Introduction to Graphical models

Guillaume Obozinski

Ecole des Ponts - ParisTech

> INIT/AERFAI Summer school on Machine Learning Benicàssim, June 26th 2017

Structured problems in HD

Structured problems in HD

SNiPs or SNPs =

sites of variation in the genome (spelling mistakes) \qquad Karen AGCTTGAC TCCATGATGATT Deto AGCTTGAC GCCATGATGATT Jose AGCTTGAC TCCCTGATGATT Thomas AGCTTGACGCCCTGATGATT Anupriya AGCTTGAC TCCA TGATGATT Robert AGCTTGACGCCA TGATGATT michelle AGCTTGAC TCCCTGATGATT zhijun AGCTTGACGCCCTGATGATT

Structured problems in HD

SNiPs or SNPs $=$
sites of variation in the genome (spelling mistakes) \qquad AGCTTGAC TCCATGATGATT Deto AGCTTGAC GCCATGATGATT Jose AGCTTGAC TCCCTGATGATT Thomas AGCTTGACGCCCTGATGATT Anupriya AGCTTGAC TCCA TGATGATT robert AGCTTGACGCCATGATGATT michelle AGCTTGAC TCCC TGATGATT zhijun AGCTTGACGCCCTGATGATT

Sequence modelling

How to model the distribution of DNA sequences of length k ?

Sequence modelling

How to model the distribution of DNA sequences of length k ?

- Naive model $\rightarrow 4^{n}-1$ parameters

Sequence modelling

How to model the distribution of DNA sequences of length k ?

- Naive model $\rightarrow 4^{n}-1$ parameters
- Indépendant model $\rightarrow 3 n$ parameters

Sequence modelling

How to model the distribution of DNA sequences of length k ?

- Naive model $\rightarrow 4^{n}-1$ parameters
- Indépendant model $\rightarrow 3 n$ parameters

First order Markov chain:

Sequence modelling

How to model the distribution of DNA sequences of length k ?

- Naive model $\rightarrow 4^{n}-1$ parameters
- Indépendant model $\rightarrow 3 n$ parameters

First order Markov chain:

Second order Markov chain:

Sequence modelling

How to model the distribution of DNA sequences of length k ?

- Naive model $\rightarrow 4^{n}-1$ parameters
- Indépendant model $\rightarrow 3 n$ parameters

First order Markov chain:

Second order Markov chain:

Number of parameters $\mathcal{O}(n)$ for chains of length n.

Sequence modelling

How to model the distribution of DNA sequences of length k ?

- Naive model $\rightarrow 4^{n}-1$ parameters
- Indépendant model $\rightarrow 3 n$ parameters

First order Markov chain:

Second order Markov chain:

Number of parameters $\mathcal{O}(n)$ for chains of length n.

Models for speech processing

- Speech modelled by a sequence of unobserved phonemes

Models for speech processing

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Models for speech processing

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Hidden Markov Model: HMM

Models for speech processing

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Hidden Markov Model: HMM

\rightarrow Latent variable models

Modelling image structures

Original image

Segmentation

Modelling image structures

Original image

Segmentation
\rightarrow oriented graphical model vs non oriented

Anaesthesia alarm (Beinlich et al., 1989) "The ALARM Monitoring system"

CVP
PCWP
HIST
HIST
TPR
BP
CO
HRBP
HREK HRSA
PAP
SAO2
FIO2
ECO2
MINV
MVS
HYP
LVF
APL
ANES
PMB
INT
KINK
DISC
LVV
STKV
CCHL
ERLO HR
ERCA
SHNT
PVS
ACO2
VALV
VLNG
VTUB
VMCH
central venous pressure
pulmonary capillary wedge pressure history
total peripheral resistance
blood pressure
cardiac output
heart rate / blood pressure.
heart rate measured by an EKG monitor heart rate / oxygen saturation.
pulmonary artery pressure. arterial oxygen saturation.
fraction of inspired oxygen.
breathing pressure.
expelled CO 2 .
minimum volume.
minimum volume set hypovolemia left ventricular failure anaphylaxis insufficient anesthesia/analgesia. pulmonary embolus
intubation kinked tube. disconnection left ventricular end-diastolic volume stroke volume catecholamine error low output heart rate. electrocauter shunt pulmonary venous oxygen saturation arterial CO2
pulmonary alveoli ventilation lung ventilation ventilation tube ventilation machinē

Probabilistic model

(9)

