Nonlinear SVM and kernel methods

Guillaume Obozinski

Ecole des Ponts - ParisTech

Cours MALAP 2014

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle
$$

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2}
$$

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)
\end{aligned}
$$

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& =\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
\end{aligned}
$$

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& =\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
\end{aligned}
$$

For $\mathbf{w}=(0,0,1,1,0)^{\top}, \quad \mathbf{w}^{\top} \phi(\mathbf{x})-1 \leq 0 \quad \Leftrightarrow \quad\|\mathbf{x}\|^{2} \leq 1$.

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& =\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
\end{aligned}
$$

For $\mathbf{w}=(0,0,1,1,0)^{\top}, \quad \mathbf{w}^{\top} \phi(\mathbf{x})-1 \leq 0 \quad \Leftrightarrow \quad\|\mathbf{x}\|^{2} \leq 1$.
Linear separators in \mathbb{R}^{5} correspond to conic separators in \mathbb{R}^{2}.

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& =\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
\end{aligned}
$$

For $\mathbf{w}=(0,0,1,1,0)^{\top}, \quad \mathbf{w}^{\top} \phi(\mathbf{x})-1 \leq 0 \quad \Leftrightarrow \quad\|\mathbf{x}\|^{2} \leq 1$.
Linear separators in \mathbb{R}^{5} correspond to conic separators in \mathbb{R}^{2}.
http://www. youtube.com/watch?v=3liCbRZPrZA

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& =\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
\end{aligned}
$$

For $\mathbf{w}=(0,0,1,1,0)^{\top}, \quad \mathbf{w}^{\top} \phi(\mathbf{x})-1 \leq 0 \quad \Leftrightarrow \quad\|\mathbf{x}\|^{2} \leq 1$.
Linear separators in \mathbb{R}^{5} correspond to conic separators in \mathbb{R}^{2}.
http://www. youtube.com/watch?v=3liCbRZPrZA
Let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}$ and

$$
\phi(\mathbf{x})=\left(x_{1}, \ldots, x_{p}, x_{1}^{2}, \ldots, x_{p}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{i} x_{j}, \ldots \sqrt{2} x_{p-1} x_{p}\right)^{\top} .
$$

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& =\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
\end{aligned}
$$

For $\mathbf{w}=(0,0,1,1,0)^{\top}, \quad \mathbf{w}^{\top} \phi(\mathbf{x})-1 \leq 0 \quad \Leftrightarrow \quad\|\mathbf{x}\|^{2} \leq 1$.
Linear separators in \mathbb{R}^{5} correspond to conic separators in \mathbb{R}^{2}.
http://www youtube. com/watch?v=3liCbRZPrZA
Let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}$ and

$$
\phi(\mathbf{x})=\left(x_{1}, \ldots, x_{p}, x_{1}^{2}, \ldots, x_{p}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{i} x_{j}, \ldots \sqrt{2} x_{p-1} x_{p}\right)^{\top} .
$$

Still have

$$
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
$$

Changing the dot product

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\phi(\mathbf{x})=\left(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{\top}$.

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle & =x_{1} y_{1}+x_{2} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =x_{1} y_{1}+x_{2} y_{2}+\left(x_{1} y_{1}\right)^{2}+\left(x_{2} y_{2}\right)^{2}+2\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& =\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
\end{aligned}
$$

For $\mathbf{w}=(0,0,1,1,0)^{\top}, \quad \mathbf{w}^{\top} \phi(\mathbf{x})-1 \leq 0 \quad \Leftrightarrow \quad\|\mathbf{x}\|^{2} \leq 1$.
Linear separators in \mathbb{R}^{5} correspond to conic separators in \mathbb{R}^{2}.
http://www.youtube.com/watch?v=3liCbRZPrZA
Let $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}$ and

$$
\phi(\mathbf{x})=\left(x_{1}, \ldots, x_{p}, x_{1}^{2}, \ldots, x_{p}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{i} x_{j}, \ldots \sqrt{2} x_{p-1} x_{p}\right)^{\top} .
$$

Still have

$$
\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle^{2}
$$

But explicit mapping too expensive to compute: $\phi(\mathbf{x}) \in \mathbb{R}^{p+p(p+1) / 2}$.

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning?

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Then by the Riesz representation theorem, there must exist an element $h_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}, \quad f(x)=\left\langle h_{x}, f\right\rangle_{\mathcal{H}} .
$$

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Then by the Riesz representation theorem, there must exist an element $h_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}, \quad f(x)=\left\langle h_{x}, f\right\rangle_{\mathcal{H}} .
$$

But then by definition $h_{y}(x)=\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}=h_{x}(y)$.

