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K-means
Key assumption: Data composed of K “roundish” clusters of
similar sizes with centroids (µ1, · · · ,µK).

Problem can be formulated as: min
µ1,··· ,µK

1

n

n∑
i=1

min
k
‖xi − µk‖2.

Difficult (NP-hard) nonconvex problem.

K-means algorithm
1 Draw centroids at random

2 Assign each point to the closest centroid

Ck ←
{
i | ‖xi − µk‖2 = min

j
‖xi − µj‖2

}
3 Recompute centroid as center of mass of the cluster

µk ←
1

| Ck |
∑
i∈Ck

xi

4 Go to 2
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K-means properties

Three remarks:

K-means is greedy algorithm

It can be shown that K-means converges in a finite number of
steps.

The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm
with a random initialization to have chances to obtain a better
solution.

Will fail if the clusters are not round

A good initialization for K-means is K-means++, (Arthur and

Vassilvitskii, 2007), (included in all good libraries).

See Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of

careful seeding. Proceedings of the 18th annual ACM-SIAM symposium on

Discrete algorithms.
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The Gaussian mixture model

and
the EM algorithm
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Gaussian mixture model

K components

z component indicator

z = (z1, . . . , zK)> ∈ {0, 1}K
z ∼M(1, (π1, . . . , πK))

p(z) =

K∏
k=1

πzkk

p(x|z; (µk,Σk)k) =

K∑
k=1

zkN (x;µk,Σk)

p(x) =
K∑
k=1

πkN (x;µk,Σk)

Estimation: argmax
µk,Σk

log

[
K∑
k=1

πkN (x;µk,Σk)

]

xn

zn

N

µ Σ

π

(a)
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Applying maximum likelihood to the Gaussian mixture
Let Z = {z ∈ {0, 1}K |∑K

k=1 zk = 1}

p(x) =
∑
z∈Z

p(x, z) =
∑
z∈Z

K∏
k=1

[
πkN (x;µk,Σk)

]zk
=

K∑
k=1

πkN (x;µk,Σk)

Issue

The marginal log-likelihood ˜̀(θ) =
∑

i log(p(x(i))) with
θ =

(
π, (µk,Σk)1≤k≤K

)
is now complicated

No hope to find a simple solution to the maximum likelihood
problem

By contrast the complete log-likelihood has a rather simple form:

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i, k

z
(i)
k logN (x(i);µk,Σk)+

∑
i,k

z
(i)
k log(πk),
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Applying ML to the multinomial mixture

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i,k

z
(i)
k logN (x(i);µk,Σk)+

∑
i,k

z
(i)
k log(πk),

If we knew z(i) we could maximize ˜̀(θ).
If we knew θ =

(
π, (µk,Σk)1≤k≤K

)
, we could find the best z(i)

since we could compute the true a posteriori on z(i) given x(i):

p(z
(i)
k = 1 | x; θ) =

πkN (x(i);µk,Σk)∑K
j=1 πj N (x(i);µj ,Σj)

→ Seems a chicken and egg problem...
In addition, we want to solve

max
θ

∑
i

log

(∑
z(i)

p(x(i), z(i))

)
and not max

θ,
z(1),...,z(M)

∑
i

log p(x(i), z(i))

Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?
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Principle of the Expectation-Maximization Algorithm

log p(x;θ) =

log
∑
z

p(x, z;θ) = log
∑
z

q(z)
p(x, z;θ)

q(z)

≥
∑
z

q(z) log
p(x, z;θ)

q(z)

= Eq[log p(x, z;θ)] +H(q) =: L(q,θ)

This shows that L(q,θ) ≤ log p(x;θ)

θ 7→ L(q,θ) is typically a concave functiona.

Finally it is possible to show that

L(q,θ) = log p(x;θ)−KL(q||p(·|x;θ))

So that if we set q(z) = p(z | x;θ(t)) then

L(q,θ(t)) = p(x; θ(t)).

aIf the complete log-likelihood is a canonical exponential family.

θold θnew

L (q, θ)

ln p(X|θ)
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A graphical idea of the EM algorithm

θold θnew

L (q, θ)

ln p(X|θ)
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Expectation Maximization algorithm

Initialize θ = θ0

WHILE (Not converged)

Expectation step

1 q(z) = p(z | x;θ(t−1))

2 L(q,θ) = Eq
[

log p(x, z;θ)
]

+H(q)

Maximization step

1 θ(t) = argmax
θ

Eq
[

log p(x, z;θ)
]

ENDWHILE

θold θnew

L (q, θ)

ln p(X|θ)

θold = θ(t−1)

θnew = θ(t)
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Expected complete log-likelihood

With the notation: q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z
(i)
k

]
, we have

Eq(t)
[
˜̀(θ)

]
= Eq(t)

[
log p(X,Z;θ)

]
= Eq(t)

[ M∑
i=1

log p(x(i), z(i);θ)

]
= Eq(t)

[∑
i,k

z
(i)
k logN (x(i),µk,Σk) +

∑
i,k

z
(i)
k log(πk)

]
=

∑
i, k

E
q
(t)
i

[
z
(i)
k

]
logN (x(i),µk,Σk) +

∑
i,k

E
q
(t)
i

[
z
(i)
k

]
log(πk)

