Probabilistic clustering and the EM algorithm

Guillaume Obozinski

Ecole des Ponts - ParisTech

INIT/AERFAI Summer school on Machine Learning Benicàssim, June 26th 2017

Outline

(1) The EM algorithm for the Gaussian mixture model
(2) More examples of graphical models

K-means
Key assumption: Data composed of K "roundish" clusters of similar sizes with centroids $\left(\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{K}\right)$.

K-means

Key assumption: Data composed of K "roundish" clusters of similar sizes with centroids $\left(\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{K}\right)$.
Problem can be formulated as: $\min _{\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{K}} \frac{1}{n} \sum_{i=1}^{n} \min _{k}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right\|^{2}$.

K-means

Key assumption: Data composed of K "roundish" clusters of similar sizes with centroids $\left(\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{K}\right)$.
Problem can be formulated as: $\min _{\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{K}} \frac{1}{n} \sum_{i=1}^{n} \min _{k}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right\|^{2}$.
Difficult (NP-hard) nonconvex problem.

K-means

Key assumption: Data composed of K "roundish" clusters of similar sizes with centroids $\left(\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{K}\right)$.
Problem can be formulated as: $\min _{\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{K}} \frac{1}{n} \sum_{i=1}^{n} \min _{k}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right\|^{2}$.
Difficult (NP-hard) nonconvex problem.

K-means algorithm

(1) Draw centroids at random
(2) Assign each point to the closest centroid

$$
C_{k} \leftarrow\left\{i \mid\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right\|^{2}=\min _{j}\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}\right\}
$$

(3) Recompute centroid as center of mass of the cluster
(1) Go to 2

$$
\boldsymbol{\mu}_{k} \leftarrow \frac{1}{\left|C_{k}\right|} \sum_{i \in C_{k}} \mathbf{x}_{i}
$$

K-means properties

Three remarks:

- K-means is greedy algorithm

K-means properties

Three remarks:

- K-means is greedy algorithm
- It can be shown that K-means converges in a finite number of steps.

K-means properties

Three remarks:

- K-means is greedy algorithm
- It can be shown that K-means converges in a finite number of steps.
- The algorithm however typically get stuck in local minima and it practice it is necessary to try several restarts of the algorithm with a random initialization to have chances to obtain a better solution.

K-means properties

Three remarks:

- K-means is greedy algorithm
- It can be shown that K-means converges in a finite number of steps.
- The algorithm however typically get stuck in local minima and it practice it is necessary to try several restarts of the algorithm with a random initialization to have chances to obtain a better solution.
- Will fail if the clusters are not round
- A good initialization for K-means is K-means++, (Arthur and Vassilvitskii, 2007), (included in all good libraries).

See Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Proceedings of the 18 th annual ACM-SIAM symposium on Discrete algorithms.

Outline

(1) The EM algorithm for the Gaussian mixture model

(2) More examples of graphical models

The Gaussian mixture model and the EM algorithm

Gaussian mixture model

- K components
- \boldsymbol{z} component indicator
- $\boldsymbol{z}=\left(z_{1}, \ldots, z_{K}\right)^{\top} \in\{0,1\}^{K}$
- $\boldsymbol{z} \sim \mathcal{M}\left(1,\left(\pi_{1}, \ldots, \pi_{K}\right)\right)$
- $p(\boldsymbol{z})=\prod_{k=1}^{K} \pi_{k}^{z_{k}}$

Gaussian mixture model

- K components
- \boldsymbol{z} component indicator
- $\boldsymbol{z}=\left(z_{1}, \ldots, z_{K}\right)^{\top} \in\{0,1\}^{K}$
- $\boldsymbol{z} \sim \mathcal{M}\left(1,\left(\pi_{1}, \ldots, \pi_{K}\right)\right)$
- $p(\boldsymbol{z})=\prod_{k=1}^{K} \pi_{k}^{z_{k}}$
- $p\left(\mathbf{x} \mid \boldsymbol{z} ;\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{k}\right)=\sum_{k=1}^{K} z_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Gaussian mixture model

- K components
- \boldsymbol{z} component indicator
- $\boldsymbol{z}=\left(z_{1}, \ldots, z_{K}\right)^{\top} \in\{0,1\}^{K}$
- $\boldsymbol{z} \sim \mathcal{M}\left(1,\left(\pi_{1}, \ldots, \pi_{K}\right)\right)$
- $p(\boldsymbol{z})=\prod_{k=1}^{K} \pi_{k}^{z_{k}}$
- $p\left(\mathbf{x} \mid \boldsymbol{z} ;\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{k}\right)=\sum_{k=1}^{K} z_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$
- $p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Gaussian mixture model

