DNA sequences of length k?

- Naive model $\rightarrow 4^n 1$ parameters
- Indépendant model $\rightarrow 3n$ parameters

First order Markov chain:

Second order Markov chain:

Number of parameters $\mathcal{O}(n)$ for chains of length n.

• Speech modelled by a sequence of unobserved phonemes

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Hidden Markov Model: HMM

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Hidden Markov Model: HMM

 \rightarrow Latent variable models

Modelling image structures

Original image

Segmentation

Modelling image structures

Original image

Segmentation

★注≯

 \rightarrow oriented graphical model vs non oriented

Anaesthesia alarm (Beinlich et al., 1989)

"The ALARM Monitoring system"

CVP	central venous pressure		
PCWP	pulmonary capillary wedge pressure		
HIST	history		
TPR	total peripheral resistance		
BP	blood pressure		
CO	cardiac output		
HRBP	heart rate / blood pressure.		
HREK	heart rate measured by an EKG monitor		
HRSA	heart rate / oxygen saturation.		
PAP	pulmonary artery pressure.		
SAO2	arterial oxygen saturation.		
FIO2	fraction of inspired oxygen.		
PRSS	breathing pressure.		
ECO2	expelled CO2.		
MINV	minimum volume.		
MVS	minimum volume set		
HYP	hypovolemia		
LVF	left ventricular failure		
APL	anaphylaxis		
ANES	insufficient anesthesia/analgesia.		
PMB	pulmonary embolus		
INT	intubation		
KINK	kinked tube.		
DISC	disconnection		
LVV	left ventricular end-diastolic volume		
STKV	stroke volume		
CCHL	catecholamine		
ERLO	error low output		
HR	heart rate.		
ERCA	electrocauter		
SHNT	shunt		
PVS	pulmonary venous oxygen saturation		
ACO2	arterial CO2		
VALV	pulmonary alveoli ventilation		
VLNG	lung ventilation		
VTUB	ventilation tube		

ventilation machine

http://www.bnlearn.com/documentation/networks/

Probabilistic model

æ

伺 ト イヨト イヨト

Probabilistic model

э

- < 注 → - < 注 →

Probabilistic model

 $p(x_1, x_2, \dots, x_9) = f_{12}(x_1, x_2) f_{23}(x_2, x_3) f_{34}(x_3, x_4) f_{45}(x_4, x_5) \dots f_{56}(x_5, x_6) f_{37}(x_3, x_7) f_{678}(x_6, x_7, x_8) f_9(x_9)$

Abstact models vs concrete ones

Abstracts models

- Linear regression
- Logistic regression
- Mixture model
- Principal Component Analysis
- Canonical Correlation Analysis
- Independent Component analysis
- LDA (Multinomiale PCA)
- Naive Bayes Classifier
- Mixture of experts

Concrete Models

- Markov chains
- HMM
- Tree-structured models
- Double HMMs
- Oriented acyclic models
- Markov Random Fields
- Star models
- Constellation Model

... about some relevant concepts.

æ

★ 문 ► ★ 문 ►

... about some relevant concepts.

Markov Chain

æ

글 > - < 글 >

- Markov Chain
- Density of the multivariate Gaussian distribution

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm
- Sum-product algorithm

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm
- Sum-product algorithm
- MCMC sampling

- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm
- Sum-product algorithm
- MCMC sampling

Outline

Preliminary concepts

- 2 Directed graphical models
- 3 Markov random field
- Operations on graphical models
Probability distributions

Joint probability distribution of r.v. (X_1, \ldots, X_p) : $p(x_1, x_2, x_3, \ldots, x_n)$. We assume either that

• X_i takes values in $\{1, \ldots, K\}$ and

$$p(x_1,\ldots,x_n)=\mathbb{P}(X_1=x_1,\ldots,X_n=x_n).$$

• or that (X_1, \ldots, X_n) admits a density in \mathbb{R}^n

Marginalization

$$p(x_1) = \sum_{x_2} p(x_1, x_2)$$

Factorization

$$p(x_1,\ldots,x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)\ldots p(x_n|x_1,\ldots,x_{n-1})$$