Probabilistic model

Probabilistic model

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{9}\right)= & f_{12}\left(x_{1}, x_{2}\right) f_{23}\left(x_{2}, x_{3}\right) f_{34}\left(x_{3}, x_{4}\right) f_{45}\left(x_{4}, x_{5}\right) \ldots \\
& f_{56}\left(x_{5}, x_{6}\right) f_{37}\left(x_{3}, x_{7}\right) f_{678}\left(x_{6}, x_{7}, x_{8}\right) f_{9}\left(x_{9}\right)
\end{aligned}
$$

Abstact models vs concrete ones

Abstracts models

- Linear regression
- Logistic regression
- Mixture model
- Principal Component Analysis
- Canonical Correlation Analysis
- Independent Component analysis
- LDA (Multinomiale PCA)
- Naive Bayes Classifier
- Mixture of experts

Concrete Models

- Markov chains
- HMM
- Tree-structured models
- Double HMMs
- Oriented acyclic models
- Markov Random Fields
- Star models
- Constellation Model
... about some relevant concepts.
... about some relevant concepts.
- Markov Chain
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm
- Sum-product algorithm
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm
- Sum-product algorithm
- MCMC sampling
... about some relevant concepts.
- Markov Chain
- Density of the multivariate Gaussian distribution
- Maximum likelihood estimator
- Logistic regression
- Entropy
- Exponential families of distributions (\neq the exponential distribution)
- Bayesian inference
- Kullback-Leibler divergence
- Expectation maximisation algorithm
- Sum-product algorithm
- MCMC sampling

Outline

(1) Preliminary concepts

(2) Directed graphical models

(3) Markov random field

4 Operations on graphical models

Probability distributions

Joint probability distribution of r.v. $\left(X_{1}, \ldots, X_{p}\right): p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$. We assume either that

- X_{i} takes values in $\{1, \ldots, K\}$ and

$$
p\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

- or that $\left(X_{1}, \ldots, X_{n}\right)$ admits a density in \mathbb{R}^{n}

Marginalization

$$
p\left(x_{1}\right)=\sum_{x_{2}} p\left(x_{1}, x_{2}\right)
$$

Factorization

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
$$

Entropy and Kullback-Leibler divergence

Entropie

$$
H(p)=-\sum_{x} p(x) \log p(x)=\mathbb{E}[-\log p(X)]
$$

\rightarrow Expectation of the negative log-likelihood

Entropy and Kullback-Leibler divergence

Entropie

$$
H(p)=-\sum_{x} p(x) \log p(x)=\mathbb{E}[-\log p(X)]
$$

\rightarrow Expectation of the negative log-likelihood
Kullback-Leibler divergence

$$
K L(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}=\mathbb{E}_{p}\left[\log \frac{p(X)}{q(X)}\right]
$$

\rightarrow Expectation of the log-likelihood ratio

Entropy and Kullback-Leibler divergence

Entropie

$$
H(p)=-\sum_{x} p(x) \log p(x)=\mathbb{E}[-\log p(X)]
$$

\rightarrow Expectation of the negative log-likelihood
Kullback-Leibler divergence

$$
K L(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}=\mathbb{E}_{p}\left[\log \frac{p(X)}{q(X)}\right]
$$

\rightarrow Expectation of the log-likelihood ratio
\rightarrow Property: $K L(p \| q) \geq 0$

Independence concepts

Independence: $X \Perp Y$
We say that X et Y are independents and write $X \Perp Y$ ssi:

$$
\forall x, y, \quad P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Independence concepts

Independence: $X \Perp Y$
We say that X et Y are independents and write $X \Perp Y$ ssi:

$$
\forall x, y, \quad P(X=x, Y=y)=P(X=x) P(Y=y)
$$

Conditional Independence: $X \Perp Y \mid Z$

- On says that X and Y are independent conditionally on Z and
- write $X \Perp Y \mid Z$ iff:
$\forall x, y, z$,

$$
P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)
$$

Conditional Independence exemple

Example of
"X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Conditional Independence exemple

Example of
"X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Risk for sons from an unaffected father:

- dependance between the situation of the two brothers.
- conditionally independent given that the mother is a carrier of the gene or not.

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k} .
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k} .
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

For example if $K=5$ and $c=4$ then $\boldsymbol{y}=(0,0,0,1,0)^{\top}$.

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

For example if $K=5$ and $c=4$ then $\boldsymbol{y}=(0,0,0,1,0)^{\top}$.
So $\boldsymbol{y} \in\{0,1\}^{K}$ with $\sum_{k=1}^{K} y_{k}=1$.

