Review of Statistics

Guillaume Obozinski

Ecole des Ponts - ParisTech

Master MVA 2016-2017

Outline

(1) Statistical concepts
(2) The maximum likelihood principle
(3) Method of moments
(4) Linear regression
(5) Principal Component Analysis
(6) Bayesian Inference

Outline

(1) Statistical concepts
(2) The maximum likelihood principle
(3) Method of moments
4. Linear regression
(5) Principal Component Analysis
(6) Bayesian Inference

Statistical concepts

Statistical Model

Parametric model - Definition:
Set of distributions parametrized by a vector $\theta \in \Theta \subset \mathbb{R}^{p}$

$$
\mathcal{P}_{\Theta}=\left\{p_{\theta}(x) \mid \theta \in \Theta\right\}
$$

Statistical Model

Parametric model - Definition:
Set of distributions parametrized by a vector $\theta \in \Theta \subset \mathbb{R}^{p}$

$$
\mathcal{P}_{\Theta}=\left\{p_{\theta}(x) \mid \theta \in \Theta\right\}
$$

Bernoulli model: $X \sim \operatorname{Ber}(\theta) \quad \Theta=[0,1]$

$$
p_{\theta}(x)=\theta^{x}(1-\theta)^{(1-x)}
$$

Statistical Model

Parametric model - Definition:
Set of distributions parametrized by a vector $\theta \in \Theta \subset \mathbb{R}^{p}$

$$
\mathcal{P}_{\Theta}=\left\{p_{\theta}(x) \mid \theta \in \Theta\right\}
$$

Bernoulli model: $X \sim \operatorname{Ber}(\theta) \quad \Theta=[0,1]$

$$
p_{\theta}(x)=\theta^{x}(1-\theta)^{(1-x)}
$$

Binomial model: $X \sim \operatorname{Bin}(n, \theta) \quad \Theta=[0,1]$

$$
p_{\theta}(x)=\binom{n}{x} \theta^{x}(1-\theta)^{(1-x)}
$$

Statistical Model

Parametric model - Definition:
Set of distributions parametrized by a vector $\theta \in \Theta \subset \mathbb{R}^{p}$

$$
\mathcal{P}_{\Theta}=\left\{p_{\theta}(x) \mid \theta \in \Theta\right\}
$$

Bernoulli model: $X \sim \operatorname{Ber}(\theta) \quad \Theta=[0,1]$

$$
p_{\theta}(x)=\theta^{x}(1-\theta)^{(1-x)}
$$

Binomial model: $X \sim \operatorname{Bin}(n, \theta) \quad \Theta=[0,1]$

$$
p_{\theta}(x)=\binom{n}{x} \theta^{x}(1-\theta)^{(1-x)}
$$

Multinomial model: $X \sim \mathcal{M}\left(n, \pi_{1}, \pi_{2}, \ldots, \pi_{K}\right) \quad \Theta=[0,1]^{K}$

$$
p_{\theta}(x)=\binom{n}{x_{1}, \ldots, x_{k}} \pi_{1}^{x_{1}} \ldots \pi_{k}^{x_{k}}
$$

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

For example if $K=5$ and $c=4$ then $\mathbf{y}=(0,0,0,1,0)^{\top}$.

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

For example if $K=5$ and $c=4$ then $\mathbf{y}=(0,0,0,1,0)^{\top}$.
So $\mathbf{y} \in\{0,1\}^{K}$ with $\sum_{k=1}^{K} y_{k}=1$.