Entropy and Kullback-Leibler divergence

Entropie

$$H(p) = -\sum_{x} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$

 $\rightarrow~$ Expectation of the negative log-likelihood

Entropy and Kullback-Leibler divergence

Entropie

$$H(p) = -\sum_{x} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$

 $\rightarrow~$ Expectation of the negative log-likelihood

Kullback-Leibler divergence

$$\mathcal{KL}(p \| q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_p \Big[\log \frac{p(X)}{q(X)} \Big]$$

 \rightarrow Expectation of the log-likelihood ratio

Entropy and Kullback-Leibler divergence

Entropie

$$H(p) = -\sum_{x} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$

 $\rightarrow~$ Expectation of the negative log-likelihood

Kullback-Leibler divergence

$$\mathcal{KL}(p \| q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_p \Big[\log \frac{p(X)}{q(X)} \Big]$$

- $\rightarrow~$ Expectation of the log-likelihood ratio
- \rightarrow Property: $KL(p||q) \geq 0$

Independence concepts

Independence: $X \perp \!\!\!\perp Y$

We say that X et Y are independents and write $X \perp Y$ ssi:

$$\forall x, y, \qquad P(X = x, Y = y) = P(X = x) P(Y = y)$$

Independence concepts

Independence: $X \perp \!\!\!\perp Y$

We say that X et Y are independents and write $X \perp \!\!\!\perp Y$ ssi:

$$\forall x, y, \qquad P(X = x, Y = y) = P(X = x) P(Y = y)$$

Conditional Independence: $X \perp \!\!\!\perp Y \mid Z$

On says that X and Y are independent conditionally on Z and
write X ⊥⊥ Y | Z iff:

 $\forall x, y, z,$

$$P(X = x, Y = y | Z = z) = P(X = x | Z = z) P(Y = y | Z = z)$$

Conditional Independence exemple

Example of "X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Conditional Independence exemple

Example of "X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Risk for sons from an unaffected father:

- dependance between the situation of the two brothers.
- conditionally independent given that the mother is a carrier of the gene or not.

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

$$Y_k = \mathbb{1}_{\{C=k\}}$$

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

$Y_k = \mathbb{1}_{\{C=k\}}$

For example if K = 5 and c = 4 then $\mathbf{y} = (0, 0, 0, 1, 0)^{\top}$.

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

Y_k	$=1_{\{C=k\}}$

For example if K = 5 and c = 4 then $\mathbf{y} = (0, 0, 0, 1, 0)^{\top}$. So $\mathbf{y} \in \{0, 1\}^{K}$ with $\sum_{k=1}^{K} y_{k} = 1$.

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

For example if K = 5 and c = 4 then $\mathbf{y} = (0, 0, 0, 1, 0)^{\top}$. So $\mathbf{y} \in \{0, 1\}^{K}$ with $\sum_{k=1}^{K} y_{k} = 1$.

$$\mathbb{P}(\mathcal{C}=k)=\mathbb{P}(Y_k=1) \hspace{1mm} ext{and} \hspace{1mm} \mathbb{P}(Y=y)=\prod_{k=1}^K \pi_k^{y_k}.$$

Bernoulli, Binomial, Multinomial

$$Y \sim \text{Ber}(\pi)$$
 $(Y_1, \dots, Y_K) \sim \mathcal{M}(1, \pi_1, \dots, \pi_K)$ $p(y) = \pi^y (1 - \pi)^{1-y}$ $p(y) = \pi_1^{y_1} \dots \pi_K^{y_K}$ $N_1 \sim \text{Bin}(n, \pi)$ $(N_1, \dots, N_K) \sim \mathcal{M}(n, \pi_1, \dots, \pi_K)$ $p(n_1) = \binom{n}{n_1} \pi^{n_1} (1 - \pi)^{n-n_1}$ $p(\mathbf{n}) = \binom{n}{n_1 \dots n_K} \pi_1^{n_1} \dots \pi_K^{n_K}$

with

$$\binom{n}{i} = \frac{n!}{(n-i)!i!} \quad \text{and} \quad \binom{n}{n_1 \dots n_K} = \frac{n!}{n_1! \dots n_K!}$$

æ

글 > - < 글 >

Gaussian model

Univariate gaussian : $X \sim \mathcal{N}(\mu, \sigma^2)$ X is real valued r.v., et $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}^*_+$.