- K components
- \boldsymbol{z} component indicator
- $\boldsymbol{z}=\left(z_{1}, \ldots, z_{K}\right)^{\top} \in\{0,1\}^{K}$
- $\boldsymbol{z} \sim \mathcal{M}\left(1,\left(\pi_{1}, \ldots, \pi_{K}\right)\right)$
- $p(\boldsymbol{z})=\prod_{k=1}^{K} \pi_{k}^{z_{k}}$

- $p\left(\mathbf{x} \mid \boldsymbol{z} ;\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{k}\right)=\sum_{k=1}^{K} z_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$
- $p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$
- Estimation: $\underset{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}}{\operatorname{argmax}} \log \left[\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{\boldsymbol{z} \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{z \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})=\sum_{\boldsymbol{z} \in \mathcal{Z}} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{k}}=$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{\boldsymbol{z} \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})=\sum_{\boldsymbol{z} \in \mathcal{Z}} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{k}}=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{\boldsymbol{z} \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})=\sum_{\boldsymbol{z} \in \mathcal{Z}} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{k}}=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Issue

- The marginal \log-likelihood $\tilde{\ell}(\theta)=\sum_{i} \log \left(p\left(\mathbf{x}^{(i)}\right)\right)$ with $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$ is now complicated

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{\boldsymbol{z} \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})=\sum_{\boldsymbol{z} \in \mathcal{Z}} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{k}}=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Issue

- The marginal \log-likelihood $\tilde{\ell}(\theta)=\sum_{i} \log \left(p\left(\mathbf{x}^{(i)}\right)\right)$ with $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$ is now complicated
- No hope to find a simple solution to the maximum likelihood problem

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{z \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})=\sum_{\boldsymbol{z} \in \mathcal{Z}} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{k}}=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Issue

- The marginal \log-likelihood $\tilde{\ell}(\theta)=\sum_{i} \log \left(p\left(\mathbf{x}^{(i)}\right)\right)$ with $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$ is now complicated
- No hope to find a simple solution to the maximum likelihood problem
- By contrast the complete log-likelihood has a rather simple form:
$\tilde{\ell}(\theta)=$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{\boldsymbol{z} \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})=\sum_{\boldsymbol{z} \in \mathcal{Z}} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{k}}=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Issue

- The marginal \log-likelihood $\tilde{\ell}(\theta)=\sum_{i} \log \left(p\left(\mathbf{x}^{(i)}\right)\right)$ with $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$ is now complicated
- No hope to find a simple solution to the maximum likelihood problem
- By contrast the complete log-likelihood has a rather simple form:
$\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)$

Applying maximum likelihood to the Gaussian mixture Let $\mathcal{Z}=\left\{z \in\{0,1\}^{K} \mid \sum_{k=1}^{K} z_{k}=1\right\}$
$p(\mathbf{x})=\sum_{\boldsymbol{z} \in \mathcal{Z}} p(\mathbf{x}, \boldsymbol{z})=\sum_{\boldsymbol{z} \in \mathcal{Z}} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{k}}=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

Issue

- The marginal \log-likelihood $\tilde{\ell}(\theta)=\sum_{i} \log \left(p\left(\mathbf{x}^{(i)}\right)\right)$ with $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$ is now complicated
- No hope to find a simple solution to the maximum likelihood problem
- By contrast the complete log-likelihood has a rather simple form:
$\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(x^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)$,

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=
$$

Applying ML to the multinomial mixture
$\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)$

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right),
$$

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right),
$$

- If we knew $\boldsymbol{z}^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right),
$$

- If we knew $\boldsymbol{z}^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.
- If we knew $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$, we could find the best $\boldsymbol{z}^{(i)}$ since we could compute the true a posteriori on $\boldsymbol{z}^{(i)}$ given $\mathbf{x}^{(i)}$:

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right),
$$

- If we knew $\boldsymbol{z}^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.
- If we knew $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$, we could find the best $\boldsymbol{z}^{(i)}$ since we could compute the true a posteriori on $\boldsymbol{z}^{(i)}$ given $\mathbf{x}^{(i)}$:

$$
p\left(z_{k}^{(i)}=1 \mid \mathbf{x} ; \theta\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)
$$

- If we knew $\boldsymbol{z}^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.
- If we knew $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$, we could find the best $\boldsymbol{z}^{(i)}$ since we could compute the true a posteriori on $\boldsymbol{z}^{(i)}$ given $\mathbf{x}^{(i)}$:

$$
p\left(z_{k}^{(i)}=1 \mid \mathbf{x} ; \theta\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

\rightarrow Seems a chicken and egg problem...

