Support vector machines

Guillaume Obozinski

Ecole des Ponts - ParisTech

SOCN course 2014

Outline

(1) Constrained optimization, Lagrangian duality and KKT
(2) Support vector machines

Outline

(1) Constrained optimization, Lagrangian duality and KKT

(2) Support vector machines

Constrained optimization, Lagrangian duality and KKT

Review: Constrained optimization

Optimization problem in canonical form

$$
\begin{array}{rl}
\min _{\mathbf{x} \in \mathcal{X}} & f(\mathbf{x}) \\
\text { s.t. } & h_{i}(\mathbf{x})=0, \quad i \in \llbracket 1, n \rrbracket \\
& g_{j}(\mathbf{x}) \leq 0, \quad j \in \llbracket 1, m \rrbracket
\end{array}
$$

with

- $\mathcal{X} \subset \mathbb{R}^{p}$.
- f, g_{j} functions,
- h_{i} affine functions.

Review: Constrained optimization

Optimization problem in canonical form

$$
\begin{array}{rl}
\min _{\mathbf{x} \in \mathcal{X}} & f(\mathbf{x}) \\
\text { s.t. } & h_{i}(\mathbf{x})=0, \quad i \in \llbracket 1, n \rrbracket \\
& g_{j}(\mathbf{x}) \leq 0, \quad j \in \llbracket 1, m \rrbracket
\end{array}
$$

with

- $\mathcal{X} \subset \mathbb{R}^{p}$.
- f, g_{j} functions,
- h_{i} affine functions.

The problem is convex if f, g_{j} and \mathcal{X} are convex (w.l.o.g $\dot{\mathcal{X}} \neq \varnothing$).

Review: Constrained optimization

Optimization problem in canonical form

$$
\begin{array}{rl}
\min _{\mathbf{x} \in \mathcal{X}} & f(\mathbf{x}) \\
\text { s.t. } & h_{i}(\mathbf{x})=0, \quad i \in \llbracket 1, n \rrbracket \\
& g_{j}(\mathbf{x}) \leq 0, \quad j \in \llbracket 1, m \rrbracket
\end{array}
$$

with

- $\mathcal{X} \subset \mathbb{R}^{p}$.
- f, g_{j} functions,
- h_{i} affine functions.

The problem is convex if f, g_{j} and \mathcal{X} are convex (w.l.o.g $\mathcal{X} \neq \varnothing$).

Lagrangian

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{n} \lambda_{i} h_{i}(\mathbf{x})+\sum_{j=1}^{m} \mu_{j} g_{j}(\mathbf{x})
$$

Lagrangian duality

Lagrangian

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{n} \lambda_{i} h_{i}(\mathbf{x})+\sum_{j=1}^{m} \mu_{j} g_{j}(\mathbf{x})
$$

Lagrangian duality

Lagrangian

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{n} \lambda_{i} h_{i}(\mathbf{x})+\sum_{j=1}^{m} \mu_{j} g_{j}(\mathbf{x})
$$

Primal vs Dual problem

$$
\begin{align*}
& p^{*}=\min _{\mathbf{x} \in \mathcal{X}} \max _{\boldsymbol{\lambda} \in \mathbb{R}^{n}, \boldsymbol{\mu} \in \mathbb{R}_{+}^{m}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \tag{P}\\
& d^{*}=\max _{\boldsymbol{\lambda} \in \mathbb{R}^{n}, \boldsymbol{\mu} \in \mathbb{R}_{+}^{m}} \min _{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \tag{D}
\end{align*}
$$

Maxmin inequalities

$$
\max _{y} \min _{x} f(x, y) \leq \min _{x} \max _{y} f(x, y)
$$

Maxmin inequalities

$$
f(x, y) \leq \quad \max _{y} f(x, y)
$$

Maxmin inequalities

$$
\min _{x} f(x, y) \leq \min _{x} \max _{y} f(x, y)
$$

Maxmin inequalities

$$
\max _{y} \min _{x} f(x, y) \leq \min _{x} \max _{y} f(x, y)
$$

Maxmin inequalities

$$
\max _{y} \min _{x} f(x, y) \leq \min _{x} \max _{y} f(x, y)
$$

Weak duality

In general, we have $d^{*} \leq p^{*}$. This is called weak duality.

