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What kind of learning?

Learn to:

Recognize different kinds of butterflies from specimens

Detect pedestrians on the street with an on board camera

Read postal codes/checks

Produce the syntactical relations between words in a sentence

Predict which chemical components can react with a given protein

Translate from a language to another

Recognize speech

Fly a helicopter

Learn empirically from a flow of experience, i.e. from a data stream
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Supervised learning
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Supervised learning

Setting:
Data come in pairs (x , y) of

x some input data, often a vector of numerical features or descriptors
(stimuli)

y some output data

Goal:
Given some examples of existing pairs (xi , yi ), “guess” some of the
statistical relation between x and y that are relevant to a task.
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Formalizing supervised learning

We will assume that we have some training data

Dn = {(x1, y1), . . . , (xn, yn)}.

Learning scheme or learning “algorithm”

is a functional A which

given some training data Dn

produces a predictor or decision function f̂ .

A :
⋃

n∈N (X × Y)n → YX

Dn 7→ f̂

We hope to get a “good” decision function

→ Need to define what we expect from that decision function.
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Decision theory

Abraham Wald (1939)
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Decision theoretic framework

X input data set

Y output data set

A action set

f : X → A decision function,
predictor, hypothesis

Goal of learning
Produce a decision function such that given a new input x the action
f (x) is a “good” action when confronted to the unseen corresponding
output y .

What is a “good” action?

f (x) is a good prediction of y , i.e. close to y in some sense.

f (x) is action that has the smallest possible cost when y occurs.

Loss function
` : A× Y → R

(a, y) 7→ `(a, y)

measures the cost incurred when action a is taken and y has occurred.
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Generalization and expected behavior

Minimize worst future cost vs average future cost?

Given x there might be some intrinsic uncertainty about y .

To generalize to new pairs (x , y) they have to be similar to what
has been encountered in the past.

The worst possible (x , y) might be too rare.

Assume that the data is generated by

by a stationary stochastic process.

as independent and identically distributed random variables (Xi ,Yi )
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Formalizing the goal of learning as minimizing the risk
Risk

R(f ) = E
[
`(f (X ),Y )

]
Target function
If there exists a unique function f ∗ such that R(f ∗) = inff ∈YX R(f ),
then f ∗ is called the target function, oracle function or Bayes predictor.

Conditional risk

R(a | x) = E[`(a,Y ) | X = x ] =

∫
`(a, y) dPY |X (y |x).

If infa∈AR(a | x) is attained and unique for almost all x then the
function f ∗(x) = arg mina∈AR(a | x) is the target function.

Excess risk

E(f ) = R(f )−R(f ∗) = E
[
`(f (X ),Y )− `(f ∗(X ),Y )

]
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Example 1: ordinary least squares regression

Case where A = Y = R.

square loss:

`(a, y) =
1

2
(a− y)2

mean square risk:

R(f ) =
1

2
E
[
(f (X )− Y )2

]
=

1

2
E
[
(f (X )− E[Y |X ])2

]
+

1

2
E
[
(Y − E[Y |X ])2

]
target function:

f ∗(X ) = E[Y |X ]
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Example 2: classification

Case where A = Y = {0, . . . ,K − 1}.

0-1 loss:
`(a, y) = 1{a 6=y}

the risk is the misclassification error

R(f ) = P(f (X ) 6= Y )

the target function is the assignment to the most likely class

f ∗(X ) = argmax1≤k≤K P(Y = k |X )
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Example 3: sequence decoding (OCR)
Given X = (X1, . . . ,Xm) ∈ X predict Y = (Y1, . . . ,Ym).

input space X =
(
Rp
)m

and output space Y = A = Sm

predictors f = (f1, . . . , fm) with fi : X → S
Hamming loss

`H(y , a) =
m∑
j=1

1{aj 6=yj}

Combined loss

`(a, y) = c0-1 1{a 6=y} + cH `H(y , a)

Risk

c0-1 P(Y 6= f (X )) + cH

m∑
j=1

P(Yi 6= fi (X ))
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Example 4: ranking pairs

Assume that given a pair of random variables (X ,X ′) ∈ X 2 a preference
variable Y ∈ {−1, 1} is defined. Learn a score function on the variable
X which is higher for the preferred instances.

input variables (X ,X ′) ∈ X 2 with same distribution

output variable: Y ∈ Y = {−1, 1}
action space: R
predictor f : X 7→ f (X )

loss:
`(a, b, y) = 1{(a−b) y≥0}

risk:
P
(
Y
[
f (X )− f (X ′)

]
≥ 0
)
.

