
Appendix
for

Continuously indexed Potts model on unoriented graphs

1 Detailed derivation of the likelihood
In this section we give a more detailed derivation of the marginalization of all variables except for the extreme points
out of the joint probability, on the discrete unoriented chain.
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segment we then have

p(x0, xl; W,h)∝
∑

x1··· xl−1

l−1∏
i=0

xᵀi Uxi+1

l∏
i=0

h
ᵀ

xi

∝
∑

x1··· xl−1

l−1∏
i=0

xᵀiH
− 1

2WH−
1
2xi+1

l∏
i=0

Hxi

∝
∑

x1··· xl−1

l∏
i=0

xᵀiH
1
2

l−1∏
i=0

xᵀiH
− 1

2WH−
1
2xi+1

l∏
i=0

H
1
2xi

∝
∑

x1··· xl−1

xᵀ0H
1
2

(
l−1∏
i=0

xᵀiH
1
2xᵀiH

− 1
2WH−

1
2xi+1H

1
2xi

)
H

1
2xl

∝ xᵀ0H
1
2

 ∑
x1··· xl−1

l−1∏
i=0

xᵀiWxi+1

H
1
2xl

∝ xᵀ0

(
H

1
2W lH

1
2

)
xl,

2 Proof of lemma 1
In this section we prove the lemma regarding the neccessary and sufficient conditions on the infinestimal generator
Π to ensure the term wise positivity of exp (Π ∗ l), and hence all possible binary edge potential. We first prove the
following lemma:

Lemma. If Π is such that for all i 6= j, Πi,j ≥ 0, then the sequences u(k)
i,j =

[
Πk
]
i,j

have, if it exists, a first non-zero
value which is strictly positive.
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Proof. We consider the set

Ω =
{
k ∈ N∗|∃ (i, j) , i 6= j | u(k)

i,j < 0 and ∀t < k ⇒ u
(t)
i,j = 0

}
,

and assume that it is non empty. It must therefore have a smallest element that we denote k0 = min (Ω), associated
with the matrix coordinates (i0, j0).

By definition u(k0)
i0,j0

=
∑

t6=i0
Πi0tu

k0−1
tj0

< 0, which imply that the set

Ii0,j0,k0
=
{
i 6= i0 | Πi0,i > 0, u

(k0−1)
i,j0

< 0
}

cannot be empty.
For any element i of Ii0,j0,k0 the sequence ui,j0 must have taken a strictly positive value before k0, or else we

would have min (Ω) ≤ k0 − 1. This implies that the set

Ki,j0,k0 =
{
k ∈ N∗ | k < k0 − 1, u

(k)
i,j0

> 0
}

is not empty.
We now consider k1 = min

(⋃
i∈Ii0,j0,k0

Ki,j0,k0

)
, associated with i1. Since k1 + 1 < k0, we can deduce that

u
(k1+1)
i0,j0

= 0.

But the fact that u(k1+1)
i0,j0

=
∑

t6=i0
Πi0tu

k1
tj0

= 0 together with the definition of k1 imply that Πi0,i · u
k1
i1,j0

> 0, so
that we must have that

∑
t 6=i0,i1

Πi0tu
k1
tj0

< 0.
This implies that we can find i2 6= i0, i1 such that uk1

i2j0
< 0. But since k1 < k0 the sequence ui2,j0 must have

once before taken a strictly positive value, which contradicts the definition of k1 .
Finally, we can conclude that the set Ω is empty, which proves the lemma.

We are now ready to prove lemma 1.

Lemma. For Π a square matrix, [exp (lΠ)]i,j ≥ 0 ∀l ∈ R+ and ∀i, j if and only if Πi,j ≥ 0 for all i 6= j. Similarly,

[exp (lΠ)]i,j > 0 for all i, j and ∀l ∈ R∗+, if and only if the sequences defined as u(k)
i,j =

[
Πk
]
i,j

is such that its first
non-zero value exists and is strictly positive, for all i 6= j .

Proof. We first prove the lemma for the non-strict inequalities, i.e. that if we have Πi,j ≥ 0 for i 6= j then

∀(i, j) ∈ K2, ∀l ∈ R+, [exp (lΠ)]i,j ≥ 0.

We define the continuous functions

fi,j : l 7→ [exp (lΠ)]i,j ,∀ (i, j) ∈ K2,

and introduce the sequences of derivatives of fi,j at zero :

u
(k)
i,j =

∂kfi,j (0)

∂lk
=
[
Πk
]
i,j
.

