Probabilistic clustering and the EM algorithm

Guillaume Obozinski

Ecole des Ponts - ParisTech

ParisTech

INIT/AERFATI Summer school on Machine Learning
Benicassim, June 26th 2017

1/28



Outline

@ The EM algorithm for the Gaussian mixture model

© More examples of graphical models
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K-means
Key assumption: Data composed of K “roundish” clusters of

similar sizes with centroids (g1, -+ , K ).
Problem can be formulated as: min E mlonl ||
M1, 5K T

Difficult (NP-hard) nonconvex problem.

K-means algorithm
@ Draw centroids at random

@ Assign each point to the closest centroid
Cp = {i | lIxi — pe]|* = min [|x; — mill*}

© Recompute centroid as center of mass of the cluster

Q Goto?2
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K-means properties

Three remarks:
o K-means is greedy algorithm

o It can be shown that K-means converges in a finite number of
steps.

o The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm
with a random initialization to have chances to obtain a better
solution.

o Will fail if the clusters are not round

@ A good initialization for K-means is K-means++, (Arthur and
Vassilvitskii, 2007), (included in all good libraries).

See Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of
careful seeding. Proceedings of the 18th annual ACM-SIAM symposium on
Discrete algorithms.
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The Gaussian mixture model

and
the EM algorithm
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e K components

@ z component indicator
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Gaussian mixture model

e K components

@ z component indicator

OZ:(ZL...,ZK)TG{O,I}K 7ro—zn
o z~ M(1,(m1,...,7K))
K ; =
° p(z) = H " N
k=1
K
o p(x|z; (1, Zw)k) = > 26 N (x5 p, Zh)
k=1 !
K 05
o p(x) = mN(x; i, )
k=1 0

K
Estimation: argmax log Z e N (X5 g, Xk
17390 1
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Applying maximum likelihood to the Gaussian mixture
Let Z={2z€ {0, 1}F |35 2 =1}

= Zp()gz Z H |:7TkNX Wi, Xk ] Zﬂ'k/\/ (x5 pge, Xi)

zeZ zeZ k=1

Issue
o The marginal log-likelihood () = > log(p(x™)) with
0= (Tl', (ks Zk)lngK) is now complicated

@ No hope to find a simple solution to the maximum likelihood
problem

e By contrast the complete log-likelihood has a rather simple form:

M
= > logp(x®,200) =" A4 1og N (s g, ) +sz)10g %),

i, k i,k
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Applying ML to the multinomial mixture

M
= Zlogp(x( Z zk log/\/ @ g, ) +Z zk)log (7k),
i=1

ik

o If we knew 2z we could maximize ¢(6).
o If we knew 0 = (Tr, (p, Zk)1§k§K), we could find the best z(®
since we could compute the true a posteriori on z(* given x®:

ﬂkN( 7“]{2?2](:)
S MmN (O py, 35)

— Seems a chicken and egg problem...
o In addition, we want to solve

max Z log ( Z p(x ) and not Z log p(x

z(®) 2 (M)

p(z) =1]x;0) =

o Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?

EM 9/28



Principle of the Expectation-Maximization Algorithm

logp(x;0) =

EM 10/28



Principle of the Expectation-Maximization Algorithm

logp(x;0) = logy_p(x,z6)
z
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Principle of the Expectation-Maximization Algorithm

X, 2;0)

logp(x;0) = logZp X, z;0) long(z)p(
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Principle of the Expectation-Maximization Algorithm

X, 2;0)

logp(x;0) = log Zp(& z0) =log ) ()X

z;0
> Zq Jlog 2 5 )
E [logp(x,zﬂ)] H(q) =: L(q,0)
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o This shows that £(q,0) < logp(x;0)
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Principle of the Expectation-Maximization Algorithm

xz0

logp(x;0) = logzp(x,z;ﬁ' logz

> Zq logz)e)

= Eq[logp(x, z;0)] + H(q) =: L(q,0)
o This shows that £(q,0) < logp(x;0)

e 06— L(q,0) is typically a concave function®.

o Finally it is possible to show that
L(q,0) = log p(x; 8) — K L(q||p(:|x; 8))
So that if we set ¢(z) = p(z | x;0")) then
L(q,0") = p(x;0).