$$p_{\mu,\sigma^2}(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}
ight)$$

Gaussian model

Univariate gaussian : $X \sim \mathcal{N}\left(\mu, \sigma^2
ight)$

X is real valued r.v., et $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}^*_+$.

$$p_{\mu,\sigma^2}(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}
ight)$$

Multivariate gaussian: $X \sim \mathcal{N}\left(\mu, \Sigma\right)$

X takes values in \mathbb{R}^d . Si \mathcal{K}_n is the set of $n \times n$ positive definite matrices, and $\theta = (\mu, \Sigma) \in \Theta = \mathbb{R}^d \times \mathcal{K}_n$.

$$p_{\mu,\Sigma}\left(x
ight) = rac{1}{\sqrt{\left(2\pi
ight)^d \det \Sigma}} \exp\left(-rac{1}{2}\left(x-\mu
ight)^T \Sigma^{-1}\left(x-\mu
ight)
ight)$$

Gaussian densities

<ロ> <四> <四> <四> <三</p>

æ

Gaussian densities

・ロン ・団 と ・ ヨン ・ ヨン …

æ

- Let a model $\mathcal{P}_{\Theta} = \big\{ p(x; \theta) \mid \theta \in \Theta \big\}$
- Let an observation x

- Let a model $\mathcal{P}_{\Theta} = \left\{ p(x; \theta) \mid \theta \in \Theta \right\}$
- Let an observation x

Likelihood:

$$\mathcal{L} : \Theta \rightarrow \mathbb{R}_+ \ heta \mapsto p(x; heta)$$

∃ >

- Let a model $\mathcal{P}_{\Theta} = \big\{ p(x; \theta) \mid \theta \in \Theta \big\}$
- Let an observation x

Likelihood:

$$\begin{array}{rcl} \mathcal{L}: \Theta & \to & \mathbb{R}_+ \\ \theta & \mapsto & p(x; \theta) \end{array}$$

Maximum likelihood estimator:

$$\hat{\theta}_{\mathsf{ML}} = \operatorname*{argmax}_{\theta \in \Theta} p(x; \theta)$$

Sir Ronald Fisher (1890-1962)

- Let a model $\mathcal{P}_{\Theta} = \left\{ p(x; \theta) \mid \theta \in \Theta \right\}$
- Let an observation x

Likelihood:

$$egin{array}{rcl} \mathcal{L}:\Theta& o&\mathbb{R}_+\ heta&\mapsto&p(x; heta) \end{array}$$

Maximum likelihood estimator:

$$\hat{\theta}_{\mathsf{ML}} = \operatorname*{argmax}_{\theta \in \Theta} p(x; \theta)$$

Sir Ronald Fisher (1890-1962)

Case of i.i.d. data

For $(x_i)_{1 \le i \le n}$ a sample of i.i.d. data of size *n*:

$$\hat{\theta}_{\mathsf{ML}} = \operatorname*{argmax}_{\theta \in \Theta} \prod_{i=1}^{n} p(x_i; \theta) = \operatorname*{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \log p(x_i; \theta)$$

Bayesian estimation

Parameters θ are modelled as a random variable.

A priori

We have an *a priori* $p(\theta)$ on the model parameters.

Bayesian estimation

Parameters θ are modelled as a random variable.

A priori

We have an *a priori* $p(\theta)$ on the model parameters.

A posteriori

The data contribute to the likelihood : $p(x|\theta)$. The *a posteriori* probability of parameters is then

$$p(\theta|x) = \frac{p(x|\theta) p(\theta)}{p(x)} \propto p(x|\theta) p(\theta).$$

 $\rightarrow\,$ The Bayesian estimator is thus a probability distibution on the parameters.

One talks about Bayesian inference.

Outline

Preliminary concepts

2 Directed graphical models

3 Markov random field

Graphs

G = (V, E) is a graph with vertex set V and edge set E.

Graphs

G = (V, E) is a graph with vertex set V and edge set E. The graph will be

• either a directed acyclic graph (DAG)

 \gg then $(i,j) \in E \subset V \times V$ means $i \to j$.

Graphs

G = (V, E) is a graph with vertex set V and edge set E. The graph will be

• either a directed acyclic graph (DAG)

 \gg then $(i,j) \in E \subset V \times V$ means $i \to j$.

