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Sequence modelling

How to model the distribution of DNA sequences of length k?

Naive model→ 4n − 1 parameters

Indépendant model → 3n parameters

x1 x2 x3 x4

First order Markov chain:

x1 x2 x3 x4

Second order Markov chain:

x1 x2 x3 x4

Number of parameters O(n) for chains of length n.
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Models for speech processing

Speech modelled by a sequence of unobserved phonemes

For each phoneme a random sound is produced following a
distribution which characterizes the phoneme

Hidden Markov Model: HMM
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

→ Latent variable models
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Modelling image structures

Markov Random Field

Segmentation

→ oriented graphical model vs non oriented
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Anaesthesia alarm (Beinlich et al., 1989)

“The ALARM Monitoring system”

http://www.bnlearn.com/documentation/networks/

CVP central venous pressure
PCWP pulmonary capillary wedge pressure
HIST history
TPR total peripheral resistance
BP blood pressure
CO cardiac output
HRBP heart rate / blood pressure.
HREK heart rate measured by an EKG monitor
HRSA heart rate / oxygen saturation.
PAP pulmonary artery pressure.
SAO2 arterial oxygen saturation.
FIO2 fraction of inspired oxygen.
PRSS breathing pressure.
ECO2 expelled CO2.
MINV minimum volume.
MVS minimum volume set
HYP hypovolemia
LVF left ventricular failure
APL anaphylaxis
ANES insufficient anesthesia/analgesia.
PMB pulmonary embolus
INT intubation
KINK kinked tube.
DISC disconnection
LVV left ventricular end-diastolic volume
STKV stroke volume
CCHL catecholamine
ERLO error low output
HR heart rate.
ERCA electrocauter
SHNT shunt
PVS pulmonary venous oxygen saturation
ACO2 arterial CO2
VALV pulmonary alveoli ventilation
VLNG lung ventilation
VTUB ventilation tube
VMCH ventilation machine
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Probabilistic model
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p(x1, x2, . . . , x9) = f12(x1, x2) f23(x2, x3) f34(x3, x4) f45(x4, x5) . . .

f56(x5, x6) f37(x3, x7) f678(x6, x7, x8) f9(x9)
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Abstact models vs concrete ones

Abstracts models

Linear regression

Logistic regression

Mixture model

Principal Component Analysis

Canonical Correlation Analysis

Independent Component analysis

LDA (Multinomiale PCA)

Naive Bayes Classifier

Mixture of experts

Concrete Models

Markov chains

HMM

Tree-structured models

Double HMMs

Oriented acyclic models

Markov Random Fields

Star models

Constellation Model
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Poll...

... about some relevant concepts.

Markov Chain

Density of the multivariate Gaussian distribution

Maximum likelihood estimator

Logistic regression

Entropy

Exponential families of distributions (6= the exponential distribution)

Bayesian inference

Kullback-Leibler divergence

Expectation maximisation algorithm

Sum-product algorithm

MCMC sampling
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Outline

1 Preliminary concepts

2 Directed graphical models

3 Markov random field

4 Operations on graphical models

G. Obozinski Introduction to Graphical models 10/47



Probability distributions

Joint probability distribution of r.v. (X1, . . . ,Xp): p(x1, x2, x3, . . . , xn).
We assume either that

Xi takes values in {1, . . . ,K} and

p(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn).

or that (X1, . . . ,Xn) admits a density in Rn

Marginalization

p(x1) =
∑
x2

p(x1, x2)

Factorization

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xn|x1, . . . , xn−1)

G. Obozinski Introduction to Graphical models 11/47



Entropy and Kullback-Leibler divergence

Entropie

H(p) = −
∑
x

p(x) log p(x) = E[− log p(X )]

→ Expectation of the negative log-likelihood

Kullback-Leibler divergence

KL(p‖q) =
∑
x

p(x) log
p(x)

q(x)
= Ep

[
log

p(X )

q(X )

]
→ Expectation of the log-likelihood ratio

→ Property: KL(p‖q) ≥ 0

G. Obozinski Introduction to Graphical models 12/47



Entropy and Kullback-Leibler divergence

Entropie

H(p) = −
∑
x

p(x) log p(x) = E[− log p(X )]

→ Expectation of the negative log-likelihood

Kullback-Leibler divergence

KL(p‖q) =
∑
x

p(x) log
p(x)

q(x)
= Ep

[
log

p(X )

q(X )

]
→ Expectation of the log-likelihood ratio

→ Property: KL(p‖q) ≥ 0

G. Obozinski Introduction to Graphical models 12/47



Entropy and Kullback-Leibler divergence

Entropie

H(p) = −
∑
x

p(x) log p(x) = E[− log p(X )]