Indicator variable coding for multinomial variables

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$
\mathbb{P}(C=k)=\pi_{k}
$$

We will code C with a r.v. $Y=\left(Y_{1}, \ldots, Y_{K}\right)^{\top}$ with

$$
Y_{k}=1_{\{C=k\}}
$$

For example if $K=5$ and $c=4$ then $\mathbf{y}=(0,0,0,1,0)^{\top}$.
So $\mathbf{y} \in\{0,1\}^{K}$ with $\sum_{k=1}^{K} y_{k}=1$.

$$
\mathbb{P}(C=k)=\mathbb{P}\left(Y_{k}=1\right) \quad \text { and } \quad \mathbb{P}(Y=y)=\prod_{k=1}^{K} \pi_{k}^{y_{k}}
$$

Bernoulli, Binomial, Multinomial

$Y \sim \operatorname{Ber}(\pi)$	$\left(Y_{1}, \ldots, Y_{K}\right) \sim \mathcal{M}\left(1, \pi_{1}, \ldots, \pi_{K}\right)$
$p(y)=\pi^{y}(1-\pi)^{1-y}$	$p(\mathbf{y})=\pi_{1}^{y_{1}} \ldots \pi_{K}^{y_{K}}$
$N_{1} \sim \operatorname{Bin}(n, \pi)$	$\left(N_{1}, \ldots, N_{K}\right) \sim \mathcal{M}\left(n, \pi_{1}, \ldots, \pi_{K}\right)$
$p\left(n_{1}\right)=\binom{n}{n_{1}} \pi^{n_{1}}(1-\pi)^{n-n_{1}}$	$p(\mathbf{n})=\left(\begin{array}{cc}n \\ n_{1} & \ldots \\ n_{K}\end{array}\right) \pi_{1}^{n_{1}} \ldots \pi_{K}^{n_{K}}$

with

$$
\binom{n}{i}=\frac{n!}{(n-i)!i!} \quad \text { and } \quad\left(\begin{array}{ccc}
& n \\
n_{1} & \ldots & n_{K}
\end{array}\right)=\frac{n!}{n_{1}!\ldots n_{K}!}
$$

Gaussian model

Scalar Gaussian model : $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
X real valued r.v., and $\theta=\left(\mu, \sigma^{2}\right) \in \Theta=\mathbb{R} \times \mathbb{R}_{+}^{*}$.

$$
p_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Gaussian model

Scalar Gaussian model : $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
X real valued r.v., and $\theta=\left(\mu, \sigma^{2}\right) \in \Theta=\mathbb{R} \times \mathbb{R}_{+}^{*}$.

$$
p_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Multivariate Gaussian model: $X \sim \mathcal{N}(\mu, \Sigma)$
X r.v. taking values in \mathbb{R}^{d}. If \mathcal{K}_{d} is the set of positive definite matrices of size $d \times d$, and $\theta=(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \in \Theta=\mathbb{R}^{d} \times \mathcal{K}_{d}$.

$$
p_{\mu, \Sigma}(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

Gaussian densities

Gaussian densities

Sample/Training set

The data used to learn or estimate a model typically consists of a collection of observation which can be thought of as instantiations of random variables.

$$
X^{(1)}, \ldots, X^{(n)}
$$

Sample/Training set

The data used to learn or estimate a model typically consists of a collection of observation which can be thought of as instantiations of random variables.

$$
X^{(1)}, \ldots, X^{(n)}
$$

A common assumption is that the variables are i.i.d.

- independent
- identically distributed, i.e. have the same distribution P.

Sample/Training set

The data used to learn or estimate a model typically consists of a collection of observation which can be thought of as instantiations of random variables.

$$
X^{(1)}, \ldots, X^{(n)}
$$

A common assumption is that the variables are i.i.d.

- independent
- identically distributed, i.e. have the same distribution P.

