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Review: Constrained optimization

Optimization problem in canonical form

min f(x) with
s.t. hi(x) =0, ie[l,n] o X CRP.
gi(x) <0, je[1,m] e f,gj functions,

@ h; affine functions.
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Review: Constrained optimization

Optimization problem in canonical form

,ﬂ'&'}} f(x) with
s.t. hi(x) =0, ie[l,n] o X CRP.

gi(x) <0, jel[1,m] o f, g functions,
@ h; affine functions.

The problem is convex if f, g; and X" are convex (w.l.o.g X # 2).

Lagrangian

L(x, A, ) = f(x —i—Z)\h —|—Z,ujgj(x)
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Lagrangian duality

Lagrangian

L(x, A, p) = F(x +ZA hi x)+ZngJ
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Lagrangian duality

Lagrangian
L(x, A, p) = f(x —i—Z)\h —|—Zujgj(x)
j=1

Primal vs Dual problem

= L(x, A P
p" = min AT (%, A, ) (P)

d* = i D
AGRT,iXeR'j xer L0 A ) ()
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Maxmin inequalities

max min f(x,y) < min maxf(x,y)
y @ x x oy
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Weak duality
In general, we have d* < p*. This is called weak duality.
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Maxmin inequalities

max min f(x,y) < min maxf(x,y)
y @ x x oy

Weak duality
In general, we have d* < p*. This is called weak duality.

Strong duality
In some cases, we have strong duality:

@ Solutions to (P) and (D) are the same
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Slater's qualification condition

Slater’s qualification condition is a condition on the constraints that
guarantees that strong duality holds.

Consider an optimization problem in canonical form.
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Slater’s qualification condition is a condition on the constraints that
guarantees that strong duality holds.

Consider an optimization problem in canonical form.
Definition: Slater's condition (strong form)

There exists x € X such that h(x) = 0 and g(x) < 0 entrywise.
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Slater's qualification condition

Slater’s qualification condition is a condition on the constraints that
guarantees that strong duality holds.

Consider an optimization problem in canonical form.

Definition: Slater's condition (strong form)

There exists x € X such that h(x) = 0 and g(x) < 0 entrywise.

Definition: Slater's condition (weak form)

There exists x € X such that h(x) = 0 and g(x) < 0 entrywise, but with
gi(x) < 0 if g; is not affine.

Slater’s conditions requires that there exists a feasible point which is
strictly feasible for all non-affine constraints.

SVM, kernel methods and multiclass 8/23



Karush-Kuhn-Tucker conditions

Theorem

For a convex problem defined by differentiable functions f, h;, g;,
x Is an optimal solution if and only if there exists (A, ) such that the
KKT conditions are satisfied.

KKT conditions

)+ Z AiVhi(x) + Z 1jVgi(x) =0  (Lagrangian stationarity)
j=1

h(x) =0, g(x)<0 (primal feasibility)

>0 (dual feasibility)

0

Vje[l,m], pjgj(x)=0 (complementary slackness)
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Support vector machines
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Hard margin SVM

@ Binary classification problem with y; € {—1,1}.
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Hard margin SVM

@ Binary classification problem with y; € {—1,1}.

1
([wil

o Margin
@ Constraints:

o for y; =1 requirew'x;+b>1
o for y; = —1 require w'x; + b < —1

SVM, kernel methods and multiclass 12/23



Hard margin SVM

@ Binary classification problem with y; € {—1,1}.
1
TTwll

@ Constraints:

o Margin

o for y; =1 requirew'x;+b>1
o for y; = —1 require w'x; + b < —1

This leads to

1
min §Hw\|2 st. Vi, yi(w'x;+b)>1
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Hard margin SVM

@ Binary classification problem with y; € {—1,1}.
1
TTwll

@ Constraints:

o Margin

o for y; =1 requirew'x;+b>1
o for y; = —1 require w'x; + b < —1

This leads to

1
min §HWH2 st. Vi, yi(w'x;+b)>1

@ quadratic program (not a so useful property nowadays)
@ unfeasible if the data is not separable
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Hard-margin SVM
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Soft margin SVM

@ Authorize some points to be on the wrong side of the margin
@ Penalize by a cost proportional to the distance to the margin

@ Introduce some slack variables £ measuring the violation for each
datapoint.
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Soft margin SVM

@ Authorize some points to be on the wrong side of the margin
@ Penalize by a cost proportional to the distance to the margin

@ Introduce some slack variables £ measuring the violation for each
datapoint.