Maxmin inequalities

$$
\max _{y} \min _{x} f(x, y) \leq \min _{x} \max _{y} f(x, y)
$$

Weak duality

In general, we have $d^{*} \leq p^{*}$. This is called weak duality.

Strong duality

In some cases, we have strong duality:

- $d^{*}=p^{*}$
- Solutions to (P) and (D) are the same

Slater's qualification condition

Slater's qualification condition is a condition on the constraints that guarantees that strong duality holds.
Consider an optimization problem in canonical form.

Slater's qualification condition

Slater's qualification condition is a condition on the constraints that guarantees that strong duality holds.
Consider an optimization problem in canonical form.
Definition: Slater's condition (strong form)
There exists $\mathbf{x} \in \dot{\mathcal{X}}$ such that $h(\mathbf{x})=0$ and $g(\mathbf{x})<0$ entrywise.

Slater's qualification condition

Slater's qualification condition is a condition on the constraints that guarantees that strong duality holds.
Consider an optimization problem in canonical form.
Definition: Slater's condition (strong form)
There exists $\mathbf{x} \in \dot{\mathcal{X}}$ such that $h(\mathbf{x})=0$ and $g(\mathbf{x})<0$ entrywise.

Definition: Slater's condition (weak form)

There exists $\mathbf{x} \in \stackrel{\dot{\mathcal{X}}}{ }$ such that $h(\mathbf{x})=0$ and $g(\mathbf{x}) \leq 0$ entrywise, but with $g_{i}(\mathbf{x})<0$ if g_{i} is not affine.

Slater's qualification condition

Slater's qualification condition is a condition on the constraints that guarantees that strong duality holds.
Consider an optimization problem in canonical form.
Definition: Slater's condition (strong form)
There exists $\mathbf{x} \in \dot{\mathcal{X}}$ such that $h(\mathbf{x})=0$ and $g(\mathbf{x})<0$ entrywise.

Definition: Slater's condition (weak form)

There exists $\mathbf{x} \in \stackrel{\circ}{\mathcal{X}}$ such that $h(\mathbf{x})=0$ and $g(\mathbf{x}) \leq 0$ entrywise, but with $g_{i}(\mathbf{x})<0$ if g_{i} is not affine.

Slater's conditions requires that there exists a feasible point which is strictly feasible for all non-affine constraints.

Karush-Kuhn-Tucker conditions

Theorem

For a convex problem defined by differentiable functions f, h_{i}, g_{j}, x is an optimal solution if and only if there exists $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ such that the KKT conditions are satisfied.

KKT conditions

$$
\begin{array}{rlr}
\nabla f(\mathbf{x})+\sum_{i=1}^{n} \lambda_{i} \nabla h_{i}(\mathbf{x})+\sum_{j=1}^{m} \mu_{j} \nabla g_{j}(\mathbf{x})=0 & \text { (Lagrangian stationarity) } \\
h(\mathbf{x})=0, \quad g(\mathbf{x}) & \leq 0 & \text { (primal feasibility) } \\
\mu_{j} & \geq 0 & \text { (dual feasibility) } \\
\forall j \in \llbracket 1, m \rrbracket, \quad \mu_{j} g_{j}(\mathbf{x})=0 & \text { (complementary slackness) }
\end{array}
$$

Outline

(1) Constrained optimization, Lagrangian duality and KKT

(2) Support vector machines

Support vector machines

Hard margin SVM

- Binary classification problem with $y_{i} \in\{-1,1\}$.