This collection of observations is called

- the sample or the observations in statistics
- the samples in engineering
- the training set in machine learning

Outline

(1) Statistical concepts

(2) The maximum likelihood principle
(3) Method of moments
(4) Linear regression
(5) Principal Component Analysis
(6) Bayesian Inference

The maximum likelihood principle

Maximum likelihood principle

- Let $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$ be a model
- Let x be an observation

Maximum likelihood principle

- Let $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$ be a model
- Let x be an observation

Likelihood:

$$
\begin{aligned}
\mathcal{L}: \Theta & \rightarrow \mathbb{R}_{+} \\
\theta & \mapsto p(x ; \theta)
\end{aligned}
$$

Maximum likelihood principle

- Let $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$ be a model
- Let x be an observation

Likelihood:

$$
\begin{aligned}
\mathcal{L}: \Theta & \rightarrow \mathbb{R}_{+} \\
\theta & \mapsto p(x ; \theta)
\end{aligned}
$$

Maximum likelihood estimator:

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(x ; \theta)
$$

Sir Ronald Fisher (1890-1962)

Maximum likelihood principle

- Let $\mathcal{P}_{\Theta}=\{p(x ; \theta) \mid \theta \in \Theta\}$ be a model
- Let x be an observation

Likelihood:

$$
\begin{aligned}
\mathcal{L}: \Theta & \rightarrow \mathbb{R}_{+} \\
\theta & \mapsto p(x ; \theta)
\end{aligned}
$$

Maximum likelihood estimator:

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(x ; \theta)
$$

Sir Ronald Fisher (1890-1962)

Case of i.i.d data
If $\left(x_{i}\right)_{1 \leq i \leq n}$ is an i.i.d. sample of size n :

$$
\hat{\theta}_{\mathrm{ML}}=\underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{n} p_{\theta}\left(x_{i}\right)=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log p_{\theta}\left(x_{i}\right)
$$

The maximum likelihood estimator

The MLE

- does not always exists

The maximum likelihood estimator

The MLE

- does not always exists
- is not necessarily unique

The maximum likelihood estimator

The MLE

- does not always exists
- is not necessarily unique

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$.

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is
$\ell(\theta)=\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)$

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is
$\ell(\theta)=\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right]$

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \\
& =\sum_{i=1}^{n}\left(x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)\right)
\end{aligned}
$$

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \\
& =\sum_{i=1}^{n}\left(x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)\right)=N \log (\theta)+(n-N) \log (1-\theta)
\end{aligned}
$$

with $N:=\sum_{i=1}^{n} x_{i}$.

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \\
& =\sum_{i=1}^{n}\left(x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)\right)=N \log (\theta)+(n-N) \log (1-\theta)
\end{aligned}
$$

with $N:=\sum_{i=1}^{n} x_{i}$.

- $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \\
& =\sum_{i=1}^{n}\left(x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)\right)=N \log (\theta)+(n-N) \log (1-\theta)
\end{aligned}
$$

with $N:=\sum_{i=1}^{n} x_{i}$.

- $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.
- since ℓ differentiable + strongly concave its maximizer is the unique stationary point

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \\
& =\sum_{i=1}^{n}\left(x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)\right)=N \log (\theta)+(n-N) \log (1-\theta)
\end{aligned}
$$

with $N:=\sum_{i=1}^{n} x_{i}$.

- $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.
- since ℓ differentiable + strongly concave its maximizer is the unique stationary point

$$
\nabla \ell(\theta)=\frac{\partial}{\partial \theta} \ell(\theta)=\frac{N}{\theta}-\frac{n-N}{1-\theta}
$$

MLE for the Bernoulli model

Let $X_{1}, X_{2}, \ldots, X_{n}$ an i.i.d. sample $\sim \operatorname{Ber}(\theta)$. The log-likelihood is

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \log \left[\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right] \\
& =\sum_{i=1}^{n}\left(x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)\right)=N \log (\theta)+(n-N) \log (1-\theta)
\end{aligned}
$$

with $N:=\sum_{i=1}^{n} x_{i}$.

- $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.
- since ℓ differentiable + strongly concave its maximizer is the unique stationary point

$$
\nabla \ell(\theta)=\frac{\partial}{\partial \theta} \ell(\theta)=\frac{N}{\theta}-\frac{n-N}{1-\theta}
$$

Thus

$$
\hat{\theta}_{\mathrm{ML}}=\frac{N}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

MLE for the multinomial

Done on the board.