• or a an undirected graph

≫ then $\{i, j\} \in E$ means *i* and *j* are adjacent.

Graphs

G = (V, E) is a graph with vertex set V and edge set E. The graph will be

• either a directed acyclic graph (DAG)

 \gg then $(i,j) \in E \subset V \times V$ means $i \to j$.

or a an undirected graph

≫ then $\{i, j\} \in E$ means *i* and *j* are adjacent.

Variables of the graphical model

• To each node $i \in V$, we associate a graphical variable X_i .

Graphs

G = (V, E) is a graph with vertex set V and edge set E. The graph will be

• either a directed acyclic graph (DAG)

 \gg then $(i,j) \in E \subset V \times V$ means $i \to j$.

or a an undirected graph

≫ then $\{i, j\} \in E$ means *i* and *j* are adjacent.

Variables of the graphical model

- To each node $i \in V$, we associate a graphical variable X_i .
- Observations/values of X_i are denoted x_i .

Graphs

G = (V, E) is a graph with vertex set V and edge set E. The graph will be

• either a directed acyclic graph (DAG)

 \gg then $(i,j) \in E \subset V \times V$ means $i \to j$.

or a an undirected graph

≫ then $\{i, j\} \in E$ means *i* and *j* are adjacent.

Variables of the graphical model

- To each node $i \in V$, we associate a graphical variable X_i .
- Observations/values of X_i are denoted x_i.
- If $A \subset V$ is a set of nodes we will write $X_A = (X_i)_{i \in A}$ et $x_A = (x_i)_{i \in A}$.

$$p(a, b, c) = p(a) p(b|a) p(c|b, a)$$

$$p(a, b, c) = p(a) p(b|a) p(c|b, a)$$

$$p(x_1,x_2)=p(x_1)p(x_2)$$

$$p(a, b, c) = p(a) p(b|a) p(c|b, a)$$

$$p(x_1, x_2) = p(x_1)p(x_2)$$

 $p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$

$$p(a, b, c) = p(a) p(b|a) p(c|b, a)$$

$$p(x_1, x_2) = p(x_1)p(x_2)$$

a⊥⊥b∣c

Factorization according to a directed graph

Definition: a distribution factorizes according to a directed graph

$$\prod_{j=1}^p p(x_j | x_{\Pi_j})$$

Directed graphical model or Bayesian network

Factorization according to a directed graph

Definition: a distribution factorizes according to a directed graph

How to parameterize an Oriented graphical model?

$p(\mathbf{x}; \boldsymbol{\theta}) = p(x_1; \theta_1) p(x_2 | x_1; \theta_2) p(x_3 | x_2, x_1; \theta_3) p(x_4 | x_3, x_2; \theta_4) p(x_5 | x_3; \theta_5)$

How to parameterize an Oriented graphical model?

Conditional Probability tables

- $x_1 \in \{0, 1\}$
- $x_2 \in \{0, 1, 2\}$
- $x_3 \in \{0, 1, 2\}$

 $p(\mathbf{x}; \theta) = p(x_1; \theta_1) p(x_2 | x_1; \theta_2) p(x_3 | x_2, x_1; \theta_3) p(x_4 | x_3, x_2; \theta_4) p(x_5 | x_3; \theta_5)$

How to parameterize an Oriented graphical model?

Conditional Probability tables

- $x_1 \in \{0, 1\}$
- $x_2 \in \{0, 1, 2\}$
- $x_3 \in \{0, 1, 2\}$

 $p(\mathbf{x}; \theta) = p(x_1; \theta_1) p(x_2 | x_1; \theta_2) p(x_3 | x_2, x_1; \theta_3) p(x_4 | x_3, x_2; \theta_4) p(x_5 | x_3; \theta_5)$

The Sprinkler

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet

The Sprinkler

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet

P(G=1 S,R)	R=0	R=1
S=0	0.01	0.8
S=1	0.8	0.95

The Sprinkler

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet

$P(R=1) \equiv 0.2$			
P(G=1 S,R)	R=0	R=1	
S=0	0.01	0.8	
S=1	0.8	0.95	

• Given that we observe that the grass is wet, are *R* and *S* independent?