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

For example if $K=5$ and $c=4$ then $\boldsymbol{y}=(0,0,0,1,0)^{\top}$.
So $\boldsymbol{y} \in\{0,1\}^{K}$ with $\sum_{k=1}^{K} y_{k}=1$.

$$
\mathbb{P}(C=k)=\mathbb{P}\left(Y_{k}=1\right) \quad \text { and } \quad \mathbb{P}(Y=y)=\prod_{k=1}^{K} \pi_{k}^{y_{k}}
$$

Bernoulli, Binomial, Multinomial

$Y \sim \operatorname{Ber}(\pi)$	$\left(Y_{1}, \ldots, Y_{K}\right) \sim \mathcal{M}\left(1, \pi_{1}, \ldots, \pi_{K}\right)$
$p(y)=\pi^{y}(1-\pi)^{1-y}$	$p(\boldsymbol{y})=\pi_{1}^{y_{1}} \ldots \pi_{K}^{y_{K}}$
$N_{1} \sim \operatorname{Bin}(n, \pi)$	$\left(N_{1}, \ldots, N_{K}\right) \sim \mathcal{M}\left(n, \pi_{1}, \ldots, \pi_{K}\right)$
$p\left(n_{1}\right)=\binom{n}{n_{1}} \pi^{n_{1}}(1-\pi)^{n-n_{1}}$	$p(\mathbf{n})=\left(\begin{array}{cc}n \\ n_{1} & \ldots \\ n_{K}\end{array}\right) \pi_{1}^{n_{1}} \ldots \pi_{K}^{n_{K}}$

with

$$
\binom{n}{i}=\frac{n!}{(n-i)!i!} \quad \text { and } \quad\left(\begin{array}{ccc}
& n & \\
n_{1} & \ldots & n_{K}
\end{array}\right)=\frac{n!}{n_{1}!\ldots n_{K}!}
$$

Gaussian model

Univariate gaussian: $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
X is real valued r.v., et $\theta=\left(\mu, \sigma^{2}\right) \in \Theta=\mathbb{R} \times \mathbb{R}_{+}^{*}$.

$$
p_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Gaussian model

Univariate gaussian: $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
X is real valued r.v., et $\theta=\left(\mu, \sigma^{2}\right) \in \Theta=\mathbb{R} \times \mathbb{R}_{+}^{*}$.

$$
p_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Multivariate gaussian: $X \sim \mathcal{N}(\mu, \Sigma)$
X takes values in \mathbb{R}^{d}. Si \mathcal{K}_{n} is the set of $n \times n$ positive definite matrices, and $\theta=(\mu, \Sigma) \in \Theta=\mathbb{R}^{d} \times \mathcal{K}_{n}$.

$$
p_{\mu, \Sigma}(x)=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Gaussian densities

Gaussian densities

Maximum likelihood principle

- Let a model $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$
- Let an observation x

Maximum likelihood principle

- Let a model $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$
- Let an observation x

Likelihood:

$$
\begin{aligned}
\mathcal{L}: \Theta & \rightarrow \mathbb{R}_{+} \\
\theta & \mapsto p(x ; \theta)
\end{aligned}
$$

Maximum likelihood principle

- Let a model $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$
- Let an observation x

Likelihood:

$$
\begin{aligned}
\mathcal{L}: \Theta & \rightarrow \mathbb{R}_{+} \\
\theta & \mapsto p(x ; \theta)
\end{aligned}
$$

Maximum likelihood estimator:

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(x ; \theta)
$$

Sir Ronald Fisher (1890-1962)

Maximum likelihood principle

- Let a model $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$
- Let an observation x

Likelihood:

$$
\begin{aligned}
\mathcal{L}: \Theta & \rightarrow \mathbb{R}_{+} \\
\theta & \mapsto p(x ; \theta)
\end{aligned}
$$

Maximum likelihood estimator:

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(x ; \theta)
$$

Sir Ronald Fisher (1890-1962)

Case of i.i.d. data
For $\left(x_{i}\right)_{1 \leq i \leq n}$ a sample of i.i.d. data of size n :

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{n} p\left(x_{i} ; \theta\right)=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)
$$

Bayesian estimation

Parameters θ are modelled as a random variable.
A priori
We have an a priori $p(\theta)$ on the model parameters.

Bayesian estimation

Parameters θ are modelled as a random variable.

A priori

We have an a priori $p(\theta)$ on the model parameters.

A posteriori

The data contribute to the likelihood : $p(x \mid \theta)$.
The a posteriori probability of parameters is then

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)} \propto p(x \mid \theta) p(\theta) .
$$

\rightarrow The Bayesian estimator is thus a probability distibution on the parameters.