°If the complete log-likelihood is a canonical exponential family.
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A graphical idea of the EM algorithm

Hold 9 new
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Expectation Maximization algorithm

Expectation step

Maximization step

Inp(X[6)

gold grew

eold

gnew
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Expectation Maximization algorithm

Inp(X[6)

Expectation step
© q(z) =p(z|x;60"Y)

gold grew

Maximization step
gold  — g(t—-1)
grew  —  g(t)
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Expectation Maximization algorithm

Expectation step
© q(z) =p(z|x;60"Y)

Q L(q,0) = Ey[logp(x, 2;0)] + H(q)

Maximization step
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Expectation Maximization algorithm

Expectation step
0 q(z) =p(z | x;007Y)
Q L(q,0) =E,4[logp(x,2;6)] + H(q)

Maximization step

Q@ 9 = argmax Eq[logp(x,2;6)] 6°1d = 9t-1
(4
grew  —  g(t)
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Expectation Maximization algorithm

Initialize 8 = O

WHILE (Not converged)
Expectation step

® q(z) =p(z | x;607Y)

@ L(q,0) =Eq[logp(x, 2;0)] + H(q)

Maximization step

0 0 = argmax E, [ log p(x, z; )] 6o = 9t-1)
(4

grew  —  g(t)
ENDWHILE
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Expected complete log-likelihood

With the notation: qgl? = ]P’q@ (z,(;) =1)= Eq@ [z,(:)], we have

E,0[€(0)] = Eyu[logp(X,Z;0)]

M
= E,u [ > logp(x?,21; 0)
=1
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Expected complete log-likelihood

With the notation: qZ(,? = IP’q@ (z,(;) =1)= Eq@ [z,(:)], we have
E,0[00)] = Eyuu[logp(X,Z;0)]
M . .
= E,0 [Z log p(x”), 2(7; 9)]
i=1

E, @ [Z Z;(f) log V(x| g, ) + > Z;(:) IOg(ﬂ'k')]
i,k ik
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Expected complete log-likelihood
With the notation: qZ(,? = IP’q@ (z,(;) =1)= Eq@ [z,(:)], we have

E, [¢0)] = E, @ logp (X,Z;0)]

[
= q(t |: Zk-)logN a”kvzk +sz)1og(ﬂ-/€):|
i,k
E

o (2 1og N (x D g, ) +) E, (t) (24 log ()
i,k i,k
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Expected complete log-likelihood

With the notation: qgl? = IP’q@ (z,(;) =1)= Eq@ [z,(:)], we have

Eq(f,) [5(9)] = q(t> logp(X, Z; 9}

[
= q<t>[zlogp @, ie)]

= q(t |: Zk-)logN a”kvzk +sz)1og(ﬂ-/€):|
i,k

= ZE ® Zk ]10g/\f( TINS5 +Z]E (t) Zk)] log ()

i,k ik
= 3 410 N (D e, ) + D 4y log(my)
ik i,k
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Expectation step for the Gaussian mixture
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Expectation step for the Gaussian mixture

®)

We computed previously ¢; (), which is a multinomial

distribution defined by

q(2) = p(z0]xD: 01 7Y)

Abusing notation we will denote (qg)7 e ,qg%) the corresponding

vector of probabilities defined by

G =P (s =1) =B [2]

ﬂ_l(gt—l)N(X(i)’ “lgt—l), E]gt—l))

SR C T

af) =p(z) =1|xD;001) =
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Maximization step for the Gaussian mixture

(', (H;(f)a El(f)hgkgl() = argax E o [€(0)]
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Maximization step for the Gaussian mixture

(', (I‘L](:)a El(f)hgkgl() = argax E o [€(0)]

This yields the updates:

j i i T
;N) D x(® qz(/? »(®) _ > (X( ) — Mg)) (X() - “l(ct)) qz(/?
k. ) =
> qz‘(i? i qg,?
(t)
and W;(ct) = 722 qZk(t)
2 i ik
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Final EM algorithm for the Multinomial mixture model
Initialize 8 = @
WHILE (Not converged)
Expectation step
o AN (0, D) (D)

T, -
DDA C 0 a2 Y)