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)
$$

- If we knew $\boldsymbol{z}^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.
- If we knew $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$, we could find the best $\boldsymbol{z}^{(i)}$ since we could compute the true a posteriori on $\boldsymbol{z}^{(i)}$ given $\mathbf{x}^{(i)}$:

$$
p\left(z_{k}^{(i)}=1 \mid \mathbf{x} ; \theta\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

\rightarrow Seems a chicken and egg problem...

- In addition, we want to solve
$\max _{\theta} \sum_{i} \log \left(\sum_{\boldsymbol{z}^{(i)}} p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)\right)$

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)
$$

- If we knew $\boldsymbol{z}^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.
- If we knew $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$, we could find the best $\boldsymbol{z}^{(i)}$ since we could compute the true a posteriori on $\boldsymbol{z}^{(i)}$ given $\mathbf{x}^{(i)}$:

$$
p\left(z_{k}^{(i)}=1 \mid \mathbf{x} ; \theta\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

\rightarrow Seems a chicken and egg problem...

- In addition, we want to solve
$\max _{\theta} \sum_{i} \log \left(\sum_{\boldsymbol{z}^{(i)}} p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)\right)$ and not $\max _{\substack{\boldsymbol{z}^{(1)}, \ldots, \boldsymbol{z}^{(M)}}} \sum_{i} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)$

Applying ML to the multinomial mixture

$$
\tilde{\ell}(\theta)=\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)=\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)
$$

- If we knew $\boldsymbol{z}^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.
- If we knew $\theta=\left(\boldsymbol{\pi},\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)_{1 \leq k \leq K}\right)$, we could find the best $\boldsymbol{z}^{(i)}$ since we could compute the true a posteriori on $\boldsymbol{z}^{(i)}$ given $\mathbf{x}^{(i)}$:

$$
p\left(z_{k}^{(i)}=1 \mid \mathbf{x} ; \theta\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}^{(i)} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

\rightarrow Seems a chicken and egg problem...

- In addition, we want to solve
$\max _{\theta} \sum_{i} \log \left(\sum_{\boldsymbol{z}^{(i)}} p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)\right) \quad$ and not $\max _{\substack{\theta, \boldsymbol{z}^{(1)}, \ldots, \boldsymbol{z}^{(M)}}} \sum_{i} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}\right)$
- Can we still use the intuitions above to construct an algorithm maximizing the marginal likelihood?

Principle of the Expectation-Maximization Algorithm
$\log p(\mathbf{x} ; \boldsymbol{\theta})=$

Principle of the Expectation-Maximization Algorithm

$$
\log p(\mathbf{x} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})
$$

Principle of the Expectation-Maximization Algorithm

$$
\log p(\mathbf{x} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})}
$$

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta}) & =\log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& \geq \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})}
\end{aligned}
$$

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta})= & \log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
\geq & \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& =\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)
\end{aligned}
$$

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta})= & \log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
\geq & \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& =\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)=: \mathcal{L}(q, \boldsymbol{\theta})
\end{aligned}
$$

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta})= & \log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
\geq & \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& =\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)=: \mathcal{L}(q, \boldsymbol{\theta})
\end{aligned}
$$

- This shows that $\mathcal{L}(q, \boldsymbol{\theta}) \leq \log p(\mathbf{x} ; \boldsymbol{\theta})$

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta})= & \log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
\geq & \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& =\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)=: \mathcal{L}(q, \boldsymbol{\theta})
\end{aligned}
$$

- This shows that $\mathcal{L}(q, \boldsymbol{\theta}) \leq \log p(\mathbf{x} ; \boldsymbol{\theta})$
- $\boldsymbol{\theta} \mapsto \mathcal{L}(q, \boldsymbol{\theta})$ is typically a concave function ${ }^{a}$.