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Then by the Riesz representation theorem, there must exist an element $h_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}, \quad f(x)=\left\langle h_{x}, f\right\rangle_{\mathcal{H}} .
$$

But then by definition $h_{y}(x)=\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}=h_{x}(y)$. Define the reproducing kernel as the function

$$
\begin{aligned}
K: \mathcal{X} \times \mathcal{X} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}
\end{aligned}
$$

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Then by the Riesz representation theorem, there must exist an element $h_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}, \quad f(x)=\left\langle h_{x}, f\right\rangle_{\mathcal{H}} .
$$

But then by definition $h_{y}(x)=\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}=h_{x}(y)$. Define the reproducing kernel as the function

$$
\begin{aligned}
K: \mathcal{X} \times \mathcal{X} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}
\end{aligned}
$$

By definition $h_{x}(\cdot)=K(x, \cdot)$

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Then by the Riesz representation theorem, there must exist an element $h_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}, \quad f(x)=\left\langle h_{x}, f\right\rangle_{\mathcal{H}} .
$$

But then by definition $h_{y}(x)=\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}=h_{x}(y)$. Define the reproducing kernel as the function

$$
\begin{aligned}
K: \mathcal{X} \times \mathcal{X} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}
\end{aligned}
$$

By definition $h_{x}(\cdot)=K(x, \cdot)$ so that

$$
f(x)=\langle K(x, \cdot), f\rangle_{\mathcal{H}} \quad \text { and } \quad\langle K(x, \cdot), K(y, \cdot)\rangle_{\mathcal{H}}=K(x, y) .
$$

Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine learning? Require that

- the evaluation functionals $f \mapsto f(x)$ be \mathcal{C}^{0} for all $x \in \mathcal{X}$.
- the space should be a Hilbert space \mathcal{H}

Then by the Riesz representation theorem, there must exist an element $h_{x} \in \mathcal{H}$ such that

$$
\forall f \in \mathcal{H}, \quad f(x)=\left\langle h_{x}, f\right\rangle_{\mathcal{H}} .
$$

But then by definition $h_{y}(x)=\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}}=h_{x}(y)$.
Define the reproducing kernel as the function

$$
\begin{aligned}
K: \mathcal{X} \times \mathcal{X} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto\left\langle h_{x}, h_{y}\right\rangle_{\mathcal{H}} .
\end{aligned}
$$

By definition $h_{x}(\cdot)=K(x, \cdot)$ so that

$$
f(x)=\langle K(x, \cdot), f\rangle_{\mathcal{H}} \quad \text { and } \quad\langle K(x, \cdot), K(y, \cdot)\rangle_{\mathcal{H}}=K(x, y) .
$$

A space with these properties is called a reproducing kernel Hilbert space (RKHS).

Positive definite function

Definition (Positive definite function)

A symmetric positive definite function is a function $K:(x, y) \mapsto K(x, y)$ such that for all $x_{1}, \ldots, x_{n} \in \mathcal{X}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$,

$$
\sum_{1 \leq i, j \leq n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0
$$

A reproducing kernel is a positive definite function

Proposition
A reproducing kernel is a positive definite function.

A reproducing kernel is a positive definite function

Proposition

A reproducing kernel is a positive definite function.
Proof of the claim The reproducing kernel is necessarily a symmetric positive definite function since for all $x_{1}, \ldots, x_{n} \in \mathcal{X}$, and all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.

$$
\sum_{i, j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)=\left\langle\sum_{i} \alpha_{i} K\left(x_{i}, \cdot\right), \sum_{j} \alpha_{j} K\left(x_{j}, \cdot\right)\right\rangle_{\mathcal{H}} \geq 0
$$

with equality if and only if $\alpha_{i}=0$ for all i.

A reproducing kernel is a positive definite function

Proposition

A reproducing kernel is a positive definite function.
Proof of the claim The reproducing kernel is necessarily a symmetric positive definite function since for all $x_{1}, \ldots, x_{n} \in \mathcal{X}$, and all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.

$$
\sum_{i, j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)=\left\langle\sum_{i} \alpha_{i} K\left(x_{i}, \cdot\right), \sum_{j} \alpha_{j} K\left(x_{j}, \cdot\right)\right\rangle_{\mathcal{H}} \geq 0
$$

with equality if and only if $\alpha_{i}=0$ for all i.

A reproducing kernel is a positive definite function

Proposition

A reproducing kernel is a positive definite function.
Proof of the claim The reproducing kernel is necessarily a symmetric positive definite function since for all $x_{1}, \ldots, x_{n} \in \mathcal{X}$, and all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.

$$
\sum_{i, j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)=\left\langle\sum_{i} \alpha_{i} K\left(x_{i}, \cdot\right), \sum_{j} \alpha_{j} K\left(x_{j}, \cdot\right)\right\rangle_{\mathcal{H}} \geq 0
$$

with equality if and only if $\alpha_{i}=0$ for all i.

Converse?

A reproducing kernel is a positive definite function

Proposition

A reproducing kernel is a positive definite function.
Proof of the claim The reproducing kernel is necessarily a symmetric positive definite function since for all $x_{1}, \ldots, x_{n} \in \mathcal{X}$, and all $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.

$$
\sum_{i, j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)=\left\langle\sum_{i} \alpha_{i} K\left(x_{i}, \cdot\right), \sum_{j} \alpha_{j} K\left(x_{j}, \cdot\right)\right\rangle_{\mathcal{H}} \geq 0,
$$

with equality if and only if $\alpha_{i}=0$ for all i.

Converse?

Yes, any symmetric positive definite function is the reproducing kernel of a RKHS (Aronszajn, 1950).

