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Review: Constrained optimization

Optimization problem in canonical form

min
x∈X

f (x)

s.t. hi (x) = 0, i ∈ [[1, n]]

gj(x) ≤ 0, j ∈ [[1,m]]

with

X ⊂ Rp.

f , gj functions,

hi affine functions.

The problem is convex if f , gj and X are convex (w.l.o.g X̊ 6= ∅).

Lagrangian

L(x,λ,µ) = f (x) +
n∑

i=1

λi hi (x) +
m∑
j=1

µj gj(x)
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Lagrangian duality

Lagrangian

L(x,λ,µ) = f (x) +
n∑

i=1

λi hi (x) +
m∑
j=1

µj gj(x)

Primal vs Dual problem

p∗ = min
x∈X

max
λ∈Rn,µ∈Rm

+

L(x,λ,µ) (P)

d∗ = max
λ∈Rn,µ∈Rm

+

min
x∈X

L(x,λ,µ) (D)
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Maxmin inequalities

max
y

min
x

f (x , y) ≤ min
x

max
y

f (x , y)

Weak duality
In general, we have d∗ ≤ p∗. This is called weak duality.

Strong duality
In some cases, we have strong duality:

d∗ = p∗

Solutions to (P) and (D) are the same
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Slater’s qualification condition

Slater’s qualification condition is a condition on the constraints that
guarantees that strong duality holds.

Consider an optimization problem in canonical form.

Definition: Slater’s condition (strong form)

There exists x ∈ X̊ such that h(x) = 0 and g(x) < 0 entrywise.

Definition: Slater’s condition (weak form)

There exists x ∈ X̊ such that h(x) = 0 and g(x) ≤ 0 entrywise, but with
gi (x) < 0 if gi is not affine.

Slater’s conditions requires that there exists a feasible point which is
strictly feasible for all non-affine constraints.
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Karush-Kuhn-Tucker conditions

Theorem

For a convex problem defined by differentiable functions f , hi , gj ,
x is an optimal solution if and only if there exists (λ,µ) such that the
KKT conditions are satisfied.

KKT conditions

∇f (x) +
n∑

i=1

λi∇hi (x) +
m∑
j=1

µj∇gj(x) = 0 (Lagrangian stationarity)

h(x) = 0, g(x) ≤ 0 (primal feasibility)

µj ≥ 0 (dual feasibility)

∀j ∈ [[1,m]], µj gj(x) = 0 (complementary slackness)
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Support vector machines
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Hard margin SVM

Binary classification problem with yi ∈ {−1, 1}.

Margin 1
‖w‖

Constraints:

for yi = 1 require w>xi + b ≥ 1
for yi = −1 require w>xi + b ≤ −1

This leads to

min
1

2
‖w‖2 s.t. ∀i , yi (w>xi + b) ≥ 1

quadratic program (not a so useful property nowadays)

unfeasible if the data is not separable
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Hard-margin SVM
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Soft margin SVM

Authorize some points to be on the wrong side of the margin

Penalize by a cost proportional to the distance to the margin

Introduce some slack variables ξi measuring the violation for each
datapoint.

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. ∀i ,

{
yi (w>xi + b) ≥ 1− ξi
ξi ≥ 0
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Lagrangian of the SVM
L(w , ξ,α,ν)

=
1

2
‖w‖2 + C

n∑
i=1

ξi +
n∑

i=1

αi

(
1− ξi − yi (w

>xi + b)
)
−

n∑
i=1

νiξi

=
1

2
‖w‖2 −w>

( n∑
i=1

αiyixi
)

+
n∑

i=1

ξi (C − αi − νi )−
n∑

i=1

αiyib +
n∑

i=1

αi

Stationarity of the Lagrangian

∇wL = w −
n∑

i=1

αiyixi ,
∂L
∂ξi

= C − αi − νi and
∂L
∂b

=
n∑

i=1

αiyi .

So that ∇L = 0 leads to

w =
n∑

i=1

αiyixi , 0 ≤ αi ≤ C and
n∑

i=1

αiyi = 0.
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Dual of the SVM

max
α
− 1

2

∥∥∥ n∑
i=1

αiyixi

∥∥∥2 +
n∑

i=1

αi

s.t.
n∑

i=1

αiyi = 0, ∀i , 0 ≤ αi ≤ C .

max
α
− 1

2
α>DyKDyα + α>1

s.t. α>y = 0, 0 ≤ α ≤ C .

with

y> = (y1, . . . , yn) the vector of labels

Dy = Diag(y) a diagonal matrix with the label

K the Gram matrix with Kij = x>i xj

SVM, kernel methods and multiclass 16/23



Dual of the SVM

max
α
− 1

2

∑
1≤i ,j≤n

αiαjyiyjx
>
i xj +

n∑
i=1

αi

s.t.
n∑

i=1

αiyi = 0, ∀i , 0 ≤ αi ≤ C .