Outline

(1) Statistical concepts

(2) The maximum likelihood principle
(3) Method of moments
(4) Linear regression
(5) Principal Component Analysis
(6) Bayesian Inference

Method of moments (Karl Pearson, 1894)

Consider a statistical model for a univariate r.v. parameterized by

$$
\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right) \in \mathbb{R}^{k}
$$

Denote by μ^{k} the k th moment of a random variable:

$$
\mu_{1}(\boldsymbol{\theta})=\mathbb{E}_{\boldsymbol{\theta}}[X], \quad \mu_{2}(\boldsymbol{\theta})=\mathbb{E}_{\boldsymbol{\theta}}\left[X^{2}\right], \quad \ldots, \quad \mu_{K}(\boldsymbol{\theta})=\mathbb{E}_{\boldsymbol{\theta}}\left[X^{K}\right] .
$$

We have

$$
\left(\mu_{1}, \ldots, \mu_{K}\right)=f(\boldsymbol{\theta})=f\left(\theta_{1}, \ldots, \theta_{K}\right)
$$

Principle of the method of moments

Given a sample X_{1}, \ldots, X_{n}

- Estimate the $\mu_{k} \mathrm{~s}$ with the empirical moments: $\hat{\mu}_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$.
- The moment estimator is $\hat{\boldsymbol{\theta}}$ defined as the solution to the equation

$$
\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{K}\right)=f\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{K}\right)
$$

Method of moments: illustration

In many usual cases the moment estimator and the MLE are equal.

Method of moments: illustration

In many usual cases the moment estimator and the MLE are equal.
Example where MME \neq MLE
For the family of gamma distribution

$$
p(x ; \lambda, p)=\frac{x^{p-1} e^{-\lambda x}}{\lambda^{p} \Gamma(p)} 1_{\{x>0\}}
$$

the MLE is not closed-form (exercise).

Method of moments: illustration

In many usual cases the moment estimator and the MLE are equal.
Example where MME $=$ MLE
For the family of gamma distribution

$$
p(x ; \lambda, p)=\frac{x^{p-1} e^{-\lambda x}}{\lambda^{p} \Gamma(p)} 1_{\{x>0\}}
$$

the MLE is not closed-form (exercise). However

$$
\mu_{1}=\mathbb{E}[X]=\lambda p, \quad \mu_{2}=\mathbb{E}\left[X^{2}\right]=p(p+1) \lambda^{2},
$$

Method of moments: illustration

In many usual cases the moment estimator and the MLE are equal.
Example where MME \neq MLE
For the family of gamma distribution

$$
p(x ; \lambda, p)=\frac{x^{p-1} e^{-\lambda x}}{\lambda^{p} \Gamma(p)} 1_{\{x>0\}}
$$

the MLE is not closed-form (exercise). However

$$
\begin{aligned}
& \mu_{1}=\mathbb{E}[X]=\lambda p, \quad \mu_{2}=\mathbb{E}\left[X^{2}\right]=p(p+1) \lambda^{2}, \text { So that } \\
& \lambda=\frac{\mu_{1}^{2}}{\mu_{2}-\mu_{1}^{2}}, \quad p=\frac{\mu_{2}-\mu_{1}^{2}}{\mu_{1}},
\end{aligned}
$$

which yields the moment estimators

$$
\hat{\lambda}=\frac{\hat{\mu}_{1}^{2}}{\hat{\mu}_{2}-\hat{\mu}_{1}^{2}}, \quad p=\frac{\hat{\mu}_{2}-\hat{\mu}_{1}^{2}}{\hat{\mu}_{1}}
$$

Outline

(1) Statistical concepts

(2) The maximum likelihood principle
(3) Method of moments
(4) Linear regression
(5) Principal Component Analysis
(6) Bayesian Inference

Linear regression

Design matrix

Consider a finite collection of vectors $x_{i} \in \mathbb{R}^{d}$ pour $i=1 \ldots n$.