→ Expectation of the negative log-likelihood

Kullback-Leibler divergence

KL(p‖q) =
∑
x

p(x) log
p(x)

q(x)
= Ep

[
log

p(X )

q(X )

]
→ Expectation of the log-likelihood ratio

→ Property: KL(p‖q) ≥ 0

G. Obozinski Introduction to Graphical models 12/47



Independence concepts

Independence: X ⊥⊥Y

We say that X et Y are independents and write X ⊥⊥Y ssi:

∀x , y , P(X = x ,Y = y) = P(X = x)P(Y = y)

Conditional Independence: X ⊥⊥Y | Z
On says that X and Y are independent conditionally on Z and

write X ⊥⊥Y | Z iff:

∀x , y , z ,

P(X = x ,Y = y | Z = z) = P(X = x |Z = z) P(Y = y |Z = z)
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Conditional Independence exemple

Example of
“X-linked recessive inheritance”:

Transmission of the gene
responsible for hemophilia

Risk for sons from an unaffected father:

dependance between the situation of the two brothers.

conditionally independent given that the mother is a carrier of the
gene or not.
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1, . . . ,K}, with

P(C = k) = πk .

We will code C with a r.v. Y = (Y1, . . . ,YK )> with

Yk = 1{C=k}

For example if K = 5 and c = 4 then y = (0, 0, 0, 1, 0)>.
So y ∈ {0, 1}K with

∑K
k=1 yk = 1.

P(C = k) = P(Yk = 1) and P(Y = y) =
K∏

k=1

πykk .
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Bernoulli, Binomial, Multinomial

Y ∼ Ber(π) (Y1, . . . ,YK ) ∼M(1, π1, . . . , πK )

p(y) = πy (1− π)1−y p(y) = πy1
1 . . . πyKK

N1 ∼ Bin(n, π) (N1, . . . ,NK ) ∼M(n, π1, . . . , πK )

p(n1) =
( n
n1

)
πn1 (1− π)n−n1 p(n) =

(
n

n1 . . . nK

)
πn1

1 . . . πnKK

with (
n

i

)
=

n!

(n − i)!i !
and

(
n

n1 . . . nK

)
=

n!

n1! . . . nK !
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Gaussian model

Univariate gaussian : X ∼ N (µ, σ2)

X is real valued r.v., et θ =
(
µ, σ2

)
∈ Θ = R× R∗+.

pµ,σ2 (x) =
1√

2πσ2
exp

(
−1

2

(x − µ)2

σ2

)

Multivariate gaussian: X ∼ N (µ,Σ)

X takes values in Rd . Si Kn is the set of n × n positive definite
matrices, and θ = (µ,Σ) ∈ Θ = Rd ×Kn.

pµ,Σ (x) =
1√

(2π)d det Σ
exp

(
−1

2
(x − µ)T Σ−1 (x − µ)

)
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Gaussian densities
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Gaussian densities
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Maximum likelihood principle

Let a model PΘ =
{
p(x ; θ) | θ ∈ Θ

}
Let an observation x

Likelihood:

L : Θ → R+

θ 7→ p(x ; θ)

Maximum likelihood estimator:

θ̂ML = argmax
θ∈Θ

p(x ; θ)
Sir Ronald Fisher

(1890-1962)

Case of i.i.d. data

For (xi )1≤i≤n a sample of i.i.d. data of size n:

θ̂ML = argmax
θ∈Θ

n∏
i=1

p(xi ; θ) = argmax
θ∈Θ

n∑
i=1

log p(xi ; θ)
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Bayesian estimation

Parameters θ are modelled as a random variable.

A priori

We have an a priori p (θ) on the model parameters.

A posteriori

The data contribute to the likelihood : p (x |θ).
The a posteriori probability of parameters is then

p (θ|x) =
p (x |θ) p (θ)

p (x)
∝ p (x |θ) p (θ) .

→ The Bayesian estimator is thus a probability distibution on the
parameters.

One talks about Bayesian inference.
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Outline

1 Preliminary concepts

2 Directed graphical models

3 Markov random field

4 Operations on graphical models
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Notations for graphical models

Graphs

G = (V ,E ) is a graph with vertex set V and edge set E .

The graph will be

either a directed acyclic graph (DAG)
� then (i , j) ∈ E ⊂ V × V means i → j .

or a an undirected graph

� then {i , j} ∈ E means i and j are adjacent.

Variables of the graphical model

To each node i ∈ V , we associate a graphical variable Xi .

Observations/values of Xi are denoted xi .