One talks about Bayesian inference.

Outline

(1) Preliminary concepts

(2) Directed graphical models

(3) Markov random field

4. Operations on graphical models

Notations for graphical models

Graphs
$G=(V, E)$ is a graph with vertex set V and edge set E.

Notations for graphical models

Graphs
$G=(V, E)$ is a graph with vertex set V and edge set E.
The graph will be

- either a directed acyclic graph (DAG)
\gg then $(i, j) \in E \subset V \times V$ means $i \rightarrow j$.

Notations for graphical models

Graphs

$G=(V, E)$ is a graph with vertex set V and edge set E.
The graph will be

- either a directed acyclic graph (DAG)
\gg then $(i, j) \in E \subset V \times V$ means $i \rightarrow j$.
- or a an undirected graph
\gg then $\{i, j\} \in E$ means i and j are adjacent.

Notations for graphical models

Graphs

$G=(V, E)$ is a graph with vertex set V and edge set E.
The graph will be

- either a directed acyclic graph (DAG)
\gg then $(i, j) \in E \subset V \times V$ means $i \rightarrow j$.
- or a an undirected graph
\gg then $\{i, j\} \in E$ means i and j are adjacent.
Variables of the graphical model
- To each node $i \in V$, we associate a graphical variable X_{i}.

Notations for graphical models

Graphs

$G=(V, E)$ is a graph with vertex set V and edge set E.
The graph will be

- either a directed acyclic graph (DAG)
\gg then $(i, j) \in E \subset V \times V$ means $i \rightarrow j$.
- or a an undirected graph
\gg then $\{i, j\} \in E$ means i and j are adjacent.
Variables of the graphical model
- To each node $i \in V$, we associate a graphical variable X_{i}.
- Observations/values of X_{i} are denoted x_{i}.

Notations for graphical models

Graphs

$G=(V, E)$ is a graph with vertex set V and edge set E.
The graph will be

- either a directed acyclic graph (DAG)
\gg then $(i, j) \in E \subset V \times V$ means $i \rightarrow j$.
- or a an undirected graph
\gg then $\{i, j\} \in E$ means i and j are adjacent.

Variables of the graphical model

- To each node $i \in V$, we associate a graphical variable X_{i}.
- Observations/values of X_{i} are denoted x_{i}.
- If $A \subset V$ is a set of nodes we will write $X_{A}=\left(X_{i}\right)_{i \in A}$ et $x_{A}=\left(x_{i}\right)_{i \in A}$.

Directed graphical model or Bayesian network

$$
p(a, b, c)=p(a) p(b \mid a) p(c \mid b, a)
$$

Directed graphical model or Bayesian network

$$
\begin{aligned}
& p(a, b, c)=p(a) p(b \mid a) p(c \mid b, a) \\
& p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)
\end{aligned}
$$

Directed graphical model or Bayesian network

$$
\begin{aligned}
& p(a, b, c)=p(a) p(b \mid a) p(c \mid b, a) \\
& p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \\
& p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right)
\end{aligned}
$$

Directed graphical model or Bayesian network

$$
\begin{aligned}
& p(a, b, c)=p(a) p(b \mid a) p(c \mid b, a) \\
& p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \\
& p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right)
\end{aligned}
$$

$a \Perp b \mid c$

Directed graphical model or Bayesian network

Factorization according to a directed graph
Definition: a distribution factorizes according to a directed graph

$$
\prod_{j=1}^{p} p\left(x_{j} \mid x_{\Pi_{j}}\right)
$$

Directed graphical model or Bayesian network

Factorization according to a directed graph
Definition: a distribution factorizes according to a directed graph

$$
\prod_{j=1}^{p} p\left(x_{j} \mid x_{\Pi_{j}}\right)
$$

$$
p\left(x_{1}\right) \prod_{j=2}^{M} p\left(x_{j} \mid x_{j-1}\right)
$$

How to parameterize an Oriented graphical model?

$$
p(\mathbf{x} ; \theta)=p\left(x_{1} ; \theta_{1}\right) p\left(x_{2} \mid x_{1} ; \theta_{2}\right) p\left(x_{3} \mid x_{2}, x_{1} ; \theta_{3}\right) p\left(x_{4} \mid x_{3}, x_{2} ; \theta_{4}\right) p\left(x_{5} \mid x_{3} ; \theta_{5}\right)
$$

How to parameterize an Oriented graphical model?