Since for i 6= j ,

u
(k+1)
i,j =

K∑
t=1

Πi,t · u(k)
t,j ≥ Πi,i · u(k)

i,j

and u(1)
i,j ≥ 0, it appears that either u(k)

i,j is identically zero or its first non-null value must be strictly positive.
On the diagonal, ∀i ∈ K, fi,i (0) = 1 and since fii (l) is continuous there exists an ηi > 0 such that

∀s ∈ R, |s| ≤ ηi ⇒ fii (s) ≥ 0.
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Outside of the diagonal, ∀i, j ∈ K2, fi,i (0) = 0. If the sequence ui,j is identically equal to zero then fi,j (0) = 0

for all l ∈ R since fi,j (l) =
∑∞

k=0

lku
(k)
i,j

k! and we set ηi,j = 1.
Otherwise, the first non zero derivative of fi,j at zero must exist and be strictly positive, implying that we can find

ηi,j > 0 such that ∀s ∈ R, |s| ≤ ηi,j ⇒ fij (s) ≥ 0.
With

η = min
(

(ηi)i∈K , (ηi,j)i,j∈K2

)
,

we have that ∀l ∈ R,∃n ∈ N such as
∣∣ l
n

∣∣ ≤ η and then, ∀i, j ∈ K2, fij
(
l
n

)
≥ 0.

The properties of the matrix exponential gives us that [fij (l)] =
[
fij
(
l
n

)]n
in term of matrix exponentiation, and

since fij
(
l
n

)
≥ 0 ∀i, j ∈ K2, we also have [

fij

(
l

n

)]n
≥ 0,∀i, j ∈ K2

which proves that all the fi,j are non negative for i 6= j.
The proof for the strict inequality is similar because the first non zero derivatives are strictly positive, implying

that the fi,j must be strictly positive for t > 0.

We now go on to prove that conversly, if [exp (lΠ)]i,j ≥ 0 ∀l ∈ R+ and ∀i, j then necessarily Πi,j ≥ 0 for i 6= j.
For all fi,j with i 6= j to be non negative the sequence of their derivatives at zero must either have their first

non-zero value positive, or be identically zero, which implies that Πi,j ≥ 0. For the strict inequality, since we have
that [exp (tΠ)]i,j > 0 the sequences of u(k)

i,j cannot be identically zero. This shows that the sequences of derivatives
at zero of the functions fi,j must have their first non-zero value and and that it must necessarily be strictly positive,
which proves the lemma.

3 Proof of lemma 5
In this seection we prove the lemma giving a compact formula for the gradient of the likelihood. We first prove the
following intermediate result:

Proposition. For x and y elementary vectors of size K, for wich the only non-zero value is set to one we have
∇Π [xᵀ exp (dΠ) y] = ψd,Π (xyᵀ) , with ψd,Π (X) = P ᵀ ((PXP ᵀ)� Γd)P and

[Γd]i,j =


exp (l σi)− exp (d σj)

σi − σj
if σi 6= σj

d exp(d σj) if σi = σj ,

with Π = PDiag(σ)P
ᵀ

the eigenvalue decomposition of Π.

Proof. In the remainder of the proof, we will use the matrix max-norm defined for a matrix M ∈ RK×K by
‖M‖max = maxk,k′ |Mk,k′ |, and the matrix operator norm ‖M‖∞ = maxk

∑′
k |Mk,k′ |. We first compute the

differential. For ε a K ×K matrix such that ‖ε‖max ≤ 1, we have:
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xᵀ (exp (d (Π + ε))) y − xᵀ (exp (dΠ)) y

= xᵀ

( ∞∑
k=0

dk

k!

(
(Π + ε)

k −Πk
))

y

= xᵀ

( ∞∑
k=1

dk

k!

(
k−1∑
t=0

ΠtεΠk−1−t + r (ε, k)

))
y

=

∞∑
k=1

k−1∑
t=0

dk

k!
Tr
(
εΠk−1−tyxᵀΠt

)
+ xᵀ

∞∑
k=1

dk

k!
r (ε, k) y

= Tr

(
ε

( ∞∑
k=1

k−1∑
t=0

dk

k!
ΠtxyᵀΠk−1−t

)ᵀ)
+ xᵀ

∞∑
k=1

dk

k!
r (ε, k) y,

Where we have r (ε, k) are the terms of second order and more in the expansion of (Π + ε)
k. To prove that we do

have the differential we must prove that
∣∣∣xᵀ (∑∞k=1

dk

k! r (ε, k)
)
y
∣∣∣ is bound by an term which is O(ε2).