The Sprinkler II

æ

★ 문 ► ★ 문 ►

The Sprinkler II

注入 注

The Sprinkler II

- R = 1: it has rained
- S = 1: the sprinkler worked
- G = 1: the grass is wet
- *P*=2: the paws of the dog are wet

P(S = 1) = 0.5 P(R = 1) = 0.2

P(G=1 S,R)	R=0	R=1
S=0	0.01	0.8
S=1	0.8	0.95
P(P=1 G)	G=0	G=1
	0.2	0.7

Factorization and Independence

• A factorization imposes independence statements

$$\forall x, \ p(x) = \prod_{j=1}^{p} p(x_j | x_{\Pi_j}) \quad \Leftrightarrow \quad \forall j, \ X_j \perp \!\!\!\perp X_{\{1, \dots, j-1\} \setminus \Pi_j} \mid X_{\Pi_j}$$

Factorization and Independence

 $X_5 \perp X_2 \mid X_4$

• A factorization imposes independence statements

$$\forall x, \ p(x) = \prod_{j=1}^{p} p(x_j | x_{\Pi_j}) \quad \Leftrightarrow \quad \forall j, \ X_j \perp \!\!\!\perp X_{\{1, \dots, j-1\} \setminus \Pi_j} \mid X_{\Pi_j}$$

 Is it possible to read from the graph the (conditional) independence statements that hold given the factorization.

Blocking nodes

d-separation

æ

< ≣⇒

d-separation

Theorem

If A, B and C are three disjoint sets of node, the statement $X_A \perp \!\!\!\perp X_B | X_C$ holds if all paths joining A to B go through at least one blocking node. A node j is blocking a path

- if the edges of the paths are diverging/following and $j \in C$
- if the edges of the paths are converging (i.e. form a v-structure) and neither *j* nor any of its descendants is in *C*

• Several graphs can induce the same set of conditional independences .

• Several graphs can induce the same set of conditional independences .

• Several graphs can induce the same set of conditional independences .

p(c)p(a|c)p(b|c)

• Several graphs can induce the same set of conditional independences .

p(c)p(a|c)p(b|c) = p(a)p(c|a)p(b|c)

• Several graphs can induce the same set of conditional independences .

p(c)p(a|c)p(b|c) = p(a)p(c|a)p(b|c)

• Some combinations of conditional independences cannot be faithfully represented by a graphical model

• Several graphs can induce the same set of conditional independences .

p(c)p(a|c)p(b|c) = p(a)p(c|a)p(b|c)

• Some combinations of conditional independences cannot be faithfully represented by a graphical model

• Ex1:
$$X \sim \text{Ber}_{\frac{1}{2}}$$
 $Y \sim \text{Ber}_{\frac{1}{2}}$ $Z = X \oplus Y$.

• Several graphs can induce the same set of conditional independences .

p(c)p(a|c)p(b|c) = p(a)p(c|a)p(b|c)

• Some combinations of conditional independences cannot be faithfully represented by a graphical model

• Ex1:
$$X \sim \text{Ber}_2^1$$
 $Y \sim \text{Ber}_2^1$ $Z = X \oplus Y$.
• Fx2: $X \parallel Y \mid Z = 1$ but $X \not\Vdash Y \mid Z = 0$

Outline

Preliminary concepts

- 2 Directed graphical models
- 3 Markov random field
- Operations on graphical models

Markov random field (MRF) or Oriented graphical model

Is it possible to associate to each graph a family of distribution so that conditional independence coincides exactly with the notion of separation in the graph?

Global Markov Property

 $X_A \perp\!\!\perp X_B \mid X_C \quad \Leftrightarrow C \text{ separates } A \text{ et } B$

Clique Set of nodes that are all connected to one another.

Clique Set of nodes that are all connected to one another.

Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Clique Set of nodes that are all connected to one another. Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Gibbs distribution

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$

Partition function

$$Z = \sum_{x} \prod_{C} \psi_{C}(x_{C})$$

Clique Set of nodes that are all connected to one another.

Potential function The potential $\psi_C(x_C) \ge 0$ is associated to clique C.

Gibbs distribution

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$

Partition function

$$Z=\sum_{x}\prod_{C}\psi_{C}(x_{C})$$

Writing potential in exponential form $\psi_C(x_C) = \exp\{-E(x_C)\}$. $E(x_C)$ is an energy. This a Boltzmann distribution.