max
α
− 1

2
α>DyKDyα + α>1

s.t. α>y = 0, 0 ≤ α ≤ C .

with

y> = (y1, . . . , yn) the vector of labels

Dy = Diag(y) a diagonal matrix with the label

K the Gram matrix with Kij = x>i xj

SVM, kernel methods and multiclass 16/23



Dual of the SVM

max
α
− 1

2

∥∥∥ n∑
i=1

αiyixi

∥∥∥2 +
n∑

i=1

αi

s.t.
n∑

i=1

αiyi = 0, ∀i , 0 ≤ αi ≤ C .

max
α
− 1

2
α>DyKDyα + α>1

s.t. α>y = 0, 0 ≤ α ≤ C .

with

y> = (y1, . . . , yn) the vector of labels

Dy = Diag(y) a diagonal matrix with the label

K the Gram matrix with Kij = x>i xj

SVM, kernel methods and multiclass 16/23



KKT conditions for the SVM

w =
n∑

i=1

αiyixi (LS)

αi + νi = C (LS)
n∑

i=1

αiyi = 0 (LS)

1−ξi−yi f (xi ) ≥ 0 (PF)

ξi ≥ 0 (PF)

αi ≥ 0 (DF)

νi ≥ 0 (DF)

αi

(
1−ξi−yi f (xi )

)
= 0 (CS)

νiξi = 0 (CS)

with f (xi ) = w>xi + b

Let

I = {i | ξi > 0}
M = {i | yi f (xi ) = 1}
S = {i | αi 6= 0}
W = (I ∪M)c

i ∈ I ⇒ νi = 0⇒ αi = C ⇒ i ∈ S

i ∈W ⇒ αi = 0⇔ i /∈ S

We have 0 ≤ αi ≤ C .

The set S of support vectors is therefore
composed of some points on the margin
and all incorrectly placed points.
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SVM summary so far

Optimization problem formulated as a strongly convex QP

whose dual is also a QP

The support vectors are the points that have a non zero optimal
weight αi

The optimal solution is w∗ =
∑

i∈S α
∗
i yixi , i.e. a weighted

combination of the support vectors

The solution does not depend on the well-classified points

→ Leads to working set strategies.

→ Computational gain

Remarks:

1 the dual solution α∗ is not necessarily unique ⇒ there might be
several possible sets of support vectors.

2 How do we determine b?
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Representer property for the SVM

f ∗(x) = w∗>x + b

=
∑
i∈S

α∗i yi x
>
i x + b

=
∑
i∈S

α∗i yi k(xi , x) + b

with k(x, x′) = x>x′.

Eventually, this whole formulation depends only on the dot product
between points

→ Can we use another dot product than the one associated to the
usual Euclidean distance in Rp?
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Hinge loss interpretation of the SVM

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. ∀i ,

{
yi (w>xi + b) ≥ 1− ξi
ξi ≥ 0

min
w

1

2
‖w‖2 + C

n∑
i=1

max
(
1− yi (w>xi + b), 0

)

Define the hinge loss `(a, y) = (1− ya)+ with (u)+ = max(u, 0).
Our problem is now of the form

min
w

n∑
i=1

`(f (xi ), yi ) +
1

2C
‖w‖2 with f (x) = w>x + b.
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Hinge loss vs other losses

The hinge loss is the “least convex” loss which upper bounds the 0-1
loss and equals 0 for large scores.
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SVM with the quadratic hinge loss

Quadratic hinge loss: `(a, y) = (1− ya)2+.

Quadratic SVM

min
w

1

2
‖w‖2 + C

n∑
i=1

max
(
1− yi (w>xi + b), 0

)2

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξ2i

s.t. ∀i ,

{
yi (w>xi + b) ≥ 1− ξi
ξi ≥ 0

→ Penalizes more strongly misclassified points

→ Less robust to outliers

→ Tends to be less sparse

→ Score in [0, 1] for n large, interpretable as a probability.
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Imbalanced classification

Learn a binary classifier from (xi , yi ) pairs with

P = {i | yi = 1} N = {i | yi = −1},

n+ = |P|, n− = |N | and with n+ � n−.

Problem: to minimize the number of mistakes the classifier learnt might
classify all points as negatives.

Some ways to address the issue

Subsample the negatives, and learn an ensemble of classifiers.
Introduce different costs for the positives and negatives

min
w∈Rp

1

2
‖w‖22 + C+

∑
i∈P

ξi + C−
∑
i∈N

ξi

s.t. ∀i , yi (w>xi + b) ≥ 1− ξi

Naive choice: C+ = C/n+ and C− = C/n−

Is suboptimal in theory and in practice !!
→ Better to search for the optimal hyperparameter pair (C+,C−).
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