Moore-Aronszajn theorem

Theorem
A symmetric function K on \mathcal{X} is positive definite if and only if there exists a Hilbert space \mathcal{H} and a mapping

$$
\begin{aligned}
\phi: \mathcal{X} & \rightarrow \mathcal{H} \\
x & \mapsto \phi(x)
\end{aligned}
$$

such that $K(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$.

Moore-Aronszajn theorem

Theorem

A symmetric function K on \mathcal{X} is positive definite if and only if there exists a Hilbert space \mathcal{H} and a mapping

$$
\begin{aligned}
\phi: \mathcal{X} & \rightarrow \mathcal{H} \\
x & \mapsto \phi(x)
\end{aligned}
$$

such that $K(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$.

When we work with kernels, we therefore always use a feature map but very often implicitly. We will not show this theorem in this course.

Common RKHSes for $\mathcal{X}=\mathbb{R}^{p}$

Linear kernel

- $K(x, y)=x^{\top} y$
- $\mathcal{H}=\left\{f_{w}: x \mapsto w^{\top} x \mid w \in \mathbb{R}^{p}\right\}$
- $\left\|f_{w}\right\|_{\mathcal{H}}=\|w\|_{2}$

Common RKHSes for $\mathcal{X}=\mathbb{R}^{p}$

Linear kernel

- $K(x, y)=x^{\top} y$
- $\mathcal{H}=\left\{f_{w}: x \mapsto w^{\top} x \mid w \in \mathbb{R}^{p}\right\}$
- $\left\|f_{w}\right\|_{\mathcal{H}}=\|w\|_{2}$

Polynomial kernel

- $K_{h}(x, y)=\left(\gamma+x^{\top} y\right)^{d}$
- \mathcal{H}

Common RKHSes for $\mathcal{X}=\mathbb{R}^{p}$

Linear kernel

- $K(x, y)=x^{\top} y$
- $\mathcal{H}=\left\{f_{w}: x \mapsto w^{\top} x \mid w \in \mathbb{R}^{p}\right\}$
- $\left\|f_{w}\right\|_{\mathcal{H}}=\|w\|_{2}$

Polynomial kernel

- $K_{h}(x, y)=\left(\gamma+x^{\top} y\right)^{d}$
- \mathcal{H}

Radial Basis Function kernel (RBF)

- $K_{h}(x, y)=\exp \left(-\frac{\|x-y\|_{2}^{2}}{2 h}\right)$
- $\mathcal{H}=$ Gaussian RKHS

Nonlinear SVM : Hard margin

Nonlinear SVM: Soft margin

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

$\|f\|_{\mathcal{H}}$ measures the smoothness of the function f

Indeed:

$$
\left|f(x)-f\left(x^{\prime}\right)\right|=\left|\left\langle f, K(x, \cdot)-K\left(x^{\prime}, \cdot\right)\right\rangle_{\mathcal{H}}\right| \leq\|f\|_{\mathcal{H}}\left\|K(x, \cdot)-K\left(x^{\prime}, \cdot\right)\right\|_{\mathcal{H}}
$$

$\|f\|_{\mathcal{H}}$ measures the smoothness of the function f

Indeed:

$$
\left|f(x)-f\left(x^{\prime}\right)\right|=\left|\left\langle f, K(x, \cdot)-K\left(x^{\prime}, \cdot\right)\right\rangle_{\mathcal{H}}\right| \leq\|f\|_{\mathcal{H}}\left\|K(x, \cdot)-K\left(x^{\prime}, \cdot\right)\right\|_{\mathcal{H}}
$$

- f is Lipschitz with respect to the ℓ_{2} distance induced by the RKHS

$$
d\left(x, x^{\prime}\right)=\left\|K(x, \cdot)-K\left(x^{\prime}, \cdot\right)\right\|_{\mathcal{H}}=\sqrt{K(x, x)+K\left(x^{\prime}, x^{\prime}\right)-2 K\left(x, x^{\prime}\right)}
$$

- $\|f\|_{\mathcal{H}}$ is the Lipschitz constant

Some data do not live in a vector space...

- Sequence of human hemoglobin subunit gamma-1 (HGB1)

MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSAS. . .

Some data do not live in a vector space...

- Sequence of human hemoglobin subunit gamma-1 (HGB1)

MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSAS. . .

Xml tree of a webpage

Graph structure of a molecule

Some data do not live in a vector space...

- Sequence of human hemoglobin subunit gamma-1 (HGB1)

MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSAS. . .

Xml tree of a webpage

Graph structure of a molecule

Some data do not live in a vector space...

- Sequence of human hemoglobin subunit gamma-1 (HGB1)

MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSAS. . .

Xml tree of a webpage

Graph structure of a molecule

Can we learn functions of these?

Some data do not live in a vector space...

- Sequence of human hemoglobin subunit gamma-1 (HGB1)

MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSAS. . .

Xml tree of a webpage

Graph structure of a molecule

Can we learn functions of these? \rightarrow Kernels for combinatorial objects

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{A, C, G, T\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. $u=A T A$)

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. $\left.u=A T A\right)$
- $|u|=n$ is the length of the string

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. $\left.u=A T A\right)$
- $|u|=n$ is the length of the string
- $u_{1: k}=u_{1} \ldots u_{k}$ is prefix of u

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. $\left.u=A T A\right)$
- $|u|=n$ is the length of the string
- $u_{1: k}=u_{1} \ldots u_{k}$ is prefix of u
- $u_{k: n}=u_{k} \ldots u_{n}$ is a suffix of u

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. $u=A T A$)
- $|u|=n$ is the length of the string
- $u_{1: k}=u_{1} \ldots u_{k}$ is prefix of u
- $u_{k: n}=u_{k} \ldots u_{n}$ is a suffix of u
- $u v=u_{1} \ldots u_{n} v_{1} \ldots v_{m}$ is the concatenation of u and v.