If A ⊂ V is a set of nodes we will write XA = (Xi )i∈A et
xA = (xi )i∈A.
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Directed graphical model or Bayesian network

p(a, b, c) = p(a) p(b|a) p(c |b, a)

a

b

c

p(x1, x2) = p(x1)p(x2)
x1 x2

p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2)
x1 x2 x3

a⊥⊥ b | c

c

a b
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Directed graphical model or Bayesian network

Factorization according to a directed graph

Definition: a distribution factorizes according to a directed graph

p∏
j=1

p(xj |xΠj
)

x1

x2 x3

x4 x5

x6 x7

p(x1)
M∏
j=2

p(xj |xj−1)

x1 x2 xM
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How to parameterize an Oriented graphical model?

x1

x2 x3

x4 x5

Conditional Probability tables

x1 ∈ {0, 1}
x2 ∈ {0, 1, 2}
x3 ∈ {0, 1, 2}

p(x3 = k)
x1 x2 0 1 2

0 0 1 0 0
0 1 1 0 0
0 2 0.1 0 0.9
1 0 1 0 0
1 1 0.5 0.5 0
1 2 0.2 0.3 0.5

p(x;θ) = p(x1; θ1) p(x2|x1; θ2) p(x3|x2, x1; θ3) p(x4|x3, x2; θ4) p(x5|x3; θ5)
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The Sprinkler

SR

G

R = 1: it has rained

S = 1: the sprinkler worked

G = 1: the grass is wet

P(S = 1) = 0.5

P(R = 1) = 0.2

P(G = 1|S ,R) R=0 R=1

S=0 0.01 0.8
S=1 0.8 0.95

Given that we observe that the grass is wet, are R and S
independent?
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The Sprinkler II

SR

G

P
R = 1: it has rained

S = 1: the sprinkler worked

G = 1: the grass is wet

P =2: the paws of the dog are
wet

P(S = 1) = 0.5 P(R = 1) = 0.2

P(G = 1|S ,R) R=0 R=1

S=0 0.01 0.8
S=1 0.8 0.95

P(P = 1|G ) G=0 G=1

0.2 0.7
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Factorization and Independence

A factorization imposes independence statements

∀x , p(x) =

p∏
j=1

p(xj |xΠj
) ⇔ ∀j , Xj ⊥⊥X{1,..., j−1}\Πj

| XΠj

Is it possible to read from the graph the (conditional) independence
statements that hold given the factorization.

X5

?
⊥⊥X2 | X4

x1

x2 x3

x4 x5

x6 x7
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Blocking nodes

diverging edges head-to-tail converging edges

c

a b

a c b

c

a b

=
a⊥⊥� b a⊥⊥� b a⊥⊥ b

c

a b

a c b

c

a b

= =
a⊥⊥ b | c a⊥⊥ b | c a⊥⊥� b | c

The configuration with converging edges is called a v-structure
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d-separation

f

e b

a

c

Theorem

If A,B and C are three disjoint sets of node, the statement
XA⊥⊥XB |XC holds if all paths joining A to B go through at least one
blocking node. A node j is blocking a path

if the edges of the paths are diverging/following and j ∈ C

if the edges of the paths are converging (i.e. form a v-structure)
and neither j nor any of its descendants is in C
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Factorization et Independence II

Several graphs can induce the same set of conditional
independences .

c

a b

a c b

p(c)p(a|c)p(b|c) = p(a)p(c |a)p(b|c)

Some combinations of conditional independences cannot be
faithfully represented by a graphical model

Ex1: X ∼ Ber 1
2 Y ∼ Ber 1

2 Z = X ⊕ Y .
Ex2: X ⊥⊥Y | Z = 1 but X ⊥⊥� Y | Z = 0
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Outline

1 Preliminary concepts

2 Directed graphical models

3 Markov random field

4 Operations on graphical models
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Markov random field (MRF) or Oriented graphical model

Is it possible to associate to each graph a family of distribution so that
conditional independence coincides exactly with the notion of separation
in the graph?

Global Markov Property

XA⊥⊥XB | XC ⇔ C separates A et B

A

C
B
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Gibbs distribution

Clique Set of nodes that are all connected to one another.

Potential function The potential ψC (xC ) ≥ 0 is associated to clique C .

Gibbs distribution

p(x) =
1

Z

∏
C

ψC (xC )

Partition function

Z =
∑
x

∏
C

ψC (xC )

x1

x2

x3

x4

Writing potential in exponential form ψC (xC ) = exp{−E (xC )}.
E (xC ) is an energy.
This a Boltzmann distribution.
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Example 1: Ising model

X = (X1, . . . ,Xd) is a collection of binary variables, whose joint
probability distribution is

p(x1, . . . , xd) =
1

Z (η)
exp

(∑
i∈V

ηixi +
∑
{i ,j}∈E

ηijxixj

)
=

1

Z (η)

∏
i∈V

eηixi
∏
{i ,j}∈E

eηijxixj

=
1

Z (η)

∏
i∈V

ψi (xi )
∏
{i ,j}∈E

ψi (xi , xj)

with ψi (xi ) = eηixi and ψij(xi , xj) = eηijxixj .