∣∣∣∣∣xᵀ
( ∞∑

k=1

dk

k!
r (ε, k)

)
y

∣∣∣∣∣ ≤
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dk
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∞∑
k=1

dk

k!

∥∥∥∥r( ε
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, k

)∥∥∥∥
max
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∞∑
k=1

dk

k!

∥∥∥∥∥
(

Π +
ε

‖ε‖max

)k

−Πk −
k−1∑
t=0

Πt ε

‖ε‖max

Πk−1−t

∥∥∥∥∥
max

≤ ‖ε‖2max

∞∑
k=1

dk

k!

(∥∥∥∥∥
(

Π +
ε

‖ε‖max

)k
∥∥∥∥∥

max

+
∥∥Πk

∥∥
max

+

∥∥∥∥∥
k−1∑
t=0

Πt ε

‖ε‖max

Πk−1−t

∥∥∥∥∥
)
.

We have the immediate result:
∥∥Πk

∥∥
max
≤ Kk ‖Π‖∞, and the less immediate one:∥∥∥∥∥

k−1∑
t=0

Πt ε

‖ε‖max

Πk−1−t

∥∥∥∥∥ ≤ kKk ‖Π‖k−1
max .

Injecting those expressions in the main inequality we have that:

∣∣∣∣∣xᵀ
( ∞∑

k=1

dk

k!
r (ε, k)

)
y

∣∣∣∣∣ ≤ ‖ε‖2max

∞∑
k=1

dk

k!

(
Kk

∥∥∥∥Π +
ε

‖ε‖max

∥∥∥∥k
∞

+Kk ‖Π‖kmax + kKk ‖Π‖k−1
max

)
≤ ‖ε‖2max (exp (dK ‖Π‖max + 1) + (dK + 1) exp (dK ‖Π‖max))

This proves that:

∇Π [xᵀexp (lΠ) y] =

∞∑
k=1

k−1∑
t=0

dk

k!
ΠtxyᵀΠk−1−t.

Since
ΠtxyᵀΠk−1−t = P ᵀσtPxyᵀP ᵀσk−1−tP = P ᵀ

(
(PxyᵀP ᵀ)�

[
σt
aσ

k−1−t
b

]
a,b

)
P
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and
k−1∑
t=0

σt
aσ

k−1−t
b = [γk]i,j =


σk
i − σk

j

σi − σj
if σi 6= σj

kσk−1
i if σi = σj ,

we have

∇Π [xᵀexp (sΠ) y] = P ᵀ
∞∑
k=1

k−1∑
t=0

dk

k!

(
(PxyᵀP ᵀ)�

[
σ−ta σk−1−t

b

]
a,b

)
P

= P ᵀ

(
(PxyᵀP ᵀ)�

∞∑
k=1

dk

k!
γk

)
P

= P ᵀ ((PxyᵀP ᵀ)� Γd)P. (3.1)

Proposition. ∇Π [xᵀΛ(d)y] = ψd

(
xyᵀ �W d

)
Proof. With Proposition 3 we have that ∇Π

(
xᵀH−

1
2 exp (dΠ)H−

1
2 y
)

= ψd

(
H−

1
2xyᵀH−

1
2

)
and since

xᵀΛ(d)y = log
(
xᵀH−

1
2W dH−

1
2 y
)

we have, with � denoting the termwise division,

∇Π (xᵀΛ(d)y) = ψd

(
H−

1
2

(
xyᵀ �

(
H−

1
2W dH−

1
2

))
H−

1
2

)
(3.2)

= ψd

(
xyᵀ �W d

)
. (3.3)

Proposition. ∇ΠA (Π, h) = ψd

(
E [XY ᵀ]�W d

)
Proof. It is a classical result in the theory of exponential families that∇Λ(d)A (Π, h) = E [XᵀY ].

By the chain rule, we have

∇Π (A (Π, h)) = J (Λ(d),Π)
ᵀ∇Π [A (Π, h)] .

where J (Λ(d),Π) is the Jacobian of the function Π 7→ Λ(d), which is given by 3.3 :

[J (Λ(d),Π)](i,j),(k,l) =
∂ [Λ(d)](k,l)

∂Π(i,j)
= ψd

(
klᵀ �W d

)
.