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta})= & \log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
\geq & \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& =\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)=: \mathcal{L}(q, \boldsymbol{\theta})
\end{aligned}
$$

- This shows that $\mathcal{L}(q, \boldsymbol{\theta}) \leq \log p(\mathbf{x} ; \boldsymbol{\theta})$
- $\boldsymbol{\theta} \mapsto \mathcal{L}(q, \boldsymbol{\theta})$ is typically a concave function ${ }^{a}$.
- Finally it is possible to show that

$$
\mathcal{L}(q, \boldsymbol{\theta})=\log p(\mathbf{x} ; \boldsymbol{\theta})-K L(q \| p(\cdot \mid \mathbf{x} ; \boldsymbol{\theta}))
$$

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta})= & \log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
\geq & \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& =\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)=: \mathcal{L}(q, \boldsymbol{\theta})
\end{aligned}
$$

- This shows that $\mathcal{L}(q, \boldsymbol{\theta}) \leq \log p(\mathbf{x} ; \boldsymbol{\theta})$
- $\boldsymbol{\theta} \mapsto \mathcal{L}(q, \boldsymbol{\theta})$ is typically a concave function ${ }^{a}$.
- Finally it is possible to show that

$$
\mathcal{L}(q, \boldsymbol{\theta})=\log p(\mathbf{x} ; \boldsymbol{\theta})-K L(q \| p(\cdot \mid \mathbf{x} ; \boldsymbol{\theta}))
$$

So that if we set $q(\boldsymbol{z})=p\left(\boldsymbol{z} \mid \mathbf{x} ; \boldsymbol{\theta}^{(t)}\right)$ then

$$
L\left(q, \boldsymbol{\theta}^{(t)}\right)=p\left(\mathbf{x} ; \theta^{(t)}\right)
$$

Principle of the Expectation-Maximization Algorithm

$$
\begin{aligned}
\log p(\mathbf{x} ; \boldsymbol{\theta})= & \log \sum_{\boldsymbol{z}} p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})=\log \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
\geq & \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log \frac{p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})}{q(\boldsymbol{z})} \\
& =\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)=: \mathcal{L}(q, \boldsymbol{\theta})
\end{aligned}
$$

- This shows that $\mathcal{L}(q, \boldsymbol{\theta}) \leq \log p(\mathbf{x} ; \boldsymbol{\theta})$
- $\boldsymbol{\theta} \mapsto \mathcal{L}(q, \boldsymbol{\theta})$ is typically a concave function ${ }^{a}$.
- Finally it is possible to show that

$$
\mathcal{L}(q, \boldsymbol{\theta})=\log p(\mathbf{x} ; \boldsymbol{\theta})-K L(q \| p(\cdot \mid \mathbf{x} ; \boldsymbol{\theta}))
$$

So that if we set $q(\boldsymbol{z})=p\left(\boldsymbol{z} \mid \mathbf{x} ; \boldsymbol{\theta}^{(t)}\right)$ then

$$
L\left(q, \boldsymbol{\theta}^{(t)}\right)=p\left(\mathbf{x} ; \theta^{(t)}\right)
$$

${ }^{a}$ If the complete log-likelihood is a canonical exponential family.

A graphical idea of the EM algorithm

Expectation Maximization algorithm

Expectation step

Maximization step

$$
\begin{aligned}
\boldsymbol{\theta}^{\mathrm{old}} & =\boldsymbol{\theta}^{(t-1)} \\
\boldsymbol{\theta}^{\text {new }} & =\boldsymbol{\theta}^{(t)}
\end{aligned}
$$

Expectation Maximization algorithm

Expectation step
(1) $q(\boldsymbol{z})=p\left(\boldsymbol{z} \mid \mathbf{x} ; \boldsymbol{\theta}^{(t-1)}\right)$

Maximization step

$$
\begin{aligned}
\boldsymbol{\theta}^{\text {old }} & =\boldsymbol{\theta}^{(t-1)} \\
\boldsymbol{\theta}^{\text {new }} & =\boldsymbol{\theta}^{(t)}
\end{aligned}
$$

Expectation Maximization algorithm

Expectation step
(1) $q(\boldsymbol{z})=p\left(\boldsymbol{z} \mid \mathbf{x} ; \boldsymbol{\theta}^{(t-1)}\right)$
(0) $\mathcal{L}(q, \boldsymbol{\theta})=\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)$

Maximization step

$$
\begin{aligned}
\boldsymbol{\theta}^{\text {old }} & =\boldsymbol{\theta}^{(t-1)} \\
\boldsymbol{\theta}^{\text {new }} & =\boldsymbol{\theta}^{(t)}
\end{aligned}
$$

Expectation Maximization algorithm

Expectation step
(1) $q(\boldsymbol{z})=p\left(\boldsymbol{z} \mid \mathbf{x} ; \boldsymbol{\theta}^{(t-1)}\right)$
(0) $\mathcal{L}(q, \boldsymbol{\theta})=\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)$