Hard margin SVM

- Binary classification problem with $y_{i} \in\{-1,1\}$.
- Margin $\frac{1}{\|w\|}$

Hard margin SVM

- Binary classification problem with $y_{i} \in\{-1,1\}$.
- Margin $\frac{1}{\|w\|}$
- Constraints:
- for $y_{i}=1$ require $\mathbf{w}^{\top} \mathbf{x}_{i}+b \geq 1$
- for $y_{i}=-1$ require $\mathbf{w}^{\top} \mathbf{x}_{i}+b \leq-1$

Hard margin SVM

- Binary classification problem with $y_{i} \in\{-1,1\}$.
- Margin $\frac{1}{\|w\|}$
- Constraints:
- for $y_{i}=1$ require $\mathbf{w}^{\top} \mathbf{x}_{i}+b \geq 1$
- for $y_{i}=-1$ require $\mathbf{w}^{\top} \mathbf{x}_{i}+b \leq-1$

This leads to

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2} \quad \text { s.t. } \quad \forall i, \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1
$$

Hard margin SVM

- Binary classification problem with $y_{i} \in\{-1,1\}$.
- Margin $\frac{1}{\|w\|}$
- Constraints:
- for $y_{i}=1$ require $\mathbf{w}^{\top} \mathbf{x}_{i}+b \geq 1$
- for $y_{i}=-1$ require $\mathbf{w}^{\top} \mathbf{x}_{i}+b \leq-1$

This leads to

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2} \quad \text { s.t. } \quad \forall i, \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1
$$

- quadratic program (not a so useful property nowadays)
- unfeasible if the data is not separable

Hard-margin SVM

Soft margin SVM

- Authorize some points to be on the wrong side of the margin
- Penalize by a cost proportional to the distance to the margin
- Introduce some slack variables ξ_{i} measuring the violation for each datapoint.

Soft margin SVM

- Authorize some points to be on the wrong side of the margin
- Penalize by a cost proportional to the distance to the margin
- Introduce some slack variables ξ_{i} measuring the violation for each datapoint.

$$
\begin{aligned}
\min _{\mathbf{w}, \boldsymbol{\xi}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
& \text { s.t. } \quad \forall i,\left\{\begin{array}{l}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{array}\right.
\end{aligned}
$$

Lagrangian of the SVM

$\mathcal{L}(w, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\nu})$
$=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)-\sum_{i=1}^{n} \nu_{i} \xi_{i}$

Lagrangian of the SVM
$\mathcal{L}(w, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\nu})$
$=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)-\sum_{i=1}^{n} \nu_{i} \xi_{i}$
$=\frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{\top}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right)+\sum_{i=1}^{n} \xi_{i}\left(C-\alpha_{i}-\nu_{i}\right)-\sum_{i=1}^{n} \alpha_{i} y_{i} b+\sum_{i=1}^{n} \alpha_{i}$

Lagrangian of the SVM
$\mathcal{L}(w, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\nu})$
$=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)-\sum_{i=1}^{n} \nu_{i} \xi_{i}$
$=\frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{\top}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right)+\sum_{i=1}^{n} \xi_{i}\left(C-\alpha_{i}-\nu_{i}\right)-\sum_{i=1}^{n} \alpha_{i} y_{i} b+\sum_{i=1}^{n} \alpha_{i}$
Stationarity of the Lagrangian

$$
\nabla_{\mathbf{w}} \mathcal{L}=\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}, \quad \frac{\partial \mathcal{L}}{\partial \xi_{i}}=C-\alpha_{i}-\nu_{i} \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial b}=\sum_{i=1}^{n} \alpha_{i} y_{i} .
$$

Lagrangian of the SVM

$\mathcal{L}(w, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\nu})$
$=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)-\sum_{i=1}^{n} \nu_{i} \xi_{i}$
$=\frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{\top}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right)+\sum_{i=1}^{n} \xi_{i}\left(C-\alpha_{i}-\nu_{i}\right)-\sum_{i=1}^{n} \alpha_{i} y_{i} b+\sum_{i=1}^{n} \alpha_{i}$

Stationarity of the Lagrangian

$$
\nabla_{\mathbf{w}} \mathcal{L}=\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}, \quad \frac{\partial \mathcal{L}}{\partial \xi_{i}}=C-\alpha_{i}-\nu_{i} \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial b}=\sum_{i=1}^{n} \alpha_{i} y_{i} .
$$

So that $\nabla \mathcal{L}=0$ leads to

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}, \quad 0 \leq \alpha_{i} \leq C \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0 .
$$