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. $\left.u=A T A\right)$
- $|u|=n$ is the length of the string
- $u_{1: k}=u_{1} \ldots u_{k}$ is prefix of u
- $u_{k: n}=u_{k} \ldots u_{n}$ is a suffix of u
- $u v=u_{1} \ldots u_{n} v_{1} \ldots v_{m}$ is the concatenation of u and v.
- v is a substring of u if there exist words u^{\prime} and $u^{\prime \prime}$ such that $u=u^{\prime} v u^{\prime \prime}$. We will then note $v \sqsubset u$.

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. u=ATA)
- $|u|=n$ is the length of the string
- $u_{1: k}=u_{1} \ldots u_{k}$ is prefix of u
- $u_{k: n}=u_{k} \ldots u_{n}$ is a suffix of u
- $u v=u_{1} \ldots u_{n} v_{1} \ldots v_{m}$ is the concatenation of u and v.
- v is a substring of u if there exist words u^{\prime} and $u^{\prime \prime}$ such that $u=u^{\prime} v u^{\prime \prime}$. We will then note $v \sqsubset u$.
- v is a subsequence of u, if there exist a sorted index set $/$ such that $v=u_{l}$. For example $v=u_{1} u_{3} u_{4} u_{7}$ is a subsequence of u since for $I=\{1,3,4,7\}$ this subsequence can be written $v=u_{I}$.

Working with strings

- Let Σ be an alphabet of symbols or letters (e.g. $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- A sequence of letters is called a word or a string
- $u=u_{1} \ldots u_{n}$ a string (e.g. $u=A T A$)
- $|u|=n$ is the length of the string
- $u_{1: k}=u_{1} \ldots u_{k}$ is prefix of u
- $u_{k: n}=u_{k} \ldots u_{n}$ is a suffix of u
- $u v=u_{1} \ldots u_{n} v_{1} \ldots v_{m}$ is the concatenation of u and v.
- v is a substring of u if there exist words u^{\prime} and $u^{\prime \prime}$ such that $u=u^{\prime} v u^{\prime \prime}$. We will then note $v \sqsubset u$.
- v is a subsequence of u, if there exist a sorted index set $/$ such that $v=u_{l}$. For example $v=u_{1} u_{3} u_{4} u_{7}$ is a subsequence of u since for $I=\{1,3,4,7\}$ this subsequence can be written $v=u_{I}$.
- ε is the empty string and so $u=\varepsilon u=u \varepsilon$

Kernel for strings: p-spectrum kernel

Idea: a word is represented by the list of substrings of length p. For example the representation of GAGA for the 2 -spectrum kernel on $\{\mathrm{A}, \mathrm{C}, \mathrm{G}\}$ is

$$
\begin{array}{ccccccccc}
\text { AA } & \text { AC } & \text { AG } & \text { CA } & \text { CC } & \text { CG } & \text { GA } & \text { GC } & \text { GG } \\
\hline(0, & 0, & 1, & 0, & 0, & 0, & 2, & 0, & 0)
\end{array}
$$

Kernel for strings: p-spectrum kernel

Idea: a word is represented by the list of substrings of length p. For example the representation of GAGA for the 2 -spectrum kernel on $\{\mathrm{A}, \mathrm{C}, \mathrm{G}\}$ is

$$
\begin{array}{ccccccccc}
\text { AA } & \text { AC } & \text { AG } & \text { CA } & \text { CC } & \text { CG } & \text { GA } & \text { GC } & \text { GG } \\
\hline(0, & 0, & 1, & 0, & 0, & 0, & 2, & 0, & 0)
\end{array}
$$

The feature map for a string s is

$$
\phi(s)=\left(\phi_{u}(s)\right)_{u \in \Sigma^{p}} \quad \text { with } \quad \phi_{u}(s)=\#\left\{i \mid s_{i:(i+p-1)}=u\right\}
$$

Kernel for strings: p-spectrum kernel

Idea: a word is represented by the list of substrings of length p. For example the representation of GAGA for the 2 -spectrum kernel on $\{A, C, G\}$ is

$$
\begin{array}{ccccccccc}
\text { AA } & \text { AC } & \text { AG } & \text { CA } & \text { CC } & \text { CG } & \text { GA } & \text { GC } & \text { GG } \\
\hline(0, & 0, & 1, & 0, & 0, & 0, & 2, & 0, & 0)
\end{array}
$$

The feature map for a string s is

$$
\phi(s)=\left(\phi_{u}(s)\right)_{u \in \Sigma^{p}} \quad \text { with } \quad \phi_{u}(s)=\#\left\{i \mid s_{i:(i+p-1)}=u\right\}
$$

The kernel is

$$
K(s, t)=\sum_{u \in \Sigma^{p}} \phi_{u}(s) \phi_{u}(t)
$$

String kernels: other spectrum kernels

Blended spectrum kernel
$\tilde{K}_{p}(s, t)=\sum_{j=1}^{p} a_{j} K_{i}(s, t)$ with K_{j} the usual j-spectrum kernel.