Conditional Probability tables

- $x_{1} \in\{0,1\}$
- $x_{2} \in\{0,1,2\}$
- $x_{3} \in\{0,1,2\}$

$$
p(\mathbf{x} ; \theta)=p\left(x_{1} ; \theta_{1}\right) p\left(x_{2} \mid x_{1} ; \theta_{2}\right) p\left(x_{3} \mid x_{2}, x_{1} ; \theta_{3}\right) p\left(x_{4} \mid x_{3}, x_{2} ; \theta_{4}\right) p\left(x_{5} \mid x_{3} ; \theta_{5}\right)
$$

How to parameterize an Oriented graphical model?

Conditional Probability tables

> - $x_{1} \in\{0,1\}$
> - $x_{2} \in\{0,1,2\}$
> - $x_{3} \in\{0,1,2\}$

		$p\left(x_{3}=k\right)$		
x_{1}	x_{2}	0	1	2
0	0	1	0	0
0	1	1	0	0
0	2	0.1	0	0.9
1	0	1	0	0
1	1	0.5	0.5	0
1	2	0.2	0.3	0.5

$$
p(\mathbf{x} ; \theta)=p\left(x_{1} ; \theta_{1}\right) p\left(x_{2} \mid x_{1} ; \theta_{2}\right) p\left(x_{3} \mid x_{2}, x_{1} ; \theta_{3}\right) p\left(x_{4} \mid x_{3}, x_{2} ; \theta_{4}\right) p\left(x_{5} \mid x_{3} ; \theta_{5}\right)
$$

The Sprinkler

- $R=1$: it has rained
- $S=1$: the sprinkler worked
- $G=1$: the grass is wet

The Sprinkler

$$
P(S=1)=0.5
$$

- $R=1$: it has rained

$$
P(R=1)=0.2
$$

- $S=1$: the sprinkler worked
- $G=1$: the grass is wet
$P(S=1)=0.5$
$P(R=1)=0.2$

$P(G=1 \mid S, R)$	$\mathrm{R}=0$	$\mathrm{R}=1$
$\mathrm{~S}=0$	0.01	0.8
$\mathrm{~S}=1$	0.8	0.95

The Sprinkler

- $R=1$: it has rained
- $S=1$: the sprinkler worked
- $G=1$: the grass is wet

$$
P(S=1)=0.5
$$

$P(R=1)=0.2$

$P(G=1 \mid S, R)$	$\mathrm{R}=0$	$\mathrm{R}=1$
$\mathrm{~S}=0$	0.01	0.8
$\mathrm{~S}=1$	0.8	0.95

- Given that we observe that the grass is wet, are R and S independent?

The Sprinkler II

The Sprinkler II

The Sprinkler II

- $R=1$: it has rained
- $S=1$: the sprinkler worked
- $G=1$: the grass is wet
- $P=2$: the paws of the dog are wet

$$
P(S=1)=0.5 \quad P(R=1)=0.2
$$

$P(G=1 \mid S, R)$	$\mathrm{R}=0$	$\mathrm{R}=1$
$\mathrm{~S}=0$	0.01	0.8
$\mathrm{~S}=1$	0.8	0.95
$P(P=1 \mid G)$	$\mathrm{G}=0$	$\mathrm{G}=1$
	0.2	0.7

Factorization and Independence

- A factorization imposes independence statements

$$
\forall x, p(x)=\prod_{j=1}^{p} p\left(x_{j} \mid x_{\Pi_{j}}\right) \quad \Leftrightarrow \quad \forall j, X_{j} \Perp X_{\{1, \ldots, j-1\} \backslash \Pi_{j}} \mid X_{\Pi_{j}}
$$

Factorization and Independence

- A factorization imposes independence statements

$$
\forall x, p(x)=\prod_{j=1}^{p} p\left(x_{j} \mid x_{\Pi_{j}}\right) \quad \Leftrightarrow \quad \forall j, X_{j} \Perp X_{\{1, \ldots, j-1\} \backslash \Pi_{j}} \mid X_{\Pi_{j}}
$$

- Is it possible to read from the graph the (conditional) independence statements that hold given the factorization.

$$
X_{5} \stackrel{?}{\Perp} X_{2} \mid X_{4}
$$

Blocking nodes

The configuration with converging edges is called a v-structure

d-separation

d-separation

Theorem

If A, B and C are three disjoint sets of node, the statement $X_{A} \Perp X_{B} \mid X_{C}$ holds if all paths joining A to B go through at least one blocking node. A node j is blocking a path

- if the edges of the paths are diverging/following and $j \in C$
- if the edges of the paths are converging (i.e. form a v-structure) and neither j nor any of its descendants is in C

Factorization et Independence II

- Several graphs can induce the same set of conditional independences.