=
∑
i, k

q
(t)
ik logN (x(i),µk,Σk) +

∑
i,k

q
(t)
ik log(πk)
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Expectation step for the Gaussian mixture

We computed previously q
(t)
i (z(i)), which is a multinomial

distribution defined by

q
(t)
i (z(i)) = p(z(i)|x(i);θ(t−1))

Abusing notation we will denote (q
(t)
i1 , . . . , q

(t)
iK) the corresponding

vector of probabilities defined by

q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z
(i)
k

]

q
(t)
ik = p(z

(i)
k = 1 | x(i);θ(t−1)) =

π
(t−1)
k N (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j N (x(i),µ

(t−1)
j ,Σ

(t−1)
j )
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Maximization step for the Gaussian mixture

(
πt, (µ

(t)
k ,Σ

(t)
k )1≤k≤K

)
= argmax

θ
Eq(t)

[
˜̀(θ)

]

This yields the updates:

µ
(t)
k =

∑
i x

(i) q
(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ(t)

k

)(
x(i) − µ(t)

k

)>
q
(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i,k′ q
(t)
ik′
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Final EM algorithm for the Multinomial mixture model
Initialize θ = θ0

WHILE (Not converged)

Expectation step

q
(t)
ik ←

π
(t−1)
k N (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j N (x(i),µ

(t−1)
j ,Σ

(t−1)
j )

Maximization step

µ
(t)
k =

∑
i x

(i) q
(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ(t)

k

)(
x(i) − µ(t)

k

)>
q
(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i,k′ q
(t)
ik′

ENDWHILE
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EM Algorithm for the Gaussian mixture model III

p(x|z) p(z|x)
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Outline

1 The EM algorithm for the Gaussian mixture model

2 More examples of graphical models
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Factorial Analysis

Zi

Xi

Λ,Ψ

n

Λ ∈ Rd×k is the matrix of factors or principal directions

Zi ∈ Rk are the loadings or principal components

Zi ∼ N (0, Ik)

Xi ∈ Rd is the observed data modeled as

Xi = ΛZi + εi with εi ∼ N (0,Ψ).

with Ψ ∈ Rd×d, constrained to be diagonal.

The model essentially retrieves Principal Component Analysis for
Ψ = σ2Id.
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Factorial Analysis

Zi ∼ N (0, Ik)

Xi = ΛZi + εi with εi ∼ N (0,Ψ).

Zi

Xi

Λ,Ψ

n

Λ can be learned (up to a rotation on the right) together with Ψ
using an EM algorithm, where Z is treated as a latent variable.

Advantages of the probabilistic formulation over vanilla PCA

Possible to model non-isotropic noise

X can have missing entries
(then treated as latent variables in EM)

By changing the distributions on Zi and Xi, we can design
variant of PCA more suitable for different type of data:
Multinomial PCA, Poisson PCA, etc.

Can be inserted in a mixture of Gaussians model to help model
Gaussians in high dimension.
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Latent Dirichlet Allocation as Multinomial PCA

Replacing

the distribution on Zi by a Dirichlet distribution

the distribution of Xi by a Multinomial

α

θi

xi
B

M

Topic proportions for document i:
θi ∈ RK

θi ∼ Dir(α)

Empirical words counts for document i:
xi ∈ Rd

xi ∼M(Ni,Bθi)
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Temporal models

Hidden Markov Model and Kalman Filter

·z0 z1 z2 zT

y0 y1 y2 . . . yT

Conditional Random Field (chain case)

·z0 z1 z2 zT

y0 y1 y2 . . . yT

A structured version of logistic regression where the output is a
sequence.
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More temporal models

Second order auto-regressive model with latent switching state

·z0 z1 z2 zT

y0 y1 y2 · · · yT

Factorial Hidden Markov models (Ghahramani and Jordan, 1996)

·

·

z′0 z′1 z′2 z′T

z0 z1 z2 zT

y0 y1 y2 . . . yT
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Restricted Boltzman Machines (Smolensky, 1986)

Z1 Z2 . . . Zm

Y1 Y2 . . . Ym

P (Y,Z) = exp
(
〈Y, θ〉+ Z>WY + 〈Z, η〉 −A(θ,W, η)

)
p(Z|Y ) =

∏d
i=1 p(Zi|Y ) are independent Bernoulli r.v.

p(Y |Z) =
∏d
i=1 p(Yi|Z) are independent Bernoulli r.v.

However the model encodes non-trivial dependences between the
variables (Y1, . . . , Yn)
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Ising model

Reminder: X = (Xi)i∈V is a vector of random variables, taking value
in {0, 1}|V |, whose distribution has the following exponential form:

p(x) = e−A(η)
∏
i∈V

eηixi
∏

(i,j)∈E

eηi,jxixj

The associated log-likelihood is this:

`(η) =
∑
i∈V

ηixi +
∑

(i,j)∈E

ηi,jxixj −A(η)
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Hidden Markov Random Field

Segmentation
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Hidden Markov random Field

p(y|x) = e−A(η)
∏
i∈V

e〈w,xi〉yi
∏

(i,j)∈E

eηi,jyiyj

The associated log-likelihood is this:

`(η) =
∑
i∈V
〈w, xi〉yi +

∑
(i,j)∈E

ηi,jyiyj −A(w)
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