Dual of the SVM

$$
\begin{aligned}
& \max _{\boldsymbol{\alpha}}-\frac{1}{2}\left\|\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}\right\|^{2}+\sum_{i=1}^{n} \alpha_{i} \\
& \text { s.t. } \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \quad \forall i, 0 \leq \alpha_{i} \leq C . \\
& \max _{\boldsymbol{\alpha}}-\frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{D}_{\mathbf{y}} \mathbf{K D}_{\mathbf{y}} \boldsymbol{\alpha}+\boldsymbol{\alpha}^{\top} \mathbf{1} \\
& \text { s.t. } \quad \boldsymbol{\alpha}^{\top} \mathbf{y}=0, \quad 0 \leq \boldsymbol{\alpha} \leq C .
\end{aligned}
$$

with

- $\mathbf{y}^{\top}=\left(y_{1}, \ldots, y_{n}\right)$ the vector of labels
- $\mathbf{D}_{\mathbf{y}}=\operatorname{Diag}(\mathbf{y})$ a diagonal matrix with the label
- \mathbf{K} the Gram matrix with $\mathbf{K}_{i j}=\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$

Dual of the SVM

$$
\begin{aligned}
\max _{\alpha}-\frac{1}{2} & \sum_{1 \leq i, j \leq n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \quad \forall i, 0 \leq \alpha_{i} \leq C
\end{aligned}
$$

Dual of the SVM

$$
\begin{aligned}
& \max _{\boldsymbol{\alpha}}-\frac{1}{2} \| \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \|^{2}+\sum_{i=1}^{n} \alpha_{i} \\
& \text { s.t. } \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \quad \forall i, 0 \leq \alpha_{i} \leq C \\
& \max _{\boldsymbol{\alpha}}-\frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{D}_{\mathbf{y}} \mathbf{K} \mathbf{D}_{\mathbf{y}} \boldsymbol{\alpha}+\boldsymbol{\alpha}^{\top} \mathbf{1} \\
& \text { s.t. } \quad \boldsymbol{\alpha}^{\top} \mathbf{y}=0, \quad 0 \leq \boldsymbol{\alpha} \leq C
\end{aligned}
$$

with

- $\mathbf{y}^{\top}=\left(y_{1}, \ldots, y_{n}\right)$ the vector of labels
- $\mathbf{D}_{\mathbf{y}}=\operatorname{Diag}(\mathbf{y})$ a diagonal matrix with the label
- \mathbf{K} the Gram matrix with $\mathbf{K}_{i j}=\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$

KKT conditions for the SVM

KKT conditions for the SVM

$$
\begin{array}{rlr}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} & & (\mathrm{LS}) \\
\alpha_{i}+\nu_{i}=C & (\mathrm{LS}) \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 & & (\mathrm{LS}) \\
1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right) \geq 0 & & (\mathrm{PF}) \\
\xi_{i} \geq 0 & & (\mathrm{PF}) \\
\alpha_{i} \geq 0 & (\mathrm{DF}) \\
\nu_{i} \geq 0 & (\mathrm{DF}) \\
\alpha_{i}\left(1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right)\right)=0 & & (\mathrm{CS}) \\
\nu_{i} \xi_{i}=0 & (\mathrm{CS}) \tag{CS}
\end{array}
$$

with $f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} x_{i}+b$

KKT conditions for the SVM

$$
\begin{align*}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} & \text { (LS) } \tag{LS}\\
\alpha_{i}+\nu_{i}=C & (\mathrm{LS}) \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 & (\mathrm{LS}) \\
\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right) \geq 0 & \text { (PF) } \\
\xi_{i} \geq 0 & \text { (PF) } \\
\alpha_{i} \geq 0 & \text { (DF) } \\
\nu_{i} \geq 0 & \text { (DF) }
\end{align*}
$$

with $f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} x_{i}+b$

KKT conditions for the SVM

$$
\begin{align*}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} & \text { (LS) } \tag{LS}\\
\alpha_{i}+\nu_{i}=C & (\mathrm{LS}) \tag{LS}\\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 & (\mathrm{LS}) \\
\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right) \geq 0 & \text { (PF) } \\
\xi_{i} \geq 0 & \text { (PF) } \\
\alpha_{i} \geq 0 & \text { (DF) } \\
\nu_{i} \geq 0 & \text { (DF) }
\end{align*}
$$