No unique target function. No simple expression.
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Empirical Risk Minimization
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Empirical Risk Minimization

Idea: Replace the population distribution of the data by the empirical
distribution of the training data. Given a training set
{(x1, y1), . . . , (xn, yn)}, we define the

Empirical Risk

R̂n(f ) =
1

n

n∑
i=1

`(f (xi ), yi )

Empirical Risk Minimization principle

consists in minimizing the empirical risk.

Problem: The target function for the empirical risk is only defined at
the training points.

Apprentissage supervisé, etc 19/30



Linear regression
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Linear regression

We consider the OLS regression for the linear hypothesis space.

We have X = Rp, Y = R and ` the square loss.

Consider the hypothesis space:

S = {fw | w ∈ Rp} with fw : x 7→ w>x.

Given a training set {(x1, y1), . . . , (xn, yn)} we have

R̂n(fw ) =
1

2n

n∑
i=1

(yi −w>xi )
2 =

1

2n
‖y − Xw‖2

2

with

the vector of outputs y> = (y1, . . . , yn) ∈ Rn

the design matrix X ∈ Rn×p whose ith row is equal to x>i .
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Solving linear regression

To solve min
w∈Rp

R̂n(fw), we consider that

R̂n(fw ) =
1

2n

(
w>X>Xw − 2 w>X>y + ‖y‖2

)
is a differentiable convex function whose minima are thus characterized
by the

Normal equations

X>Xw − X>y = 0

If X>X is invertible, then f̂ is given by:

f̂ : x′ 7→ x′
>

(X>X)−1X>y.

Problem: X>X is never invertible for p > n and thus the solution is not
unique.
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Classification and plug-in predictors
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Classification and plug-in predictors
Input space X , output space Y = {−1, 1}.

Empirical risk for 0-1 loss and γ : X → {−1, 1}

R̂0-1
n (γ) =

1

n

n∑
i=1

1{γ(xi )6=yi}

→ Relax empirical risk to allow for real valued predictors

Empirical risk for 0-1 loss and f : X → R

R̂0-1
n (f ) =

1

n

n∑
i=1

1{yi f (xi )≤0}

Then use the plug in rule γ(xi ) = sign(f (xi )).

→ Problem: ER is non-convex, discontinuous

→ NP-hard to optimize...
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Classification via OLS regression
For regression, but assuming Y ∈ {−1, 1}

the risk is
E
[(
f (X )− Y

)2]
= E

[(
1− Yf (X )

)2]
the target function is

E[Y |X ] = f ∗(X ) with f ∗(X ) = 2P(Y = 1|X )− 1

the excess risk is E
[(
f (X )− f ∗(X )

)2]
For classification

the target function is

arg max
y∈{−1,1}

P(Y = y |x = x) = sign(f ∗(x))

Plug-in principle

Learn f̂ (x) using OLS regression

Use the plug-in predictor for classification ŷ := γ̂(x) = sign(f̂ (x))
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Zero one loss vs square loss

0-1 loss

`(f (x), y) = 1{y f (x)≤0}

Square loss

`(f (x), y) = (1−y f (x))2
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References

Pattern Recognition and Machine Learning,
Christopher Bishop, Springer (2006).
http:

//research.microsoft.com/~cmbishop/PRML/

The Elements of Statistical Learning,
Trevor Hastie, Rob Tibshirani, Jerome Friedman,
Springer (2010).
http:

//statweb.stanford.edu/~tibs/ElemStatLearn/

Apprentissage supervisé, etc 29/30

http://research.microsoft.com/~cmbishop/PRML/
http://research.microsoft.com/~cmbishop/PRML/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/


References II

Machine Learning, a probabilistic perspective
Kevin Murphy, MIT Press (2012).

Bayesian reasoning and machine learning,
David Barber,
Cambridge University Press (2012).
http://www.cs.ucl.ac.uk/staff/d.barber/brml/

Apprentissage supervisé, etc 30/30
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