Maximization step
(1) $\boldsymbol{\theta}^{(t)}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]$

$$
\begin{aligned}
\boldsymbol{\theta}^{\text {old }} & =\boldsymbol{\theta}^{(t-1)} \\
\boldsymbol{\theta}^{\text {new }} & =\boldsymbol{\theta}^{(t)}
\end{aligned}
$$

Expectation Maximization algorithm

Initialize $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}$
WHILE (Not converged)
Expectation step
(1) $q(\boldsymbol{z})=p\left(\boldsymbol{z} \mid \mathbf{x} ; \boldsymbol{\theta}^{(t-1)}\right)$
(2) $\mathcal{L}(q, \boldsymbol{\theta})=\mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]+H(q)$

Maximization step
(1) $\boldsymbol{\theta}^{(t)}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{q}[\log p(\mathbf{x}, \boldsymbol{z} ; \boldsymbol{\theta})]$

ENDWHILE

Expected complete log-likelihood

With the notation: $q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]$, we have

Expected complete log-likelihood

With the notation: $q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]$, we have
$\mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]=$

Expected complete log-likelihood

With the notation: $q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]$, we have
$\mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]=\mathbb{E}_{q^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{Z} ; \boldsymbol{\theta})]$

Expected complete log-likelihood

With the notation: $q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]$, we have
$\mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]=\mathbb{E}_{q^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{Z} ; \boldsymbol{\theta})]$

$$
=\mathbb{E}_{q^{(t)}}\left[\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)} ; \boldsymbol{\theta}\right)\right]
$$

Expected complete log-likelihood

With the notation: $q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]$, we have
$\mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]=\mathbb{E}_{q^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{Z} ; \boldsymbol{\theta})]$

$$
\begin{aligned}
& =\mathbb{E}_{q^{(t)}}\left[\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)} ; \boldsymbol{\theta}\right)\right] \\
& =\mathbb{E}_{q^{(t)}}\left[\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)\right]
\end{aligned}
$$

Expected complete log-likelihood

With the notation: $q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]$, we have
$\mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]=\mathbb{E}_{q^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{Z} ; \boldsymbol{\theta})]$

$$
=\mathbb{E}_{q^{(t)}}\left[\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)} ; \boldsymbol{\theta}\right)\right]
$$

$$
=\mathbb{E}_{q^{(t)}}\left[\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)\right]
$$

$=\sum_{i, k} \mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right] \log \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} \mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right] \log \left(\pi_{k}\right)$

Expected complete log-likelihood

With the notation: $q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]$, we have
$\mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]=\mathbb{E}_{q^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{Z} ; \boldsymbol{\theta})]$

$$
=\mathbb{E}_{q^{(t)}}\left[\sum_{i=1}^{M} \log p\left(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)} ; \boldsymbol{\theta}\right)\right]
$$

$$
=\mathbb{E}_{q^{(t)}}\left[\sum_{i, k} z_{k}^{(i)} \log \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} z_{k}^{(i)} \log \left(\pi_{k}\right)\right]
$$

$$
=\sum_{i, k} \mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right] \log \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} \mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right] \log \left(\pi_{k}\right)
$$

$$
=\sum_{i, k} q_{i k}^{(t)} \log \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)+\sum_{i, k} q_{i k}^{(t)} \log \left(\pi_{k}\right)
$$

Expectation step for the Gaussian mixture

We computed previously $q_{i}^{(t)}\left(\boldsymbol{z}^{(i)}\right)$, which is a multinomial distribution defined by

$$
q_{i}^{(t)}\left(\boldsymbol{z}^{(i)}\right)=p\left(\boldsymbol{z}^{(i)} \mid \mathbf{x}^{(i)} ; \boldsymbol{\theta}^{(t-1)}\right)
$$

Expectation step for the Gaussian mixture

We computed previously $q_{i}^{(t)}\left(\boldsymbol{z}^{(i)}\right)$, which is a multinomial distribution defined by

$$
q_{i}^{(t)}\left(\boldsymbol{z}^{(i)}\right)=p\left(\boldsymbol{z}^{(i)} \mid \mathbf{x}^{(i)} ; \boldsymbol{\theta}^{(t-1)}\right)
$$