String kernels: other spectrum kernels

Blended spectrum kernel
$\tilde{K}_{p}(s, t)=\sum_{j=1}^{p} a_{j} K_{i}(s, t)$ with K_{j} the usual j-spectrum kernel.

Mismatch kernel

Like the spectrum kernel but allowing mistakes...

$$
\phi_{u}^{p, m}(s)=\#\left\{v\left|v \sqsubset s,|v|=|u|, d_{H}(u, v) \leq m\right\} .\right.
$$

with $d_{H}(u, v)=\sum_{k=1}^{n} 1_{\left\{u_{i} \neq v_{i}\right\}}$ the Hamming distance between u and v

String kernels: other spectrum kernels

Blended spectrum kernel
$\tilde{K}_{p}(s, t)=\sum_{j=1}^{p} a_{j} K_{i}(s, t)$ with K_{j} the usual j-spectrum kernel.

Mismatch kernel

Like the spectrum kernel but allowing mistakes...

$$
\phi_{u}^{p, m}(s)=\#\left\{v\left|v \sqsubset s,|v|=|u|, d_{H}(u, v) \leq m\right\} .\right.
$$

with $d_{H}(u, v)=\sum_{k=1}^{n} 1_{\left\{u_{i} \neq v_{i}\right\}}$ the Hamming distance between u and v

String kernels: subsequence kernels

Denote $\mathcal{I}_{n}=\{1, \ldots, n\}$
Feature map:

$$
\phi_{u}(s)=\#\left\{I \subset \mathcal{I}_{|s|} \mid u=s_{l}\right\}
$$

String kernels: subsequence kernels

Denote $\mathcal{I}_{n}=\{1, \ldots, n\}$
Feature map:

$$
\phi_{u}(s)=\#\left\{I \subset \mathcal{I}_{|s|} \mid u=s_{l}\right\}
$$

Kernel:

$$
\begin{aligned}
K(s, t) & =\sum_{u \in \Sigma^{*}} \phi_{u}(s) \phi_{u}(t) \\
& =\sum_{(I, J)} 1_{\left\{s_{I}=t_{J}\right\}} \\
& =\#\left\{(I, J) \mid s_{I}=t_{J}\right\}
\end{aligned}
$$

- The empty substring ε is counted only once in each string.

Subsequence kernels: dynamic programming

$$
K(s a, t)=K(s, t)+\sum_{k: t_{k}=a} K\left(s, t_{1: k-1}\right)
$$

Subsequence kernels: dynamic programming

$$
K(s a, t)=K(s, t)+\sum_{k: t_{k}=a} K\left(s, t_{1: k-1}\right)
$$

So that, if we denote $\kappa_{i j}:=K\left(s_{1: i}, t_{1: j}\right)$, the recursion becomes

$$
\kappa_{i, j}=\kappa_{i-1, j}+\sum_{k=1}^{j} 1_{\left\{t_{k}=s_{i}\right\}} \kappa_{i-1, k-1}
$$

Subsequence kernels: dynamic programming

$$
K(s a, t)=K(s, t)+\sum_{k: t_{k}=a} K\left(s, t_{1: k-1}\right)
$$

So that, if we denote $\kappa_{i j}:=K\left(s_{1: i}, t_{1: j}\right)$, the recursion becomes

$$
\kappa_{i, j}=\kappa_{i-1, j}+\sum_{k=1}^{j} 1_{\left\{t_{k}=s_{i}\right\}} \kappa_{i-1, k-1}
$$

	ε	t_{1}	\ldots	t_{j}	\cdots
ε	1	1	\ldots	1	\cdots
s_{1}	1	$\kappa_{1,1}$	\cdots	$\kappa_{1, j}$	\cdots
s_{2}					
\vdots					
s_{i-1}	1	$\kappa_{i-1,1}$	\cdots	$\kappa_{i-1, j}$	
s_{i}	1	$\kappa_{i, 1}$	\cdots	$\kappa_{i, j} \vdots$	
\vdots					

Other types of kernels

- Fisher kernels
- Tree kernels
- Graph kernels
- Dedicated kernels for genomics/proteomics
- Set kernels
and more

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Sum of kernels:

$$
\text { For } \alpha_{1}, \alpha_{2}>0, \tilde{K}(x, y)=\alpha_{1} K_{1}(x, y)+\alpha_{2} K(x, y)
$$

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Sum of kernels:
For $\alpha_{1}, \alpha_{2}>0, \tilde{K}(x, y)=\alpha_{1} K_{1}(x, y)+\alpha_{2} K(x, y)$
$K(x, y)=\lim _{n \rightarrow \infty} K_{n}(x, y)$

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Sum of kernels:
For $\alpha_{1}, \alpha_{2}>0, \tilde{K}(x, y)=\alpha_{1} K_{1}(x, y)+\alpha_{2} K(x, y)$
Limits of kernels: $\quad K(x, y)=\lim _{n \rightarrow \infty} K_{n}(x, y)$
Pointwise product: $\quad \tilde{K}(x, y)=K_{1}(x, y) K_{2}(x, y)$