G. Obozinski Introduction to Graphical models 35/47



Example 2: Directed graphical model

Consider a distribution p that factorizes according to a directed graph
G = (V ,E ), then

p(x1, . . . , xd) =
d∏

i=1

p(xi | xπi )

=
d∏

i=1

ψCi
(xCi

) with Ci = {i} ∪ πi

Consequence: A distribution that factorizes according to a directed
model is a Gibbs distribution for the cliques Ci = {i} ∪ πi . As a
consequence, it factorizes according to an undirected graph in which Ci

are cliques.
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Theorem of Hammersley and Clifford (1971)

A distribution p, which is such that p(x) > 0 for all x satisfies the global
Markov property for graph G if and only if it is a Gibbs distribution
associated with G .

Gibbs distribution: PG : p(x) =
1

Z

∏
C∈CG

ψC (xC )

Global Markov property:

PM : XA⊥⊥XB | XC si C separated A and B in G

Theorem

We have PG ⇒ PM and (HC): if ∀x , p(x) > 0, then PM ⇒ PG
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Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such
that

Xi ⊥⊥XR | XB , with R = V \(B ∪ {i})

or equivalently such that

p(Xi | X−i ) = p(Xi | XB).
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Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such
that

Xi ⊥⊥XR | XB , with R = V \(B ∪ {i})

or equivalently such that

p(Xi | X−i ) = p(Xi | XB).
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Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the
smallest set C of nodes such that conditionally on XC , j is independent
of all the other nodes in the graph?

xi
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Moralization

For a given oriented graphical model

is there an unoriented graphical model which is equivalent?

is there a smallest unoriented graphical which contains the oriented
graphical model?

p(x) =
1

Z

∏
C

ψC (xC ) vs
M∏
j=1

p(xj |xΠj
)
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Moralization

Given a directed graph G , its moralized graph GM is obtained by

1 For any node i , add undirected edges between all its parents

2 Remove the orientation of all the oriented edges

x1 x3

x4

x2

x1 x3

x4

x2

Proposition

If a probability distribution factorizes according to a directed graph G
then it factorizes according to the undirected graph GM .
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Directed vs undirected trees

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent

Remark: By definition a directed tree has no v-structure.

Moralizing trees

What is the moralized graph for a directed tree?

The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it
factorizes according to its undirected version.

Corollary

All orientations of the edges of a tree that do not create v-structure are
equivalent.
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Corollary

All orientations of the edges of a tree that do not create v-structure are
equivalent.
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Outline

1 Preliminary concepts

2 Directed graphical models

3 Markov random field

4 Operations on graphical models
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Operations on graphical models

Probabilistic inference

Compute a marginal distribution p(xi ) or a conditional marginal
p(xi |x1 = 3, x7 = 0)

Decoding (aka MAP Inference)

Finding what is the most probable configuration for the set of random
variables?

argmaxzp(z |x)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2
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Learning/ estimation in graphical models

Frequentist learning

The main frequentist learning principle for graphical model is the
maximum likelihood principle of R. Fisher. Let
p(x ;θ) = 1

Z(θ)

∏
C ψ(xC , θC ), we would like to find

argmaxθ

n∏
i=1

p(x (i);θ) = argmaxθ
1

Z (θ)

n∏
i=1

∏
C

ψ(x
(i)
C , θC )

Bayesian learning

Graphical models can also learn using bayesian inference.
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The “Naive Bayes” model for classification

Data

Class label: C ∈ {1, . . . ,K}
Class indicator vector Z ∈ {0, 1}K

Features Xj , j = 1, . . . ,D
(e.g. word presence)

Model

p(z) =
∏
k

πzkk

Model

Which model for

p(x1, . . . , xD |zk = 1) ?

z

x1 xD

“Naive” hypothesis

p(x1, . . . , xD |zk = 1) =
D∏
j=1

p(xj | zk = 1; bjk) =
D∏
j=1

b
xj
jk (1− bjk)1−xj

with bjk = P(xj = 1 | zk = 1).
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Naive Bayes (continued)

Learning (estimation) with the maximum likelihood principle

π̂ = argmax
π:π>1=1

∏
k,i

π
z

(i)
k

k b̂jk = argmax
bjk

n∑
i=1

log p(x
(i)
j |z

(i) = k; bjk)

Prediction:

ẑ = argmaxz

∏D
j=1 p(xj |z)p(z)∑

z ′
∏D

j=1 p(xj |z ′)p(z ′)

Properties

Ignores the correlation between features

Prediction requires only to use Bayes rule

The model can be learnt in parallel

Complexity in O(nD)
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