Abusing notation we will denote $\left(q_{i 1}^{(t)}, \ldots, q_{i K}^{(t)}\right)$ the corresponding vector of probabilities defined by

$$
q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right]
$$

Expectation step for the Gaussian mixture

We computed previously $q_{i}^{(t)}\left(\boldsymbol{z}^{(i)}\right)$, which is a multinomial distribution defined by

$$
q_{i}^{(t)}\left(\boldsymbol{z}^{(i)}\right)=p\left(\boldsymbol{z}^{(i)} \mid \mathbf{x}^{(i)} ; \boldsymbol{\theta}^{(t-1)}\right)
$$

Abusing notation we will denote $\left(q_{i 1}^{(t)}, \ldots, q_{i K}^{(t)}\right)$ the corresponding vector of probabilities defined by

$$
\begin{gathered}
q_{i k}^{(t)}=\mathbb{P}_{q_{i}^{(t)}}\left(z_{k}^{(i)}=1\right)=\mathbb{E}_{q_{i}^{(t)}}\left[z_{k}^{(i)}\right] \\
q_{i k}^{(t)}=p\left(z_{k}^{(i)}=1 \mid \mathbf{x}^{(i)} ; \boldsymbol{\theta}^{(t-1)}\right)=\frac{\pi_{k}^{(t-1)} \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}^{(t-1)}, \boldsymbol{\Sigma}_{k}^{(t-1)}\right)}{\sum_{j=1}^{K} \pi_{j}^{(t-1)} \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{j}^{(t-1)}, \boldsymbol{\Sigma}_{j}^{(t-1)}\right)}
\end{gathered}
$$

Maximization step for the Gaussian mixture

$$
\left(\boldsymbol{\pi}^{t},\left(\boldsymbol{\mu}_{k}^{(t)}, \boldsymbol{\Sigma}_{k}^{(t)}\right)_{1 \leq k \leq K}\right)=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]
$$

Maximization step for the Gaussian mixture

$$
\left(\boldsymbol{\pi}^{t},\left(\boldsymbol{\mu}_{k}^{(t)}, \boldsymbol{\Sigma}_{k}^{(t)}\right)_{1 \leq k \leq K}\right)=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{q^{(t)}}[\tilde{\ell}(\boldsymbol{\theta})]
$$

This yields the updates:

$$
\begin{gathered}
\boldsymbol{\mu}_{k}^{(t)}=\frac{\sum_{i} \mathbf{x}^{(i)} q_{i k}^{(t)}}{\sum_{i} q_{i k}^{(t)}}, \quad \boldsymbol{\Sigma}_{k}^{(t)}=\frac{\sum_{i}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}_{k}^{(t)}\right)\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}_{k}^{(t)}\right)^{\top} q_{i k}^{(t)}}{\sum_{i} q_{i k}^{(t)}} \\
\text { and } \quad \pi_{k}^{(t)}=\frac{\sum_{i} q_{i k}^{(t)}}{\sum_{i, k^{\prime}} q_{i k^{\prime}}^{(t)}}
\end{gathered}
$$

Final EM algorithm for the Multinomial mixture model
Initialize $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}$
WHILE (Not converged)
Expectation step

$$
q_{i k}^{(t)} \leftarrow \frac{\pi_{k}^{(t-1)} \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{k}^{(t-1)}, \mathbf{\Sigma}_{k}^{(t-1)}\right)}{\sum_{j=1}^{K} \pi_{j}^{(t-1)} \mathcal{N}\left(\mathbf{x}^{(i)}, \boldsymbol{\mu}_{j}^{(t-1)}, \mathbf{\Sigma}_{j}^{(t-1)}\right)}
$$

Maximization step

$$
\begin{gathered}
\mu_{k}^{(t)}=\frac{\sum_{i} \mathbf{x}^{(i)} q_{i k}^{(t)}}{\sum_{i} q_{i k}^{(t)}}, \quad \mathbf{\Sigma}_{k}^{(t)}=\frac{\sum_{i}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}_{k}^{(t)}\right)\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}_{k}^{(t)}\right)^{\top} q_{i k}^{(t)}}{\sum_{i} q_{i k}^{(t)}} \\
\text { and } \quad \pi_{k}^{(t)}=\frac{\sum_{i} q_{i k}^{(t)}}{\sum_{i, k^{\prime}} q_{i k^{\prime}}^{(t)}}
\end{gathered}
$$