Example 1: Ising model

 $X = (X_1, \ldots, X_d)$ is a collection of binary variables, whose joint probability distribution is

$$p(x_1, \dots, x_d) = \frac{1}{Z(\eta)} \exp\left(\sum_{i \in V} \eta_i x_i + \sum_{\{i,j\} \in E} \eta_{ij} x_i x_j\right)$$
$$= \frac{1}{Z(\eta)} \prod_{i \in V} e^{\eta_i x_i} \prod_{\{i,j\} \in E} e^{\eta_{ij} x_i x_j}$$
$$= \frac{1}{Z(\eta)} \prod_{i \in V} \psi_i(x_i) \prod_{\{i,j\} \in E} \psi_i(x_i, x_j)$$

with $\psi_i(x_i) = e^{\eta_i x_i}$ and $\psi_{ij}(x_i, x_j) = e^{\eta_{ij} x_i x_j}$.

Example 2: Directed graphical model

Consider a distribution p that factorizes according to a directed graph G = (V, E), then

$$p(x_1, \dots, x_d) = \prod_{i=1}^d p(x_i \mid x_{\pi_i})$$
$$= \prod_{i=1}^d \psi_{C_i}(x_{C_i}) \quad \text{with} \quad C_i = \{i\} \cup \pi_i$$

Consequence: A distribution that factorizes according to a directed model is a Gibbs distribution for the cliques $C_i = \{i\} \cup \pi_i$. As a consequence, it factorizes according to an undirected graph in which C_i are cliques.

Theorem of Hammersley and Clifford (1971)

A distribution p, which is such that p(x) > 0 for all x satisfies the global Markov property for graph G if and only if it is a Gibbs distribution associated with G.

• Gibbs distribution:
$$\mathcal{P}_G$$
: $p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}_G} \psi_C(x_C)$

• Global Markov property:

 \mathcal{P}_M : $X_A \perp\!\!\!\perp X_B \mid X_C$ si C separated A and B in G

Theorem

We have $\mathcal{P}_G \Rightarrow \mathcal{P}_M$ and (HC): if $\forall x, p(x) > 0$, then $\mathcal{P}_M \Rightarrow \mathcal{P}_G$

Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

 $X_i \perp \perp X_R \mid X_B$, with $R = V \setminus (B \cup \{i\})$

Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

 $X_i \perp \perp X_R \mid X_B$, with $R = V \setminus (B \cup \{i\})$

or equivalently such that

 $p(X_i \mid X_{-i}) = p(X_i \mid X_B).$

Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$X_i \perp \perp X_R \mid X_B$$
, with $R = V \setminus (B \cup \{i\})$

or equivalently such that

$$p(X_i \mid X_{-i}) = p(X_i \mid X_B).$$

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_C , j is independent of all the other nodes in the graph?

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_C , j is independent of all the other nodes in the graph?

For a given oriented graphical model

- is there an unoriented graphical model which is equivalent?
- is there a smallest unoriented graphical which contains the oriented graphical model?

$$p(x) = rac{1}{Z} \prod_{C} \psi_{C}(x_{C})$$
 vs $\prod_{j=1}^{M} p(x_{j}|x_{\Pi_{j}})$

Moralization

Given a directed graph G, its moralized graph G_M is obtained by

- For any node *i*, add undirected edges between all its parents
- Remove the orientation of all the oriented edges

Moralization

Given a directed graph G, its moralized graph G_M is obtained by
For any node i, add undirected edges between all its parents
Remove the orientation of all the oriented edges

Moralization

Given a directed graph G, its moralized graph G_M is obtained by
For any node i, add undirected edges between all its parents
Remove the orientation of all the oriented edges

Proposition

If a probability distribution factorizes according to a directed graph G then it factorizes according to the undirected graph G_M .

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Moralizing trees

- What is the moralized graph for a directed tree?
- The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it factorizes according to its undirected version.

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Moralizing trees

- What is the moralized graph for a directed tree?
- The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it factorizes according to its undirected version.

Corollary

All orientations of the edges of a tree that do not create v-structure are equivalent.