with $f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} x_{i}+b$

KKT conditions for the SVM

$$
\begin{array}{rlr}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} & & (\mathrm{LS}) \\
\alpha_{i}+\nu_{i}=C & (\mathrm{LS}) \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 & & (\mathrm{LS}) \\
1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right) \geq 0 & & (\mathrm{PF}) \\
\xi_{i} \geq 0 & & (\mathrm{PF}) \\
\alpha_{i} \geq 0 & (\mathrm{DF}) \\
\nu_{i} \geq 0 & (\mathrm{DF}) \\
\alpha_{i}\left(1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right)\right)=0 & \quad & (\mathrm{CS}) \\
\nu_{i} \xi_{i}=0 & (\mathrm{CS})
\end{array}
$$

with $f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} x_{i}+b$

KKT conditions for the SVM

$$
\begin{array}{rl|l}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} & (\mathrm{LS}) & \text { Let } \\
& \bullet I=\left\{i \mid \xi_{i}>0\right\} \\
\alpha_{i}+\nu_{i}=C & (\mathrm{LS}) & \bullet M=\left\{i \mid y_{i} f\left(\mathbf{x}_{i}\right)=1\right\} \\
\sum^{n} \alpha_{i} y_{i}=0 & (\mathrm{LS}) & \bullet W=\left\{i \mid \alpha_{i} \neq 0\right\} \\
\bullet W=(I \cup M)^{c}
\end{array}
$$

KKT conditions for the SVM

$$
\begin{array}{rl|l}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} & (\mathrm{LS}) & \text { Let } \\
& \bullet I=\left\{i \mid \xi_{i}>0\right\} \\
\alpha_{i}+\nu_{i}=C & (\mathrm{LS}) & \bullet M=\left\{i \mid y_{i} f\left(\mathbf{x}_{i}\right)=1\right\} \\
\sum^{n} \alpha_{i} y_{i}=0 & (\mathrm{LS}) & \bullet W=\left\{i \mid \alpha_{i} \neq 0\right\} \\
\bullet W=(I \cup M)^{c}
\end{array}
$$

KKT conditions for the SVM

$$
\begin{array}{rlr}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} & & (\mathrm{LS}) \\
\alpha_{i}+\nu_{i}=C & (\mathrm{LS}) \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 & & (\mathrm{LS}) \\
1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right) \geq 0 & & (\mathrm{PF}) \\
\xi_{i} \geq 0 & & (\mathrm{PF}) \\
\alpha_{i} \geq 0 & (\mathrm{DF}) \\
\nu_{i} \geq 0 & (\mathrm{DF}) \\
\alpha_{i}\left(1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right)\right)=0 & & (\mathrm{CS}) \\
\nu_{i} \xi_{i}=0 & (\mathrm{CS})
\end{array}
$$

- $I=\left\{i \mid \xi_{i}>0\right\}$
- $M=\left\{i \mid y_{i} f\left(\mathbf{x}_{i}\right)=1\right\}$
- $S=\left\{i \mid \alpha_{i} \neq 0\right\}$
- $W=(I \cup M)^{c}$
$i \in I \Rightarrow \nu_{i}=0 \Rightarrow \alpha_{i}=C \Rightarrow i \in S$
with $f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} x_{i}+b$

KKT conditions for the SVM

$$
\begin{align*}
& \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \tag{LS}\\
& \alpha_{i}+\nu_{i}=C \tag{LS}\\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \tag{LS}\\
& 1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right) \geq 0 \tag{PF}\\
& \xi_{i} \geq 0 \tag{PF}\\
& \alpha_{i} \geq 0 \tag{DF}\\
& \nu_{i} \geq 0 \tag{DF}\\
& \alpha_{i}\left(1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right)\right)=0 \tag{CS}
\end{align*}
$$

with $f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} x_{i}+b$

Let

- $I=\left\{i \mid \xi_{i}>0\right\}$
- $M=\left\{i \mid y_{i} f\left(\mathbf{x}_{i}\right)=1\right\}$
- $S=\left\{i \mid \alpha_{i} \neq 0\right\}$
- $W=(I \cup M)^{c}$
$i \in I \Rightarrow \nu_{i}=0 \Rightarrow \alpha_{i}=C \Rightarrow i \in S$

$$
i \in W \Rightarrow \alpha_{i}=0 \Leftrightarrow i \notin S
$$

We have $0 \leq \alpha_{i} \leq C$.