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Sum of kernels:
For $\alpha_{1}, \alpha_{2}>0, \tilde{K}(x, y)=\alpha_{1} K_{1}(x, y)+\alpha_{2} K(x, y)$
Limits of kernels: $\quad K(x, y)=\lim _{n \rightarrow \infty} K_{n}(x, y)$
Pointwise product: $\quad \tilde{K}(x, y)=K_{1}(x, y) K_{2}(x, y)$
Pairwise kernel:

$$
\tilde{K}(x, y)=\sum_{z \in \mathcal{Z}} K(x, z) K(z, y)
$$

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Sum of kernels: \quad For $\alpha_{1}, \alpha_{2}>0, \tilde{K}(x, y)=\alpha_{1} K_{1}(x, y)+\alpha_{2} K(x, y)$
Limits of kernels: $\quad K(x, y)=\lim _{n \rightarrow \infty} K_{n}(x, y)$
Pointwise product: $\quad \tilde{K}(x, y)=K_{1}(x, y) K_{2}(x, y)$
Pairwise kernel:

$$
\tilde{K}(x, y)=\sum_{z \in \mathcal{Z}} K(x, z) K(z, y)
$$

Normalized kernel: $\quad \tilde{K}(x, y)=\frac{K(x, y)}{\sqrt{K(x, x) K(y, y)}}=\cos \angle(\phi(x), \phi(y))$

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Sum of kernels: \quad For $\alpha_{1}, \alpha_{2}>0, \tilde{K}(x, y)=\alpha_{1} K_{1}(x, y)+\alpha_{2} K(x, y)$
Limits of kernels: $\quad K(x, y)=\lim _{n \rightarrow \infty} K_{n}(x, y)$
Pointwise product: $\quad \tilde{K}(x, y)=K_{1}(x, y) K_{2}(x, y)$
Pairwise kernel:

$$
\tilde{K}(x, y)=\sum_{z \in \mathcal{Z}} K(x, z) K(z, y)
$$

Normalized kernel: $\quad \tilde{K}(x, y)=\frac{K(x, y)}{\sqrt{K(x, x) K(y, y)}}=\cos \angle(\phi(x), \phi(y))$

In terms of kernel matrices

Pointwise product: $\quad \tilde{\mathbf{K}}=\mathbf{K}_{1} \odot \mathbf{K}_{2} \quad$ (Hadamard product)

Kernel combinations

Assume K, K_{1} and K_{2} are positive definite functions, then the following are still p.d. kernel functions:

Sum of kernels: \quad For $\alpha_{1}, \alpha_{2}>0, \tilde{K}(x, y)=\alpha_{1} K_{1}(x, y)+\alpha_{2} K(x, y)$
Limits of kernels: $\quad K(x, y)=\lim _{n \rightarrow \infty} K_{n}(x, y)$
Pointwise product: $\quad \tilde{K}(x, y)=K_{1}(x, y) K_{2}(x, y)$
Pairwise kernel:

$$
\tilde{K}(x, y)=\sum_{z \in \mathcal{Z}} K(x, z) K(z, y)
$$

Normalized kernel: $\quad \tilde{K}(x, y)=\frac{K(x, y)}{\sqrt{K(x, x) K(y, y)}}=\cos \angle(\phi(x), \phi(y))$

In terms of kernel matrices

Pointwise product: $\tilde{\mathbf{K}}=\mathbf{K}_{1} \odot \mathbf{K}_{2}$
(Hadamard product)
Pairwise kernel:
$\tilde{\mathbf{K}}=\mathbf{K}^{2}$
(Matrix product)

Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)
Consider the optimization problem

$$
\min _{f \in \mathcal{H}} L\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2}
$$

Then any local minimum is of the form

$$
f=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, \cdot\right),
$$

for some vector $\boldsymbol{\alpha} \in \mathbb{R}^{n}$.

Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

$$
\min _{f \in \mathcal{H}} L\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2}
$$

Then any local minimum is of the form

$$
f=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, \cdot\right),
$$

for some vector $\boldsymbol{\alpha} \in \mathbb{R}^{n}$.
Proof Indeed, let f be a local optimum and consider the subspace

$$
\mathcal{S}=\left\{g \mid g=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, \cdot\right), \quad \boldsymbol{\alpha} \in \mathbb{R}^{n}\right\}
$$

Representer theorem

We can decompose $f=f_{/ /}+f_{\perp}$ with $f_{/ /}=\operatorname{Proj}_{\mathcal{S}}(f)$.