Factorization et Independence II

- Several graphs can induce the same set of conditional independences.

Factorization et Independence II

- Several graphs can induce the same set of conditional independences.

Factorization et Independence II

- Several graphs can induce the same set of conditional independences.

Factorization et Independence II

- Several graphs can induce the same set of conditional independences.

$$
p(c) p(a \mid c) p(b \mid c)=p(a) p(c \mid a) p(b \mid c)
$$

- Some combinations of conditional independences cannot be faithfully represented by a graphical model

Factorization et Independence II

- Several graphs can induce the same set of conditional independences.

$$
p(c) p(a \mid c) p(b \mid c)=p(a) p(c \mid a) p(b \mid c)
$$

- Some combinations of conditional independences cannot be faithfully represented by a graphical model
- Ex1: $X \sim \operatorname{Ber} \frac{1}{2}$
$Y \sim \operatorname{Ber} \frac{1}{2}$
$Z=X \oplus Y$.

Factorization et Independence II

- Several graphs can induce the same set of conditional independences.

$$
p(c) p(a \mid c) p(b \mid c)=p(a) p(c \mid a) p(b \mid c)
$$

- Some combinations of conditional independences cannot be faithfully represented by a graphical model
- Ex1: $X \sim \operatorname{Ber} \frac{1}{2} \quad Y \sim \operatorname{Ber} \frac{1}{2} \quad Z=X \oplus Y$.
- Ex2: $X \Perp Y \mid Z=1$ but $X \not \Perp Y \mid Z=0$

Outline

(1) Preliminary concepts

(2) Directed graphical models

(3) Markov random field

(4) Operations on graphical models

Markov random field (MRF) or Oriented graphical model

Is it possible to associate to each graph a family of distribution so that conditional independence coincides exactly with the notion of separation in the graph?

Global Markov Property

$$
X_{A} \Perp X_{B} \mid X_{C} \quad \Leftrightarrow C \text { separates } A \text { et } B
$$

Gibbs distribution

Clique Set of nodes that are all connected to one another.

Gibbs distribution

Clique Set of nodes that are all connected to one another.
Potential function The potential $\psi_{C}\left(x_{C}\right) \geq 0$ is associated to clique C.

Gibbs distribution

Clique Set of nodes that are all connected to one another.
Potential function The potential $\psi_{C}\left(x_{C}\right) \geq 0$ is associated to clique C.
Gibbs distribution

$$
p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

Partition function

$$
Z=\sum_{x} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

Gibbs distribution

Clique Set of nodes that are all connected to one another.
Potential function The potential $\psi_{C}\left(x_{C}\right) \geq 0$ is associated to clique C.
Gibbs distribution

$$
p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

Partition function

$$
Z=\sum_{x} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

Writing potential in exponential form $\psi_{C}\left(x_{C}\right)=\exp \left\{-E\left(x_{C}\right)\right\}$.
$E\left(x_{C}\right)$ is an energy.
This a Boltzmann distribution.

Example 1: Ising model

$X=\left(X_{1}, \ldots, X_{d}\right)$ is a collection of binary variables, whose joint probability distribution is

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{d}\right) & =\frac{1}{Z(\eta)} \exp \left(\sum_{i \in V} \eta_{i} x_{i}+\sum_{\{i, j\} \in E} \eta_{i j} x_{i} x_{j}\right) \\
& =\frac{1}{Z(\eta)} \prod_{i \in V} e^{\eta_{i} x_{i}} \prod_{\{i, j\} \in E} e^{\eta_{i j} x_{i} x_{j}} \\
& =\frac{1}{Z(\eta)} \prod_{i \in V} \psi_{i}\left(x_{i}\right) \prod_{\{i, j\} \in E} \psi_{i}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

with $\psi_{i}\left(x_{i}\right)=e^{\eta_{i} x_{i}}$ and $\psi_{i j}\left(x_{i}, x_{j}\right)=e^{\eta_{i j} x_{i} x_{j}}$.