Then

∇Π (A (Π, h)) = J (Λ(d),Π)
ᵀ × E [XY ᵀ]

= ψd

(
E [XY ᵀ]�W d

)
. (3.4)

Subtracting the equation found in proposition 3 from the one in proposition 3 yields the gradient of the likelihood
with respect to variable Π announced in lemma 6.
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4 Illustration of the differences between CGMRF and CTMP
In our model the conditional probability does not only depends on the position from the conditionned variable but
also from the the position in the graph. Conversly to a CTMP it is possible to have p (xt|xs) to be non-monotonic
in t − s as can be seen on Figure 4.1. To obtain this figure we consider a binary process on a chain which state 1
is repulsive, ie transitions to state 0 are very attractive from either state, even more so than 1 to 1 transitions. As a
result the probability of being in state 1 is higher on the edges of the chain than at its center because edges have only
one neighbor instead of two. Even when only conditioning on the first node of the chain this gives a non-monotonic
probability distribution.

To obtain Figure 4.1 we chose the following value for U and h:

U =

[
1.7 .9
.9 .6

]
and h =

[
1

1.3

]
.

We can see that when in state 1 the process has a higher incentive to switch in state 0 in which it stays. This
behavior is impossible to obtain with a homogeneous continuous time markov process.

0 0.5 1
0

0.5

1

 

 

CGRMF
CTMC

Figure 4.1: Conditional probability of being in state 0 on a segment conditionally on the first node being in state 1 for different
processes: (blue) CGMRF with state 1 being repulsive, (red) different CTMC interpolation sharing the same conditional probability
on the last node.
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5 A more complete figure for transfer learning
In Figure 5.1 we see the precision-coverage curves for all the relearning settings, including the ones in which we only
relearn the parameter κ. We can see that this relearning option yields results that rank in between the setting with no
relearning and the full parametrization relearning.

Figure 5.1: Averaged precision coverage curves for the inference on the Pierrefitte/Stains cnglomeration for 200 random sampling
of 15% of revealed labels on the city of Sevran.
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6 Additional experiments on artificial data
In this section we provide a detailed description of simulated experiments destined to test the core model of CGMRF
in a setting with no hidden layers.

We consider two multi-class classification problems on real graphs: in the first case the real graph is a tree and the
data is drawn exactly according to the model proposed in the paper, in the second case we consider the problem of
predicting regions in the plane corresponding to a quantization of level sets of a random Gaussian function.

6.1 Potts process on an unoriented graph
In this first experiment, we generate a random weighted graph and generate data on this graph following the Potts
model on the continuous graph. We compare the labels predicted with a CGMRF trained with the maximum likelihood
principle, with the predictions obtained from the true CGMRF model, and with the prediction of a standard Potts
model, i.e. which ignores the length of the edges (and which is thus the classical MRF counterpart of the CGMRF).
We consider a semi-supervised setting in which only a small fraction of the labels of the nodes of the continuous graph
are observed.

The graph is generated by picking greedily 3 random neighbors for each node and each edge is assigned a length
sampled from a gamma distribution. Then, the variables at the junction nodes are sampled using Gibbs sampling,
given a set of parameters.

We hide a portion of those variables, learn the parameters of the process following the maximum likelihood prin-
ciple using a trust-region algorithm and infer the labels of the unseen nodes based those learned parameters using
damped loopy belief propagation (Wainwright and Jordan, 2008, chap. 7).

For each model, we construct a precision-coverage curve reported on Figure 6.2 and based on sorting the proba-
bilistic predictions by increasing values of the entropies of these predictions.

As a possible contender to compare our algorithm with, we consider a variant of the k-nearest neighbor (k-NN)
algorithm on the graph that was called graph geodesic k-nearest neighbor in Herbster and Pontil (2006) (even though
not the focus of that work) and where the geodesic distance is the shortest path in the graph in the sense of the sum of
the lengths of the edges. In practice, we find nearest labelled neighbors in the geodesic sense using a simple algorithm
based on a priority queue that explores recursively neighbors of neighbors. We should stress that the algorithm is not
a label propagation algorithm based on the graph and that we actually follow geodesics until we find labelled points.
We also consider a variant of this geodesic k-NN in which the prediction is obtained with weighted majority vote with
weights that are inversely proportional to the exponential of the graph induced distance between them. The prediction
is thus probabilistic and the predictor is a form of Nadaraya-Watson estimator based on the geodesic distance. For
both of these methods, the number of neighbors k is chosen by cross validation. Finally we also compare with the
naive algorithm which predicts systematically the most frequent label. We do not make any comparisons with graph
partitioning algorithms for the reasons expressed in the discussion section.