Representer theorem

We can decompose $f=f_{/ /}+f_{\perp}$ with $f_{/ /}=\operatorname{Proj}_{\mathcal{S}}(f)$. We then have

$$
f_{\perp}\left(x_{i}\right)=\left\langle f_{\perp}, K\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=0 \quad \text { and } \quad\left\langle f_{\perp}, f_{/ / /}\right\rangle_{\mathcal{H}}=0
$$

Representer theorem

We can decompose $f=f_{/ /}+f_{\perp}$ with $f_{/ /}=\operatorname{Proj}_{\mathcal{S}}(f)$. We then have

$$
f_{\perp}\left(x_{i}\right)=\left\langle f_{\perp}, K\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=0 \quad \text { and } \quad\left\langle f_{\perp}, f_{/ / /}\right\rangle_{\mathcal{H}}=0
$$

Thus

$$
L\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2}
$$

Representer theorem

We can decompose $f=f_{/ /}+f_{\perp}$ with $f_{/ /}=\operatorname{Proj}_{\mathcal{S}}(f)$. We then have

$$
f_{\perp}\left(x_{i}\right)=\left\langle f_{\perp}, K\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=0 \quad \text { and } \quad\left\langle f_{\perp}, f_{/ /}\right\rangle_{\mathcal{H}}=0
$$

Thus

$$
\begin{aligned}
& L\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2} \\
= & L\left(f_{/ /}\left(x_{1}\right), \ldots, f_{/ /}\left(x_{n}\right)\right)+\lambda\left(\left\|f_{/ /}\right\|_{\mathcal{H}}^{2}+2\left\langle f_{\perp}, f_{/ /}\right\rangle_{\mathcal{H}}+\left\|f_{\perp}\right\|_{\mathcal{H}}^{2}\right)
\end{aligned}
$$

Representer theorem

We can decompose $f=f_{/ /}+f_{\perp}$ with $f_{/ /}=\operatorname{Proj}_{\mathcal{S}}(f)$. We then have

$$
f_{\perp}\left(x_{i}\right)=\left\langle f_{\perp}, K\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=0 \quad \text { and } \quad\left\langle f_{\perp}, f_{/ / /}\right\rangle_{\mathcal{H}}=0
$$

Thus

$$
\begin{aligned}
& L\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2} \\
= & L\left(f_{/ /}\left(x_{1}\right), \ldots, f_{/ /}\left(x_{n}\right)\right)+\lambda\left(\left\|f_{/ /}\right\|_{\mathcal{H}}^{2}+2\left\langle f_{\perp}, f_{/ /}\right\rangle_{\mathcal{H}}+\left\|f_{\perp}\right\|_{\mathcal{H}}^{2}\right) \\
= & L\left(f_{/ / /}\left(x_{1}\right), \ldots, f_{/ /}\left(x_{n}\right)\right)+\lambda\left\|f_{/ /}\right\|_{\mathcal{H}}^{2}+\lambda\left\|f_{\perp}\right\|_{\mathcal{H}}^{2}
\end{aligned}
$$

Representer theorem

We can decompose $f=f_{/ /}+f_{\perp}$ with $f_{/ /}=\operatorname{Proj}_{\mathcal{S}}(f)$. We then have

$$
f_{\perp}\left(x_{i}\right)=\left\langle f_{\perp}, K\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{H}}=0 \quad \text { and } \quad\left\langle f_{\perp}, f_{/ /}\right\rangle_{\mathcal{H}}=0
$$

Thus

$$
\begin{aligned}
& L\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2} \\
= & L\left(f_{/ /}\left(x_{1}\right), \ldots, f_{/ /}\left(x_{n}\right)\right)+\lambda\left(\left\|f_{/ /}\right\|_{\mathcal{H}}^{2}+2\left\langle f_{\perp}, f_{/ /}\right\rangle_{\mathcal{H}}+\left\|f_{\perp}\right\|_{\mathcal{H}}^{2}\right) \\
= & L\left(f_{/ /}\left(x_{1}\right), \ldots, f_{/ /}\left(x_{n}\right)\right)+\lambda\left\|f_{/ /}\right\|_{\mathcal{H}}^{2}+\lambda\left\|f_{\perp}\right\|_{\mathcal{H}}^{2}
\end{aligned}
$$

So that we must have $f_{\perp}=0$.

Learning with functions from a RKHS

$$
\begin{equation*}
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|_{\mathcal{H}}^{2} \tag{P}
\end{equation*}
$$

Learning with functions from a RKHS

$$
\begin{equation*}
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|_{\mathcal{H}}^{2} \tag{P}
\end{equation*}
$$

By the representer theorem, the solution of the regularized empirical risk minimization problem lies in the subspace of \mathcal{H} generated by the point x_{i}, i.e.,

Learning with functions from a RKHS

$$
\begin{equation*}
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|_{\mathcal{H}}^{2} \tag{P}
\end{equation*}
$$

By the representer theorem, the solution of the regularized empirical risk minimization problem lies in the subspace of \mathcal{H} generated by the point x_{i}, i.e.,

Learning with functions from a RKHS

$$
\begin{equation*}
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|_{\mathcal{H}}^{2} \tag{P}
\end{equation*}
$$

By the representer theorem, the solution of the regularized empirical risk minimization problem lies in the subspace of \mathcal{H} generated by the point x_{i}, i.e.,

$$
\begin{equation*}
f^{*}=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, \cdot\right) \quad \text { for some } \alpha_{i} \in \mathbb{R} \tag{R}
\end{equation*}
$$

Learning with functions from a RKHS

$$
\begin{equation*}
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|_{\mathcal{H}}^{2} \tag{P}
\end{equation*}
$$