Example 2: Directed graphical model

Consider a distribution p that factorizes according to a directed graph $G=(V, E)$, then

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{d}\right) & =\prod_{i=1}^{d} p\left(x_{i} \mid x_{\pi_{i}}\right) \\
& =\prod_{i=1}^{d} \psi C_{i}\left(x_{C_{i}}\right) \quad \text { with } \quad C_{i}=\{i\} \cup \pi_{i}
\end{aligned}
$$

Consequence: A distribution that factorizes according to a directed model is a Gibbs distribution for the cliques $C_{i}=\{i\} \cup \pi_{i}$. As a consequence, it factorizes according to an undirected graph in which C_{i} are cliques.

Theorem of Hammersley and Clifford (1971)

A distribution p, which is such that $p(x)>0$ for all x satisfies the global Markov property for graph G if and only if it is a Gibbs distribution associated with G.

- Gibbs distribution: $\mathcal{P}_{G}: p(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}_{G}} \psi_{C}\left(x_{C}\right)$
- Global Markov property:

$$
\mathcal{P}_{M}: X_{A} \Perp X_{B} \mid X_{C} \quad \text { si } \quad C \text { separated } A \text { and } B \text { in } G
$$

Theorem

We have $\quad \mathcal{P}_{G} \Rightarrow \mathcal{P}_{M}$ and (HC) : if $\forall x, p(x)>0$, then $\mathcal{P}_{M} \Rightarrow \mathcal{P}_{G}$

Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$
X_{i} \Perp X_{R} \mid X_{B}, \quad \text { with } \quad R=V \backslash(B \cup\{i\})
$$

Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$
X_{i} \Perp X_{R} \mid X_{B}, \quad \text { with } \quad R=V \backslash(B \cup\{i\})
$$

or equivalently such that

$$
p\left(X_{i} \mid X_{-i}\right)=p\left(X_{i} \mid X_{B}\right)
$$

Markov Blanket in an undirected graph

Definition

The Markov Blanket B of a node i is the smallest set of nodes B such that

$$
X_{i} \Perp X_{R} \mid X_{B}, \quad \text { with } \quad R=V \backslash(B \cup\{i\})
$$

or equivalently such that

$$
p\left(X_{i} \mid X_{-i}\right)=p\left(X_{i} \mid X_{B}\right)
$$

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_{C}, j is independent of all the other nodes in the graph?

Markov Blanket for a directed graph?

What is the Markov Blanket in a directed graph? By definition: the smallest set C of nodes such that conditionally on X_{C}, j is independent of all the other nodes in the graph?

Moralization

For a given oriented graphical model

- is there an unoriented graphical model which is equivalent?
- is there a smallest unoriented graphical which contains the oriented graphical model?

$$
p(x)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right) \quad \text { vs } \prod_{j=1}^{M} p\left(x_{j} \mid x_{\Pi_{j}}\right)
$$

Moralization

Given a directed graph G, its moralized graph G_{M} is obtained by
(1) For any node i, add undirected edges between all its parents
(2) Remove the orientation of all the oriented edges

Moralization

Given a directed graph G, its moralized graph G_{M} is obtained by
(1) For any node i, add undirected edges between all its parents
(2) Remove the orientation of all the oriented edges

Moralization

Given a directed graph G, its moralized graph G_{M} is obtained by
(1) For any node i, add undirected edges between all its parents
(2) Remove the orientation of all the oriented edges

Proposition

If a probability distribution factorizes according to a directed graph G then it factorizes according to the undirected graph G_{M}.

Directed vs undirected trees

Definition: directed tree
A directed tree is a DAG such that each node has at most one parent

Directed vs undirected trees

Definition: directed tree
A directed tree is a DAG such that each node has at most one parent
Remark: By definition a directed tree has no v-structure.

Directed vs undirected trees

Definition: directed tree
A directed tree is a DAG such that each node has at most one parent
Remark: By definition a directed tree has no v-structure.
Moralizing trees

- What is the moralized graph for a directed tree?
- The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it factorizes according to its undirected version.

Directed vs undirected trees

Definition: directed tree

A directed tree is a DAG such that each node has at most one parent
Remark: By definition a directed tree has no v-structure.

Moralizing trees

- What is the moralized graph for a directed tree?
- The corresponding undirected tree!

Proposition (Equivalence between directed and undirected tree)

A distribution factorizes according to a directed tree if and only if it factorizes according to its undirected version.

Corollary
All orientations of the edges of a tree that do not create v-structure are equivalent.