The results are as follows. The baseline naive algorithm that constantly picks the most frequent labels of the
revealed nodes attains a precision of 61% for the experiment (reported on Figure 6.2), and the geodesic k-NN algorithm
cross validated on k yields a precision of 35%. For the weighted geodesic k-NN, since it produces probabilistic
predictions, we report its precision-coverage curve on Figure6.2. This precision-coverage curves indicate that, even
when a small proportion of node labels are revealed, the precision obtained when learning parameters is almost as high
as when using the true generating distribution and significantly above the precision obtained with the discrete random
Markov field. Confident predictions of our models have a much higher precision than the k-NN algorithm, which can
be very useful if not all data has to be labelled or in an active learning context.

6.2 Level sets of a random Gaussian function
As mentioned in the discussion section, one of the advantages of our model over approaches based only on distance is
that it can learn that some transitions between classes are more likely than others. To illustrate this we generate highly
structured spatial data in the following way: we sample points uniformly on [0, 1]2 and compute at each point the value
of a random function obtained as a random linear combination of Gaussian functions. We then quantize these values
into a finite number of classes. See Figure 6.1.

From such data, we construct a graph by connecting together the points whose Voronoi cells are adjacent. We
could also have used a k nearest neighbor graph.
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Figure 6.1: Inference of the algorithm on a random Gaussian map. (top) Quantized levels of the random Gaussian map. (middle)
nodes drawn from the map with nodes whose labels are provided to the algorithm circled in black. (bottom) predictions of the
CGMRF with mistakes marked with ×.
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As a baseline we implemented a classical k-NN algorithm based on the Euclidean distance and a weighted k-NN
algorithm using weights that are inversely proportional to the exponential of the Euclidean distance to the point, like
in the previous experiment but with the Euclidean distance. Again k is chosen by cross validation. We compare the
precision of the result of learning for standard Potts model (MRF) and for the continuous Potts model (CGMRF).

We report average precision-coverage curves over 100 replicates of the experiment on Figure 6.2.
When making prediction for all unlabeled points, the different algorithms have the following precision: for k-NN

77.4%, for the weighted k-NN 81%, the MRF 71.2%, and our CGMRF 83.5%. It is interesting to note that weighted k-
NN outperforms k-NN by a large margin and that the MRF has lower precision than k-NN, even though it has a much
higher precision for confident predictions. In spite of the fact that the precision coverage curve of the weighted k-NN
is quite close, the misclassification error of the CGMRF is 13% smaller than weighted k-NN, 27% smaller than k-NN,
and 42.7% smaller than the MRF. The gain in precision is not only obtained in average since the misclassification error
of the CMRF was lower than that of its closest competitor, the weighted k-NN, in 99 out of 100 experiments, which
means that the CMRF performs significantly better and by a large margin than all competitors based on Wilcoxon
signed rank tests. It is interesting to note that the MRF has initially a higher precision than the CGMRF on Figure 6.2.
This is explained by the fact that predictions of the CGMRF can be very confident if the closest neighbor is very close
and behave in those pathological case like 1-NN, while the MRF requires that a large fraction of the neighbors have
the same label to reach a similar level of confidence.
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Figure 6.2: Averaged precision coverage curves for the inference in 28 random continuous trees of 500 nodes with 6 states and
20% of the labels revealed. We plot the precision of the inference with the exact parameters used to generate the data (red),
parameters learnt in the continuous graph (black), in the discrete graph, or Markov random field (green), the weighted nearest
neighbors alogorithm (blue) and the nearest neighbors alogorithm (magenta).
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Figure 6.3: Averaged precision coverage curves for the inference in 100 random gaussian maps with 5 level sets, containing 1000
nodes each and with 20% of the labels revealed. We plot the precision of the inference parameters learnt in the continuous Potts
model (black), in the Markov random Field (green), and the performance of thek-nearest neighbors algorithm, weighted (blue) and
not (red).
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