By the representer theorem, the solution of the regularized empirical risk minimization problem lies in the subspace of \mathcal{H} generated by the point x_{i}, i.e.,

$$
\begin{equation*}
f^{*}=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, \cdot\right) \quad \text { for some } \alpha_{i} \in \mathbb{R} \tag{R}
\end{equation*}
$$

The solution of (P) is therefore of the form (R) with $\alpha \in \mathbb{R}^{n}$ the solution of

$$
\min _{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\sum_{j=1}^{n} \alpha_{j} K\left(x_{j}, x_{i}\right), y_{i}\right)+\lambda \sum_{1 \leq i, j \leq n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)
$$

Kernel ridge regression

$$
\min \frac{1}{2} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)_{2}^{2}+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}
$$

Kernel ridge regression

$$
\min \frac{1}{2} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)_{2}^{2}+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2}
$$

- We could use the representer theorem and solve the optimization problem w.r.t. $\boldsymbol{\alpha}$
- We will show directly that the predictor can be expresses solely with the Gram matrix.

We know that the solution to ridge regression is

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

A matrix identity and the matrix inversion lemma
Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

A matrix identity and the matrix inversion lemma Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

$$
\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

A matrix identity and the matrix inversion lemma Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

$$
\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X X} \mathbf{X}^{\top}\right)^{-1}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

$$
\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X}=
$$

A matrix identity and the matrix inversion lemma Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

$$
\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X X} \mathbf{X}^{\top}\right)^{-1}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

$$
\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X}=\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}
$$

A matrix identity and the matrix inversion lemma Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

$$
\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

$$
\begin{aligned}
\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} & =\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \\
& =\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left[\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{X}\right]
\end{aligned}
$$

A matrix identity and the matrix inversion lemma Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

$$
\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X X} \mathbf{X}^{\top}\right)^{-1}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

$$
\begin{aligned}
\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} & =\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \\
& =\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left[\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{X}\right] \\
& =\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

A matrix identity and the matrix inversion lemma Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

$$
\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

$$
\begin{aligned}
\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} & =\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \\
& =\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left[\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{X}\right] \\
& =\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Matrix inversion lemma

$$
\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X}
$$

A matrix identity and the matrix inversion lemma Let $\mathbf{X} \in \mathbb{R}^{n \times p}$,

$$
\mathbf{X}^{\top}+\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right) \mathbf{X}^{\top}=\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)
$$

$$
\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X X} \mathbf{X}^{\top}\right)^{-1}=\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}
$$

$$
\begin{aligned}
\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} & =\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \\
& =\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left[\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)-\mathbf{X}^{\top} \mathbf{X}\right] \\
& =\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Matrix inversion lemma

$$
\left(\mathbf{I}_{p}+\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\mathbf{I}_{p}-\mathbf{X}^{\top}\left(\mathbf{I}_{n}+\mathbf{X X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X}
$$

Computational cost reduced from $\mathcal{O}\left(p^{3}\right)$ to $\mathcal{O}\left(n^{2} p\right)$.

Kernel ridge regression

Denoting $\mathbf{k}(\mathbf{z})$ the vector with entries $[\mathbf{k}(\mathbf{z})]_{i}=K\left(\mathbf{x}_{i}, \mathbf{z}\right)$, we have

$$
\mathbf{z}^{\top} \widehat{\mathbf{w}}=\mathbf{z}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Kernel ridge regression

Denoting $\mathbf{k}(\mathbf{z})$ the vector with entries $[\mathbf{k}(\mathbf{z})]_{i}=K\left(\mathbf{x}_{i}, \mathbf{z}\right)$, we have

$$
\begin{aligned}
\mathbf{z}^{\top} \widehat{\mathbf{w}} & =\mathbf{z}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} \\
& =\mathbf{z}^{\top} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{y}
\end{aligned}
$$

Kernel ridge regression

Denoting $\mathbf{k}(\mathbf{z})$ the vector with entries $[\mathbf{k}(\mathbf{z})]_{i}=K\left(\mathbf{x}_{i}, \mathbf{z}\right)$, we have

$$
\begin{aligned}
\mathbf{z}^{\top} \widehat{\mathbf{w}} & =\mathbf{z}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} \\
& =\mathbf{z}^{\top} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{y} \\
& =\mathbf{k}(\mathbf{z})^{\top}\left(\lambda \mathbf{I}_{n}+\mathbf{K}\right)^{-1} \mathbf{y}
\end{aligned}
$$

Kernel ridge regression

Denoting $\mathbf{k}(\mathbf{z})$ the vector with entries $[\mathbf{k}(\mathbf{z})]_{i}=K\left(\mathbf{x}_{i}, \mathbf{z}\right)$, we have

$$
\begin{aligned}
\mathbf{z}^{\top} \widehat{\mathbf{w}} & =\mathbf{z}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} \\
& =\mathbf{z}^{\top} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} \mathbf{y} \\
& =\mathbf{k}(\mathbf{z})^{\top}\left(\lambda \mathbf{I}_{n}+\mathbf{K}\right)^{-1} \mathbf{y}
\end{aligned}
$$

So we have $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)$ with

$$
\boldsymbol{\alpha}=\left(\lambda \mathbf{I}_{n}+\mathbf{K}\right)^{-1} y \text {. }
$$

Ressources

http://www.kernel-machines.org/

References I

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American mathematical society, 68(3):337-404.