Outline

(1) Preliminary concepts

(2) Directed graphical models

(3) Markov random field

(4) Operations on graphical models

Operations on graphical models

Probabilistic inference
Compute a marginal distribution $p\left(x_{i}\right)$ or a conditional marginal $p\left(x_{i} \mid x_{1}=3, x_{7}=0\right)$

Operations on graphical models

Probabilistic inference
Compute a marginal distribution $p\left(x_{i}\right)$ or a conditional marginal $p\left(x_{i} \mid x_{1}=3, x_{7}=0\right)$

Decoding (aka MAP Inference)

Finding what is the most probable configuration for the set of random variables?

$$
\operatorname{argmax}_{z} p(z \mid x)
$$

Learning/ estimation in graphical models

Frequentist learning

The main frequentist learning principle for graphical model is the maximum likelihood principle of R . Fisher. Let $p(x ; \theta)=\frac{1}{Z(\theta)} \Pi_{C} \psi\left(x_{C}, \theta_{C}\right)$, we would like to find

$$
\operatorname{argmax}_{\theta} \prod_{i=1}^{n} p\left(x^{(i)} ; \boldsymbol{\theta}\right)=\operatorname{argmax}_{\theta} \frac{1}{Z(\boldsymbol{\theta})} \prod_{i=1}^{n} \prod_{C} \psi\left(x_{C}^{(i)}, \theta_{C}\right)
$$

Bayesian learning

Graphical models can also learn using bayesian inference.

The "Naive Bayes" model for classification

Data

- Class label: $C \in\{1, \ldots, K\}$
- Class indicator vector $Z \in\{0,1\}^{K}$
- Features $X_{j}, \quad j=1, \ldots, D$
(e.g. word presence)

The "Naive Bayes" model for classification

Data

- Class label: $C \in\{1, \ldots, K\}$
- Class indicator vector $Z \in\{0,1\}^{K}$
- Features $X_{j}, \quad j=1, \ldots, D$ (e.g. word presence)

Model
Which model for

Model

$$
p(\mathbf{z})=\prod_{k} \pi_{k}^{z_{k}}
$$

The "Naive Bayes" model for classification

Data

- Class label: $C \in\{1, \ldots, K\}$
- Class indicator vector $Z \in\{0,1\}^{K}$
- Features $X_{j}, \quad j=1, \ldots, D$ (e.g. word presence)

Model

$$
p(z)=\prod_{k} \pi_{k}^{z_{k}}
$$

"Naive" hypothesis

$$
p\left(x_{1}, \ldots, x_{D} \mid z_{k}=1\right)=\prod_{j=1}^{D} p\left(x_{j} \mid z_{k}=1 ; b_{j k}\right)=\prod_{j=1}^{D} b_{j k}^{x_{j}}\left(1-b_{j k}\right)^{1-x_{j}}
$$

$$
\text { with } b_{j k}=\mathbb{P}\left(x_{j} \equiv 1 \nmid z_{k} \equiv 1\right) \text {. }
$$

Naive Bayes (continued)

Learning (estimation) with the maximum likelihood principle

$$
\hat{\pi}=\underset{\pi: \pi^{\top} 1=1}{\operatorname{argmax}} \prod_{k, i} \pi_{k}^{z_{k}^{(i)}} \quad \hat{b}_{j k}=\underset{b_{j k}}{\operatorname{argmax}} \sum_{i=1}^{n} \log p\left(x_{j}^{(i)} \mid z^{(i)}=k ; b_{j k}\right)
$$

Prediction:

$$
\hat{z}=\operatorname{argmax}_{z} \frac{\prod_{j=1}^{D} p\left(x_{j} \mid z\right) p(z)}{\sum_{z^{\prime}} \prod_{j=1}^{D} p\left(x_{j} \mid z^{\prime}\right) p\left(z^{\prime}\right)}
$$

Naive Bayes (continued)

Learning (estimation) with the maximum likelihood principle

$$
\hat{\pi}=\underset{\pi: \pi^{\top} 1=1}{\operatorname{argmax}} \prod_{k, i} \pi_{k}^{z_{k}^{(i)}} \quad \hat{b}_{j k}=\underset{b_{j k}}{\operatorname{argmax}} \sum_{i=1}^{n} \log p\left(x_{j}^{(i)} \mid z^{(i)}=k ; b_{j k}\right)
$$

Prediction:

$$
\hat{z}=\operatorname{argmax}_{z} \frac{\prod_{j=1}^{D} p\left(x_{j} \mid z\right) p(z)}{\sum_{z^{\prime}} \prod_{j=1}^{D} p\left(x_{j} \mid z^{\prime}\right) p\left(z^{\prime}\right)}
$$

Properties

- Ignores the correlation between features
- Prediction requires only to use Bayes rule
- The model can be learnt in parallel
- Complexity in $\mathcal{O}(n D)$