KKT conditions for the SVM

$$
\begin{align*}
& \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \tag{LS}\\
& \alpha_{i}+\nu_{i}=C \tag{LS}\\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \tag{LS}\\
& 1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right) \geq 0 \tag{PF}\\
& \xi_{i} \geq 0 \tag{PF}\\
& \alpha_{i} \geq 0 \tag{DF}\\
& \nu_{i} \geq 0 \tag{DF}\\
& \alpha_{i}\left(1-\xi_{i}-y_{i} f\left(\mathbf{x}_{i}\right)\right)=0 \tag{CS}\\
& \nu_{i} \xi_{i}=0 \tag{CS}
\end{align*}
$$

Let

- $I=\left\{i \mid \xi_{i}>0\right\}$
- $M=\left\{i \mid y_{i} f\left(\mathbf{x}_{i}\right)=1\right\}$
- $S=\left\{i \mid \alpha_{i} \neq 0\right\}$
- $W=(I \cup M)^{c}$
$i \in I \Rightarrow \nu_{i}=0 \Rightarrow \alpha_{i}=C \Rightarrow i \in S$
$i \in W \Rightarrow \alpha_{i}=0 \Leftrightarrow i \notin S$
We have $0 \leq \alpha_{i} \leq C$.
The set S of support vectors is therefore composed of some points on the margin and all incorrectly placed points.
with $f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} x_{i}+b$

SVM summary so far

- Optimization problem formulated as a strongly convex QP

SVM summary so far

- Optimization problem formulated as a strongly convex QP
- whose dual is also a QP

SVM summary so far

- Optimization problem formulated as a strongly convex QP
- whose dual is also a QP
- The support vectors are the points that have a non zero optimal weight α_{i}

SVM summary so far

- Optimization problem formulated as a strongly convex QP
- whose dual is also a QP
- The support vectors are the points that have a non zero optimal weight α_{i}
- The optimal solution is $\mathbf{w}^{*}=\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}$, i.e. a weighted combination of the support vectors

SVM summary so far

- Optimization problem formulated as a strongly convex QP
- whose dual is also a QP
- The support vectors are the points that have a non zero optimal weight α_{i}
- The optimal solution is $\mathbf{w}^{*}=\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}$, i.e. a weighted combination of the support vectors
- The solution does not depend on the well-classified points
\rightarrow Leads to working set strategies.
\rightarrow Computational gain

SVM summary so far

- Optimization problem formulated as a strongly convex QP
- whose dual is also a QP
- The support vectors are the points that have a non zero optimal weight α_{i}
- The optimal solution is $\mathbf{w}^{*}=\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}$, i.e. a weighted combination of the support vectors
- The solution does not depend on the well-classified points
\rightarrow Leads to working set strategies.
\rightarrow Computational gain
Remarks:
(1) the dual solution α^{*} is not necessarily unique \Rightarrow there might be several possible sets of support vectors.

SVM summary so far

- Optimization problem formulated as a strongly convex QP
- whose dual is also a QP
- The support vectors are the points that have a non zero optimal weight α_{i}
- The optimal solution is $\mathbf{w}^{*}=\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}$, i.e. a weighted combination of the support vectors
- The solution does not depend on the well-classified points
\rightarrow Leads to working set strategies.
\rightarrow Computational gain
Remarks:
(1) the dual solution α^{*} is not necessarily unique \Rightarrow there might be several possible sets of support vectors.
(2) How do we determine b ?