1, .
_ C .
min 2IIWH + iEIE,

(W x; >1-¢
s.t. Vi, yi(w xj+b) = &
& >0
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Lagrangian of the SVM
L(w, €& a,v)

n

= %HWH2 + ng, + ZO[,’(]. - 6,’ — y,'(WTX,' + b)) - Z V,'f,'
i=1

i=1 i=1
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Lagrangian of the SVM
L(w, €& a,v)

1 n n
= §||WH2 + ng, + ZO[,’(]. - 6,’ — y,'(WTX,' + b)) - Z V,'f,'
i=1

i=1 i=1

1 n n n n
= §HwH2 - WT(Zaiinf) +> &G(C—ai—v) =) aiyib+Y a
i=1 i=1 i=1 i=1
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Lagrangian of the SVM
L(w, €& a,v)

n

= ||w\|2+CZ£,+Za,1—§, yilw'x; + b)) = Y viéi

i=1 i=1
n
- |wH2—w (Za,y, ,)+Z§,-(C—a,-—u,-)—za,-y,-b+za,-
i=1 i=1 i=1

Stationarity of the Lagrangian

oL

Vul =w =Y aiyixi, -
i=1 0%

L <
=C—aj—v; and %—;a;y,-.
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Lagrangian of the SVM
L(w, €& a,v)

n

= ||w\|2+CZ£,+Za,1—§, yilw'x; + b)) = Y viéi

i=1 i=1
n
- |wH2—w (Za,y, ,)+Z§,-(C—a,-—u,-)—za,-y,-b+za,-
i=1 i=1 i=1

Stationarity of the Lagrangian

Vwﬁzw—zaiy,’xi, gng—ai_Vi and gﬁzza%
i—1 ! i=1

So that VL = 0 leads to

n n
w = Zoz,—y,-x,-, 0<a;<C and Za,-y,- =0.
i=1 =
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Dual of the SVM

1 n 2 n
max — fHZa;y,'x,- + E «;
a 2
i=1 i=1

n
s.t. Zoz,-y,- =0, Vi, 0 <a; < C.
i=1

1 T T
max — o DyKDya + a1
st. a'y=0, 0<a<C(C.
with
oy’ =(y1,...,yn) the vector of labels

e D, = Diag(y) a diagonal matrix with the label

e K the Gram matrix with K;; = x,-TxJ-



Dual of the SVM

max - = Z Qi YiYiX; xJ+Za,

1<1,_/<n

ZouinO, Vi, 0<a; < C.
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Dual of the SVM

1 n 2 n
max — *H Zaiyixi + g Qi
a 2
i=1 i=1

n
s.t. ZOA,'y,' =0, Vi, 0 <a; < C.
i=1

I T T
max — o DyKDya + a1
st. a'y=0, 0<a<C(C.
with
oy’ =(y1,...,yn) the vector of labels

e D, = Diag(y) a diagonal matrix with the label

e K the Gram matrix with K;; = x,—-rxj
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KKT conditions for the SVM
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KKT conditions for the SVM

W = Za;y;x; (LS)
i=1
aj+vi=C (LS)
D aiyi=0 (LS)
i=1

1-&—yif(x;)) >0 (PF)
§& >0 (PF)

a; >0 (DF)

vi>0 (

(1 Ei—yif(x l)) =0 (C9)
vi§&i =0 (

with f(x;)) =w'x; + b
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KKT conditions for the SVM

n Let
w:Za;y;x; (LS) ) I:{i’f,‘>0}
i=1 o M:{I’y, f(X,):l}
aj+vi=C (LS) OSZ{I"Oé;#O}
o W= (IUM)