Maximization step

i) (T i t i T (t
N;(f) _ > x® qz(k) El(f) _ > (= - p’l(c))(x( ) - “l(c)) qz(k)
' > qz(I? ' > qz'(l?
L0
and w](:) = 2 ik ql’f(t)
Ei,k’ Qg
ENDWHILE
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EM Algorithm for the Gaussian mixture model II1

N
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© More examples of graphical models
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Factorial Analysis

o A € R¥* is the matrix of factors or principal directions
o Z; € R are the loadings or principal components

Zi ~ N(0,I)

o X; € R? is the observed data modeled as
with ¥ € R4, constrained to be diagonal.

The model essentially retrieves Principal Component Analysis for
U =21,
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Factorial Analysis

Zi ~ N(0, I)

X, =AZ,+¢ with ¢ ~ N(O, \I/)

A can be learned (up to a rotation on the right) together with W

using an EM algorithm, where Z is treated as a latent variable.

Advantages of the probabilistic formulation over vanilla PCA
@ Possible to model non-isotropic noise

o X can have missing entries
(then treated as latent variables in EM)

e By changing the distributions on Z; and X;, we can design
variant of PCA more suitable for different type of data:
Multinomial PCA, Poisson PCA, etc.

e Can be inserted in a mixture of Gaussians model to help model

(Gaussians in hiﬁh dimension.



Latent Dirichlet Allocation as Multinomial PCA

Replacing
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Latent Dirichlet Allocation as Multinomial PCA

Replacing
o the distribution on Z; by a Dirichlet distribution
e the distribution of X; by a Multinomial

a e Topic proportions for document :
91' € RK

o Empirical words counts for document i:
X; € R4
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Temporal models

Hidden Markov Model and Kalman Filter

ZT

0m ow.u ow
Conditional Random Field (chain case)

()ZO ()Zl <>Z2 *’OZT

On On On .. On

o A structured version of logistic regression where the output is a
sequence.



More temporal models

Second order auto-regressive model with latent switching state

Yo Y1 Y2 L. yr
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More temporal models

Second order auto-regressive model with latent switching state

Yo Y1 Y2 L. yr

Factorial Hidden Markov models (Ghahramani and Jordan, 1996)

OyT




Restricted Boltzman Machines (Smolensky, 1936)

P(Y,Z) =exp ((Y,0) + Z'WY + (Z,n) — A6, W,n))

o p(Z|Y) = Hle p(Z;|Y) are independent Bernoulli r.v.
o p(Y|Z) =TI, p(Yi|Z) are independent Bernoulli r.v.

However the model encodes non-trivial dependences between the
variables (Y1,...,Y,)



Ising model

Reminder: X = (X;);cy is a vector of random variables, taking value
in {0, 1}Vl whose distribution has the following exponential form:
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Ising model

Reminder: X = (X;);cy is a vector of random variables, taking value
in {0, 1}Vl whose distribution has the following exponential form:

p(x) — e—A(ﬁ) H el H e iTiT;

eV (i,9)eE

The associated log-likelihood is this:

()= mwi+ Y mijric; — An)

eV (i,J)€EE



Hidden Markov Random Field

Original image
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Hidden Markov random Field

y‘gj =e Hewxl i H emgyzy;

i€V (i.j)eB



Hidden Markov random Field

(y‘x =e H e wxz Yi H e"?z iYiY;

eV (i,))eE

The associated log-likelihood is this:

()= > (wzyi+ > migyiy; — Aw)

eV (i,9)eE



Hidden Markov random Field

(y‘x =e H e wxz Yi H e"?z iYiY;

eV (i,))eE

The associated log-likelihood is this:

()= > (wzyi+ > migyiy; — Aw)

eV (i,9)eE



References I

Ghahramani, Z. and Jordan, M. I. (1996). Factorial hidden markov models. In Advances
in Neural Information Processing Systems, pages 472—478.

Smolensky, P. (1986). Information processing in dynamical systems: foundations of
harmony theory. In Parallel distributed processing: explorations in the microstructure
of cognition, vol. 1, pages 194-281. MIT Press.

EM




	The EM algorithm for the Gaussian mixture model
	More examples of graphical models