SVM summary so far

- Optimization problem formulated as a strongly convex QP
- whose dual is also a QP
- The support vectors are the points that have a non zero optimal weight α_{i}
- The optimal solution is $\mathbf{w}^{*}=\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}$, i.e. a weighted combination of the support vectors
- The solution does not depend on the well-classified points
\rightarrow Leads to working set strategies.
\rightarrow Computational gain
Remarks:
(1) the dual solution α^{*} is not necessarily unique \Rightarrow there might be several possible sets of support vectors.
(2) How do we determine b ?

Representer property for the SVM

$$
\begin{aligned}
f^{*}(\mathbf{x}) & =\mathbf{w}^{* \top} \mathbf{x}+b \\
& =\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x}+b \\
& =\sum_{i \in S} \alpha_{i}^{*} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
\end{aligned}
$$

with $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{x}^{\prime}$.

Representer property for the SVM

$$
\begin{aligned}
f^{*}(\mathbf{x}) & =\mathbf{w}^{* \top} \mathbf{x}+b \\
& =\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x}+b \\
& =\sum_{i \in S} \alpha_{i}^{*} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
\end{aligned}
$$

with $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{x}^{\prime}$.

- Eventually, this whole formulation depends only on the dot product between points

Representer property for the SVM

$$
\begin{aligned}
f^{*}(\mathbf{x}) & =\mathbf{w}^{* \top} \mathbf{x}+b \\
& =\sum_{i \in S} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x}+b \\
& =\sum_{i \in S} \alpha_{i}^{*} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
\end{aligned}
$$

with $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{x}^{\prime}$.

- Eventually, this whole formulation depends only on the dot product between points
\rightarrow Can we use another dot product than the one associated to the usual Euclidean distance in \mathbb{R}^{p} ?

Hinge loss interpretation of the SVM

$$
\begin{aligned}
& \min _{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
& \text { s.t. } \forall i,\left\{\begin{array}{l}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{array}\right.
\end{aligned}
$$

Hinge loss interpretation of the SVM

$$
\begin{gathered}
\min _{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } \forall i,\left\{\begin{array}{l}
\xi_{i} \geq 1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \\
\xi_{i} \geq 0
\end{array}\right. \\
\min _{\mathbf{w}} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)
\end{gathered}
$$

Define the hinge loss $\ell(a, y)=(1-y a)_{+}$with $\quad(u)_{+}=\max (u, 0)$.

Hinge loss interpretation of the SVM

$$
\begin{gathered}
\min _{\mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } \forall i,\left\{\begin{array}{l}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{array}\right. \\
\min _{\mathbf{w}} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)
\end{gathered}
$$

Define the hinge loss $\ell(a, y)=(1-y a)_{+}$with $\quad(u)_{+}=\max (u, 0)$. Our problem is now of the form

$$
\min _{\mathbf{w}} \sum_{i=1}^{n} \ell\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)+\frac{1}{2 C}\|\mathbf{w}\|^{2} \quad \text { with } \quad f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+b .
$$

Hinge loss vs other losses

The hinge loss is the "least convex" loss which upper bounds the 0-1 loss and equals 0 for large scores.

SVM with the quadratic hinge loss

Quadratic hinge loss: $\quad \ell(a, y)=(1-y a)_{+}^{2}$.

SVM with the quadratic hinge loss

Quadratic hinge loss: $\quad \ell(a, y)=(1-y a)_{+}^{2}$.

Quadratic SVM

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)^{2}
$$

SVM with the quadratic hinge loss

Quadratic hinge loss: $\quad \ell(a, y)=(1-y a)_{+}^{2}$.

Quadratic SVM

$$
\begin{gathered}
\min _{\mathbf{w}} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)^{2} \\
\min _{\mathbf{w}, \boldsymbol{\xi}} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}^{2} \\
\text { s.t. } \forall i,\left\{\begin{array}{c}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{array}\right.
\end{gathered}
$$

SVM with the quadratic hinge loss

Quadratic hinge loss: $\quad \ell(a, y)=(1-y a)_{+}^{2}$.

Quadratic SVM

$$
\begin{aligned}
& \min _{\mathbf{w}} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)^{2} \\
& \min _{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}^{2} \\
& \text { s.t. } \forall i,\left\{\begin{array}{l}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
\xi_{i} \geq 0
\end{array}\right.
\end{aligned}
$$

\rightarrow Penalizes more strongly misclassified points
\rightarrow Less robust to outliers
\rightarrow Tends to be less sparse
\rightarrow Score in $[0,1]$ for n large, interpretable as a probability.