Design Matrix

$$
X=\left[\begin{array}{ccc}
- & x_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & x_{n}^{\top} & -
\end{array}\right]
$$

Design matrix

Consider a finite collection of vectors $x_{i} \in \mathbb{R}^{d}$ pour $i=1 \ldots n$.

Design Matrix

$$
X=\left[\begin{array}{ccc}
- & x_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & x_{n}^{\top} & -
\end{array}\right]
$$

We assume that the vectors are centered, i.e. that $\sum_{i=1}^{n} x_{i}=0$.

Design matrix

Consider a finite collection of vectors $x_{i} \in \mathbb{R}^{d}$ pour $i=1 \ldots n$.

Design Matrix

$$
X=\left[\begin{array}{ccc}
- & x_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & x_{n}^{\top} & -
\end{array}\right]
$$

We assume that the vectors are centered, i.e. that $\sum_{i=1}^{n} x_{i}=0$.

If x_{i} are not centered the design matrix of centered data can be constructed with the rows $x_{i}-\bar{x}^{\top}$ with $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

Linear regression

- We consider the OLS regression for the linear hypothesis space.
- We have $\mathcal{X}=\mathbb{R}^{p}, \mathcal{Y}=\mathbb{R}$ and ℓ the square loss.

Linear regression

- We consider the OLS regression for the linear hypothesis space.
- We have $\mathcal{X}=\mathbb{R}^{p}, \mathcal{Y}=\mathbb{R}$ and ℓ the square loss.

Consider the hypothesis space:

$$
S=\left\{f_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^{p}\right\} \quad \text { with } \quad f_{\mathbf{w}}: \mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}
$$

Linear regression

- We consider the OLS regression for the linear hypothesis space.
- We have $\mathcal{X}=\mathbb{R}^{p}, \mathcal{Y}=\mathbb{R}$ and ℓ the square loss.

Consider the hypothesis space:

$$
S=\left\{f_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^{p}\right\} \quad \text { with } \quad f_{\mathbf{w}}: \mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}
$$

Given a training set $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ we have

$$
\widehat{\mathcal{R}}_{n}\left(f_{w}\right)=\frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2}
$$

Linear regression

- We consider the OLS regression for the linear hypothesis space.
- We have $\mathcal{X}=\mathbb{R}^{p}, \mathcal{Y}=\mathbb{R}$ and ℓ the square loss.

Consider the hypothesis space:

$$
S=\left\{f_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^{p}\right\} \quad \text { with } \quad f_{\mathbf{w}}: \mathbf{x} \mapsto \mathbf{w}^{\top} \mathbf{x}
$$

Given a training set $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ we have

$$
\widehat{\mathcal{R}}_{n}\left(f_{w}\right)=\frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2}=\frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}
$$

with

- the vector of outputs $\mathbf{y}^{\top}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$
- the design matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ whose i th row is equal to \mathbf{x}_{i}^{\top}.

Solving linear regression

To solve $\min _{\mathbf{w} \in \mathbb{R}^{p}} \widehat{\mathcal{R}}_{n}\left(f_{\mathbf{w}}\right)$, we consider that

$$
\widehat{\mathcal{R}}_{n}\left(f_{w}\right)=\frac{1}{2 n}\left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}-2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}+\|\mathbf{y}\|^{2}\right)
$$

is a differentiable convex function whose minima are thus characterized by the

Solving linear regression

To solve $\min _{\mathbf{w} \in \mathbb{R}^{p}} \widehat{\mathcal{R}}_{n}\left(f_{\mathbf{w}}\right)$, we consider that

$$
\widehat{\mathcal{R}}_{n}\left(f_{w}\right)=\frac{1}{2 n}\left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}-2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}+\|\mathbf{y}\|^{2}\right)
$$

is a differentiable convex function whose minima are thus characterized by the

Normal equations

$$
\mathbf{X}^{\top} \mathbf{X} \mathbf{w}-\mathbf{X}^{\top} \mathbf{y}=\mathbf{0}
$$