ZH: aiyi =0 (LS)
i—1

1-&—yif(x;)) >0 (PF)
§& >0 (PF)

a; >0 (DF)

vi>0 (

(1 Ei—yif(x l)) =0 (C9)
vi§&i =0 (

iel=vi=0=a;=C=i€S

with f(x;)) =w'x; + b



KKT conditions for the SVM

n Let

w = Zai)’ixi (LS) o I={i|& >0}

= o M={i|yif(x)=1}
! o S={i|a;#0}
Za,-y,-:o (LS) o W=(luM)*

aj+vi=C (LS)
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a; >0 (DF)
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KKT conditions for the SVM

n Let

w = Zai)/ixi (LS) o I={i|& >0}

= o M={i|yif(x)=1}
! o S={i|a;#0}
Za,-y,-:o (LS) o W=(luM)*

aj+vi=C (LS)

1_51_)’:7(()(,)20 (PF) IEI:>VI':0:>C¥,':C:>I€5

>0 (PF) |ieW=0a0q=0&i¢5
@ >0 (DF)

14 Z 0 (
(1 i—yi F(x ,)) —0 (CS) The set S of support vectors is therefore
(

We have 0 < o; < C.

composed of some points on the margin

vi€i =0 and all incorrectly placed points.

with f(x;)) =w'x; + b
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SVM summary so far

o Optimization problem formulated as a strongly convex QP
@ whose dual is also a QP

@ The support vectors are the points that have a non zero optimal
weight «;

@ The optimal solution is w* = .5 afy;x;, i.e. a weighted
combination of the support vectors

@ The solution does not depend on the well-classified points

+

Leads to working set strategies.

4

Computational gain
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@ The support vectors are the points that have a non zero optimal
weight «;

@ The optimal solution is w* = .5 afy;x;, i.e. a weighted
combination of the support vectors
@ The solution does not depend on the well-classified points
— Leads to working set strategies.

— Computational gain

Remarks:

Q the dual solution a* is not necessarily unique = there might be
several possible sets of support vectors.

SVM, kernel methods and multiclass 18/23



SVM summary so far

o Optimization problem formulated as a strongly convex QP
@ whose dual is also a QP

@ The support vectors are the points that have a non zero optimal
weight «;

@ The optimal solution is w* = .5 afy;x;, i.e. a weighted
combination of the support vectors
@ The solution does not depend on the well-classified points
— Leads to working set strategies.

— Computational gain

Remarks:

Q the dual solution a* is not necessarily unique = there might be
several possible sets of support vectors.

@ How do we determine b?

SVM, kernel methods and multiclass 18/23



SVM summary so far

o Optimization problem formulated as a strongly convex QP
@ whose dual is also a QP

@ The support vectors are the points that have a non zero optimal
weight «;

@ The optimal solution is w* = .5 afy;x;, i.e. a weighted
combination of the support vectors
@ The solution does not depend on the well-classified points
— Leads to working set strategies.

— Computational gain

Remarks:

Q the dual solution a* is not necessarily unique = there might be
several possible sets of support vectors.

@ How do we determine b?

SVM, kernel methods and multiclass 18/23



Representer property for the SVM

W*Tx—i- b
= Za?y,-x,—-rx—l—b
i€eS

= > ajyik(xi,x)+ b

ieS

(%)

with k(x,x') = x"x’.
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Representer property for the SVM

= Za?y;x?x—kb
i€eS

= > ajyik(xi,x)+ b

ieS

(%)

with k(x,x') = x"x’.
@ Eventually, this whole formulation depends only on the dot product
between points

SVM, kernel methods and multiclass 19/23



Representer property for the SVM

W*Tx—i- b
= Za?y,-x,—-rx—l—b
i€eS

= > ajyik(xi,x)+ b

ieS

(%)

with k(x,x') = x"x’.
@ Eventually, this whole formulation depends only on the dot product
between points