Outline

Preliminary concepts

- 2 Directed graphical models
- 3 Markov random field

Operations on graphical models

Probabilistic inference

Compute a marginal distribution $p(x_i)$ or a *conditional marginal* $p(x_i|x_1 = 3, x_7 = 0)$

Operations on graphical models

Probabilistic inference

Compute a marginal distribution $p(x_i)$ or a conditional marginal $p(x_i|x_1 = 3, x_7 = 0)$

Decoding (aka MAP Inference)

Finding what is the most probable configuration for the set of random variables?

Learning/ estimation in graphical models

Frequentist learning

The main *frequentist* learning principle for graphical model is the *maximum likelihood principle* of R. Fisher. Let $p(x; \theta) = \frac{1}{Z(\theta)} \prod_{C} \psi(x_{C}, \theta_{C})$, we would like to find

$$\operatorname{argmax}_{\theta} \prod_{i=1}^{n} p(x^{(i)}; \theta) = \operatorname{argmax}_{\theta} \frac{1}{Z(\theta)} \prod_{i=1}^{n} \prod_{C} \psi(x_{C}^{(i)}, \theta_{C})$$

Bayesian learning

Graphical models can also learn using bayesian inference.

The "Naive Bayes" model for classification

Data

- Class label: $C \in \{1, \dots, K\}$
- Class indicator vector $Z \in \{0,1\}^K$
- Features X_j, j = 1,..., D (e.g. word presence)

The "Naive Bayes" model for classification

Data

- Class label: $C \in \{1, \dots, K\}$
- Class indicator vector $Z \in \{0,1\}^K$
- Features X_j, j = 1,..., D (e.g. word presence)

Model

Which model for

$$p(x_1,\ldots,x_D|z_k=1)?$$

Model

$$p(\mathbf{z}) = \prod_k \pi_k^{z_k}$$

The "Naive Bayes" model for classification

Data

- Class label: $C \in \{1, \dots, K\}$
- Class indicator vector $Z \in \{0,1\}^K$
- Features X_j, j = 1,..., D (e.g. word presence)

Model

Which model for

$$p(x_1,\ldots,x_D|z_k=1)?$$

Model

$$p(\boldsymbol{z}) = \prod_k \pi_k^{\boldsymbol{z}_k}$$

"Naive" hypothesis

$$p(x_1,...,x_D|z_k=1) = \prod_{j=1}^{D} p(x_j | z_k=1; b_{jk}) = \prod_{j=1}^{D} b_{jk}^{x_j} (1-b_{jk})^{1-x_j}$$

with
$$b_{jk} = \mathbb{P}(x_j = 1 \mid z_k = 1)$$
.

Naive Bayes (continued)

Learning (estimation) with the maximum likelihood principle

$$\hat{\pi} = \operatorname*{argmax}_{\pi:\pi^{\top}\mathbf{1}=1} \prod_{k,i} \pi_{k}^{z_{k}^{(i)}} \qquad \hat{b}_{jk} = \operatorname*{argmax}_{b_{jk}} \sum_{i=1}^{n} \log p(x_{j}^{(i)}|z^{(i)} = k; b_{jk})$$

Prediction:

$$\hat{z} = \operatorname{argmax}_{z} \frac{\prod_{j=1}^{D} p(x_j|z) p(z)}{\sum_{z'} \prod_{j=1}^{D} p(x_j|z') p(z')}$$

Naive Bayes (continued)

Learning (estimation) with the maximum likelihood principle

$$\hat{\pi} = \operatorname*{argmax}_{\pi:\pi^{\top}\mathbf{1}=1} \prod_{k,i} \pi_k^{z_k^{(i)}} \qquad \hat{b}_{jk} = \operatorname*{argmax}_{b_{jk}} \sum_{i=1}^n \log p(x_j^{(i)}|z^{(i)} = k; b_{jk})$$

Prediction:

$$\hat{z} = \operatorname{argmax}_{z} \frac{\prod_{j=1}^{D} p(x_j|z) p(z)}{\sum_{z'} \prod_{j=1}^{D} p(x_j|z') p(z')}$$

Properties

- Ignores the correlation between features
- Prediction requires only to use Bayes rule
- The model can be learnt in parallel
- Complexity in $\mathcal{O}(nD)$