Solving linear regression

To solve $\min _{\mathbf{w} \in \mathbb{R}^{p}} \widehat{\mathcal{R}}_{n}\left(f_{\mathbf{w}}\right)$, we consider that

$$
\widehat{\mathcal{R}}_{n}\left(f_{w}\right)=\frac{1}{2 n}\left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}-2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}+\|\mathbf{y}\|^{2}\right)
$$

is a differentiable convex function whose minima are thus characterized by the

Normal equations

$$
\mathbf{X}^{\top} \mathbf{X} \mathbf{w}-\mathbf{X}^{\top} \mathbf{y}=\mathbf{0}
$$

If $\mathbf{X}^{\top} \mathbf{X}$ is invertible, then \widehat{f} is given by:

$$
\widehat{f}: \mathbf{x}^{\prime} \mapsto \mathbf{x}^{\prime \top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Solving linear regression

To solve $\min _{\mathbf{w} \in \mathbb{R}^{p}} \widehat{\mathcal{R}}_{n}\left(f_{\mathbf{w}}\right)$, we consider that

$$
\widehat{\mathcal{R}}_{n}\left(f_{w}\right)=\frac{1}{2 n}\left(\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}-2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}+\|\mathbf{y}\|^{2}\right)
$$

is a differentiable convex function whose minima are thus characterized by the

Normal equations

$$
\mathbf{X}^{\top} \mathbf{X} \mathbf{w}-\mathbf{X}^{\top} \mathbf{y}=\mathbf{0}
$$

If $\mathbf{X}^{\top} \mathbf{X}$ is invertible, then \widehat{f} is given by:

$$
\widehat{f}: \mathbf{x}^{\prime} \mapsto \mathbf{x}^{\prime \top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Problem: $\mathbf{X}^{\top} \mathbf{X}$ is never invertible for $p>n$ and thus the solution is not unique.

Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

$$
\min _{\mathbf{w} \in \mathbb{R}^{p}} \frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Problem now strongly convex thus well-posed

Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

$$
\min _{\mathbf{w} \in \mathbb{R}^{p}} \frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$
\hat{\mathbf{w}}^{\text {(ridge })}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

$$
\min _{\mathbf{w} \in \mathbb{R}^{p}} \frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$
\hat{\mathbf{w}}^{\text {(ridge })}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

- Shrinkage effect

Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

$$
\min _{\mathbf{w} \in \mathbb{R}^{p}} \frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$
\hat{\mathbf{w}}^{\text {(ridge })}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

- Shrinkage effect
- Regularization improves the conditioning number of the Hessian

Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

$$
\min _{\mathbf{w} \in \mathbb{R}^{p}} \frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$
\hat{\mathbf{w}}^{\text {(ridge })}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

- Shrinkage effect
- Regularization improves the conditioning number of the Hessian
\Rightarrow Problem now easier to solve computationally

Outline

(1) Statistical concepts

(2) The maximum likelihood principle
(3) Method of moments
(4) Linear regression
(5) Principal Component Analysis
(6) Bayesian Inference

Principal Component Analysis (1901)

Karl Pearson (1857-1936)

Empirical covariance and correlation

For centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} X^{\top} X=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

Empirical covariance and correlation

For centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} X^{\top} X=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

For non centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}
$$

Empirical covariance and correlation

For centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} X^{\top} X=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

For non centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}
$$

Another common operation is to normalize the data by dividing each column of X by its standard deviation. This leads to the empirical covariance matrix.

$$
C=\operatorname{Diag}(\widehat{\sigma})^{-1} \widehat{\Sigma} \operatorname{Diag}(\widehat{\sigma})^{-1} \quad \text { avec } \quad \widehat{\sigma}_{k}^{2}=\widehat{\Sigma}_{k, k}
$$

Empirical covariance and correlation

For centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} X^{\top} X=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

For non centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}
$$

Another common operation is to normalize the data by dividing each column of X by its standard deviation. This leads to the empirical covariance matrix.