— Can we use another dot product than the one associated to the
usual Euclidean distance in RP?
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Hinge loss interpretation of the SVM

1 .
—_ C .
min S lwll®+ I_E:lf,

(w ! x: >1_ ¢
st i JViW xith)=1-¢
& >0

SVM, kernel methods and multiclass 20/23



Hinge loss interpretation of the SVM

I B ¢
—_ C .
min Sliwl”+ I_E:lf,

)

> 1 — v (w ' x:
st i, d&iZL1myi(wixi+b)
& >0

min %Hw”z + C; max (1 — y; (w'x; + b),0)

Define the hinge loss ¢(a,y) = (1 — ya)+ with (u)+ = max(u,0).

SVM, kernel methods and multiclass 20/23



Hinge loss interpretation of the SVM

1 .
—_ C .
min S lwll®+ I_E:lf,

(w ! x: >1_ ¢
st i JViW xith)=1-¢
& >0

R ST - T
min EHWH +C§;max(1—y,-(w x; + b),0)

Define the hinge loss ¢(a,y) = (1 — ya)+ with (u)+ = max(u,0).
Our problem is now of the form

’ 1
min > U(F(xi),yi) + inHz with  f(x) =w'x+ b.
i=1
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Hinge loss vs other losses

— Zero-one loss
5 — Hinge loss
— Logistic loss
4
5
g__: 3
E
]
2
1
0—4 -3 -2 -1 0 1 2 3 4
v -fla;)

The hinge loss is the “least convex” loss which upper bounds the 0-1
loss and equals O for large scores.
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SVM with the quadratic hinge loss

Quadratic hinge loss: ~ £(a,y) = (1 — ya)?.
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SVM with the quadratic hinge loss
Quadratic hinge loss: ~ £(a,y) = (1 — ya)?.
Quadratic SVM

1 n
m“i’n §Hw|]2 + C; max (1 — y; (w'x; + b),O)2
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SVM with the quadratic hinge loss
Quadratic hinge loss: ~ £(a,y) = (1 — ya)?.
Quadratic SVM

1 n
m“i’n §Hw|]2 + C; max (1 — y; (w'x; + b),O)2

1 4
min 2||W!|2+C'Z;£;2

(W x; >1-¢
s.t. Vi, yi(w xj+b) 2 &i
& >0
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SVM with the quadratic hinge loss
Quadratic hinge loss: ~ £(a,y) = (1 — ya)?.
Quadratic SVM

1 n
m“i’n §Hw|]2 + C; max (1 — y; (w'x; + b),O)2

R ~
min §||WH +C§§i
i(w'xj+b)>1-¢
s.t. Vi, yi(w xj+b) 2 ¢

& >0

— Penalizes more strongly misclassified points
— Less robust to outliers
— Tends to be less sparse
— Score in [0, 1] for n large, interpretable as a probability.
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Imbalanced classification
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Imbalanced classification
Learn a binary classifier from (x;, y;) pairs with

P={ilyi=1} N={ilyi=-1},
ny =|P|, n-=|N| and with ny < n_.
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classify all points as negatives.
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Problem: to minimize the number of mistakes the classifier learnt might
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Imbalanced classification
Learn a binary classifier from (x;, y;) pairs with

P={ilyi=1} N={ilyi=-1},

ny =|P|, n-=|N| and with ny < n_.
Problem: to minimize the number of mistakes the classifier learnt might
classify all points as negatives.

Some ways to address the issue
@ Subsample the negatives, and learn an ensemble of classifiers.
@ Introduce different costs for the positives and negatives

. 1
min §||W||% + Y G+ CY G
we ieP ieN
st. Vi, yi(w'xi+b)>1-¢

e Naive choice: C; = C/ny and C_ = C/n_
5 s suboptimal in theory and in practice !l
— Better to search for the optimal hyperparameter-pair (C,, C_).
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