ENDWHILE

EM Algorithm for the Gaussian mixture model III

$$
p(\mathbf{x} \mid \boldsymbol{z})
$$

$$
p(\boldsymbol{z} \mid \mathbf{x})
$$

Outline

(1) The EM algorithm for the Gaussian mixture model

(2) More examples of graphical models

Factorial Analysis

- $\Lambda \in \mathbb{R}^{d \times k}$ is the matrix of factors or principal directions

Factorial Analysis

- $\Lambda \in \mathbb{R}^{d \times k}$ is the matrix of factors or principal directions
- $Z_{i} \in \mathbb{R}^{k}$ are the loadings or principal components

$$
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right)
$$

Factorial Analysis

- $\Lambda \in \mathbb{R}^{d \times k}$ is the matrix of factors or principal directions
- $Z_{i} \in \mathbb{R}^{k}$ are the loadings or principal components

$$
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right)
$$

- $X_{i} \in \mathbb{R}^{d}$ is the observed data modeled as

$$
X_{i}=\Lambda Z_{i}+\varepsilon_{i} \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}(0, \Psi) .
$$

with $\Psi \in \mathbb{R}^{d \times d}$, constrained to be diagonal.

Factorial Analysis

- $\Lambda \in \mathbb{R}^{d \times k}$ is the matrix of factors or principal directions
- $Z_{i} \in \mathbb{R}^{k}$ are the loadings or principal components

$$
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right)
$$

- $X_{i} \in \mathbb{R}^{d}$ is the observed data modeled as

$$
X_{i}=\Lambda Z_{i}+\varepsilon_{i} \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}(0, \Psi) .
$$

with $\Psi \in \mathbb{R}^{d \times d}$, constrained to be diagonal.
The model essentially retrieves Principal Component Analysis for $\Psi=\sigma^{2} I_{d}$.

Factorial Analysis

$$
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right)
$$

Factorial Analysis

$$
\begin{gathered}
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right) \\
X_{i}=\Lambda Z_{i}+\varepsilon_{i} \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}(0, \Psi)
\end{gathered}
$$

Λ can be learned (up to a rotation on the right) together with Ψ using an EM algorithm, where Z is treated as a latent variable.

Factorial Analysis

$$
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right)
$$

$$
X_{i}=\Lambda Z_{i}+\varepsilon_{i} \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}(0, \Psi) .
$$

Λ can be learned (up to a rotation on the right) together with Ψ using an EM algorithm, where Z is treated as a latent variable.

Advantages of the probabilistic formulation over vanilla PCA

- Possible to model non-isotropic noise

Factorial Analysis

$$
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right)
$$

$$
X_{i}=\Lambda Z_{i}+\varepsilon_{i} \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}(0, \Psi) .
$$

Λ can be learned (up to a rotation on the right) together with Ψ using an EM algorithm, where Z is treated as a latent variable.

Advantages of the probabilistic formulation over vanilla PCA

- Possible to model non-isotropic noise
- X can have missing entries (then treated as latent variables in EM)

Factorial Analysis

$$
\begin{gathered}
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right) \\
X_{i}=\Lambda Z_{i}+\varepsilon_{i} \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}(0, \Psi)
\end{gathered}
$$

Λ can be learned (up to a rotation on the right) together with Ψ using an EM algorithm, where Z is treated as a latent variable.

Advantages of the probabilistic formulation over vanilla PCA

- Possible to model non-isotropic noise
- X can have missing entries (then treated as latent variables in EM)
- By changing the distributions on Z_{i} and X_{i}, we can design variant of PCA more suitable for different type of data: Multinomial PCA, Poisson PCA, etc.

Factorial Analysis

$$
\begin{gathered}
Z_{i} \sim \mathcal{N}\left(0, I_{k}\right) \\
X_{i}=\Lambda Z_{i}+\varepsilon_{i} \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}(0, \Psi)
\end{gathered}
$$

Λ can be learned (up to a rotation on the right) together with Ψ using an EM algorithm, where Z is treated as a latent variable.

Advantages of the probabilistic formulation over vanilla PCA

- Possible to model non-isotropic noise
- X can have missing entries (then treated as latent variables in EM)
- By changing the distributions on Z_{i} and X_{i}, we can design variant of PCA more suitable for different type of data: Multinomial PCA, Poisson PCA, etc.
- Can be inserted in a mixture of Gaussians model to help model Gaussians in high dimension.