Imbalanced classification

Imbalanced classification

Learn a binary classifier from $\left(x_{i}, y_{i}\right)$ pairs with

$$
\mathcal{P}=\left\{i \mid y_{i}=1\right\} \quad \mathcal{N}=\left\{i \mid y_{i}=-1\right\},
$$

$$
n_{+}=|\mathcal{P}|, \quad n_{-}=|\mathcal{N}| \quad \text { and with } \quad n_{+} \ll n_{-} .
$$

Imbalanced classification

Learn a binary classifier from $\left(x_{i}, y_{i}\right)$ pairs with

$$
\mathcal{P}=\left\{i \mid y_{i}=1\right\} \quad \mathcal{N}=\left\{i \mid y_{i}=-1\right\}
$$

$$
n_{+}=|\mathcal{P}|, \quad n_{-}=|\mathcal{N}| \quad \text { and with } \quad n_{+} \ll n_{-} .
$$

Problem: to minimize the number of mistakes the classifier learnt might classify all points as negatives.

Imbalanced classification

Learn a binary classifier from $\left(x_{i}, y_{i}\right)$ pairs with

$$
\mathcal{P}=\left\{i \mid y_{i}=1\right\} \quad \mathcal{N}=\left\{i \mid y_{i}=-1\right\},
$$

$$
n_{+}=|\mathcal{P}|, \quad n_{-}=|\mathcal{N}| \quad \text { and with } \quad n_{+} \ll n_{-} .
$$

Problem: to minimize the number of mistakes the classifier learnt might classify all points as negatives.

Some ways to address the issue

- Subsample the negatives, and learn an ensemble of classifiers.

Imbalanced classification

Learn a binary classifier from $\left(x_{i}, y_{i}\right)$ pairs with

$$
\mathcal{P}=\left\{i \mid y_{i}=1\right\} \quad \mathcal{N}=\left\{i \mid y_{i}=-1\right\},
$$

$$
n_{+}=|\mathcal{P}|, \quad n_{-}=|\mathcal{N}| \quad \text { and with } \quad n_{+} \ll n_{-} .
$$

Problem: to minimize the number of mistakes the classifier learnt might classify all points as negatives.

Some ways to address the issue

- Subsample the negatives, and learn an ensemble of classifiers.
- Introduce different costs for the positives and negatives

$$
\begin{aligned}
\min _{\mathbf{w} \in \mathbb{R}^{p}} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C_{+} \sum_{i \in \mathcal{P}} \xi_{i}+C_{-} \sum_{i \in \mathcal{N}} \xi_{i} \\
& \text { s.t. } \quad \forall i, \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}
\end{aligned}
$$

Imbalanced classification

Learn a binary classifier from $\left(x_{i}, y_{i}\right)$ pairs with

$$
\mathcal{P}=\left\{i \mid y_{i}=1\right\} \quad \mathcal{N}=\left\{i \mid y_{i}=-1\right\}
$$

$$
n_{+}=|\mathcal{P}|, \quad n_{-}=|\mathcal{N}| \quad \text { and with } \quad n_{+} \ll n_{-} .
$$

Problem: to minimize the number of mistakes the classifier learnt might classify all points as negatives.

Some ways to address the issue

- Subsample the negatives, and learn an ensemble of classifiers.
- Introduce different costs for the positives and negatives

$$
\begin{aligned}
\min _{\mathbf{w} \in \mathbb{R}^{p}} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C_{+} \sum_{i \in \mathcal{P}} \xi_{i}+C_{-} \sum_{i \in \mathcal{N}} \xi_{i} \\
& \text { s.t. } \quad \forall i, \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}
\end{aligned}
$$

- Naive choice: $C_{+}=C / n_{+}$and $C_{-}=C / n_{-}$

4 Is suboptimal in theory and in practice !!
\rightarrow Better to search for the optimal hyperparameter pair $\left(C_{+}, C_{-}\right)$.