Latent Dirichlet Allocation as Multinomial PCA

Replacing

- the distribution on Z_{i} by a Dirichlet distribution
- the distribution of X_{i} by a Multinomial

Latent Dirichlet Allocation as Multinomial PCA

Replacing

- the distribution on Z_{i} by a Dirichlet distribution
- the distribution of X_{i} by a Multinomial

- Topic proportions for document i : $\boldsymbol{\theta}_{i} \in \mathbb{R}^{K}$

$$
\boldsymbol{\theta}_{i} \sim \operatorname{Dir}(\boldsymbol{\alpha})
$$

- Empirical words counts for document i : $\mathbf{x}_{i} \in \mathbb{R}^{d}$

$$
\mathbf{x}_{i} \sim \mathcal{M}\left(N_{i}, \mathbf{B} \boldsymbol{\theta}_{i}\right)
$$

Temporal models

Hidden Markov Model and Kalman Filter

Temporal models

Hidden Markov Model and Kalman Filter

Conditional Random Field (chain case)

- A structured version of logistic regression where the output is a sequence.

More temporal models

Second order auto-regressive model with latent switching state

More temporal models

Second order auto-regressive model with latent switching state

Factorial Hidden Markov models (Ghahramani and Jordan, 1996)

Restricted Boltzman Machines (Smolensky, 1986)

$$
P(Y, Z)=\exp \left(\langle Y, \theta\rangle+Z^{\top} W Y+\langle Z, \eta\rangle-A(\theta, W, \eta)\right)
$$

- $p(Z \mid Y)=\prod_{i=1}^{d} p\left(Z_{i} \mid Y\right)$ are independent Bernoulli r.v.
- $p(Y \mid Z)=\prod_{i=1}^{d} p\left(Y_{i} \mid Z\right)$ are independent Bernoulli r.v.

However the model encodes non-trivial dependences between the variables $\left(Y_{1}, \ldots, Y_{n}\right)$

Ising model

Reminder: $X=\left(X_{i}\right)_{i \in V}$ is a vector of random variables, taking value in $\{0,1\}^{|V|}$, whose distribution has the following exponential form:

$$
p(x)=e^{-A(\eta)} \prod_{i \in V} e^{\eta_{i} x_{i}} \prod_{(i, j) \in E} e^{\eta_{i, j} x_{i} x_{j}}
$$

Ising model

Reminder: $X=\left(X_{i}\right)_{i \in V}$ is a vector of random variables, taking value in $\{0,1\}^{|V|}$, whose distribution has the following exponential form:

$$
p(x)=e^{-A(\eta)} \prod_{i \in V} e^{\eta_{i} x_{i}} \prod_{(i, j) \in E} e^{\eta_{i, j} x_{i} x_{j}}
$$

The associated log-likelihood is this:

$$
\ell(\eta)=\sum_{i \in V} \eta_{i} x_{i}+\sum_{(i, j) \in E} \eta_{i, j} x_{i} x_{j}-A(\eta)
$$

Hidden Markov Random Field

Segmentation

Hidden Markov random Field

$$
p(y \mid x)=e^{-A(\eta)} \prod_{i \in V} e^{\left\langle w, x_{i}\right\rangle y_{i}} \prod_{(i, j) \in E} e^{\eta_{i, j} y_{i} y_{j}}
$$

Hidden Markov random Field

$$
p(y \mid x)=e^{-A(\eta)} \prod_{i \in V} e^{\left\langle w, x_{i}\right\rangle y_{i}} \prod_{(i, j) \in E} e^{\eta_{i, j} y_{i} y_{j}}
$$

The associated log-likelihood is this:

$$
\ell(\eta)=\sum_{i \in V}\left\langle w, x_{i}\right\rangle y_{i}+\sum_{(i, j) \in E} \eta_{i, j} y_{i} y_{j}-A(w)
$$

Hidden Markov random Field

$$
p(y \mid x)=e^{-A(\eta)} \prod_{i \in V} e^{\left\langle w, x_{i}\right\rangle y_{i}} \prod_{(i, j) \in E} e^{\eta_{i, j} y_{i} y_{j}}
$$

The associated log-likelihood is this:

$$
\ell(\eta)=\sum_{i \in V}\left\langle w, x_{i}\right\rangle y_{i}+\sum_{(i, j) \in E} \eta_{i, j} y_{i} y_{j}-A(w)
$$

References I

Ghahramani, Z. and Jordan, M. I. (1996). Factorial hidden markov models. In Advances in Neural Information Processing Systems, pages 472-478.

Smolensky, P. (1986). Information processing in dynamical systems: foundations of harmony theory. In Parallel distributed processing: explorations in the microstructure of cognition, vol. 1, pages 194-281. MIT Press.