$$
\begin{gathered}
C=\operatorname{Diag}(\widehat{\sigma})^{-1} \widehat{\Sigma} \operatorname{Diag}(\widehat{\sigma})^{-1} \quad \text { avec } \widehat{\sigma}_{k}^{2}=\widehat{\Sigma}_{k, k} . \\
C_{k, k^{\prime}}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}^{(k)}-\bar{x}^{k}}{\widehat{\sigma}_{k}}\right)\left(\frac{x_{i}^{\left(k^{\prime}\right)}-\bar{x}^{k^{\prime}}}{\widehat{\sigma}_{k^{\prime}}}\right) .
\end{gathered}
$$

Empirical covariance and correlation

For centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} X^{\top} X=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}
$$

For non centered vectors :

$$
\widehat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}
$$

Another common operation is to normalize the data by dividing each column of X by its standard deviation. This leads to the empirical covariance matrix.

$$
\begin{gathered}
C=\operatorname{Diag}(\widehat{\sigma})^{-1} \widehat{\Sigma} \operatorname{Diag}(\widehat{\sigma})^{-1} \quad \text { avec } \quad \widehat{\sigma}_{k}^{2}=\widehat{\Sigma}_{k, k} \\
C_{k, k^{\prime}}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}^{(k)}-\bar{x}^{k}}{\widehat{\sigma}_{k}}\right)\left(\frac{x_{i}^{\left(k^{\prime}\right)}-\bar{x}^{k^{\prime}}}{\widehat{\sigma}_{k^{\prime}}}\right) .
\end{gathered}
$$

Normalisation is optional...

PCA from the analysis point of view

Data vectors live in \mathbb{R}^{d} and one seeks a direction v in \mathbb{R}^{d} such that the variance along this direction is maximal. Or

$$
\begin{aligned}
\operatorname{Var}\left(\left(v^{\top} x_{i}\right)_{i=1 \ldots n}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(v^{\top} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} v^{\top} x_{i} x_{i}^{\top} v
\end{aligned}
$$

PCA from the analysis point of view

Data vectors live in \mathbb{R}^{d} and one seeks a direction v in \mathbb{R}^{d} such that the variance along this direction is maximal. Or

$$
\begin{aligned}
\operatorname{Var}\left(\left(v^{\top} x_{i}\right)_{i=1 \ldots n}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(v^{\top} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} v^{\top} x_{i} x_{i}^{\top} v \\
& =v^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) v
\end{aligned}
$$

PCA from the analysis point of view

Data vectors live in \mathbb{R}^{d} and one seeks a direction v in \mathbb{R}^{d} such that the variance along this direction is maximal. Or

$$
\begin{aligned}
\operatorname{Var}\left(\left(v^{\top} x_{i}\right)_{i=1 \ldots n}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(v^{\top} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} v^{\top} x_{i} x_{i}^{\top} v \\
& =v^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) v \\
& =v^{\top} \widehat{\Sigma} v
\end{aligned}
$$

PCA from the analysis point of view

Data vectors live in \mathbb{R}^{d} and one seeks a direction v in \mathbb{R}^{d} such that the variance along this direction is maximal. Or

$$
\begin{aligned}
\operatorname{Var}\left(\left(v^{\top} x_{i}\right)_{i=1 \ldots n}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(v^{\top} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} v^{\top} x_{i} x_{i}^{\top} v \\
& =v^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) v \\
& =v^{\top} \widehat{\Sigma} v
\end{aligned}
$$

PCA from the analysis point of view

Data vectors live in \mathbb{R}^{d} and one seeks a direction v in \mathbb{R}^{d} such that the variance along this direction is maximal. Or

$$
\begin{aligned}
\operatorname{Var}\left(\left(v^{\top} x_{i}\right)_{i=1 \ldots n)}\right. & =\frac{1}{n} \sum_{i=1}^{n}\left(v^{\top} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} v^{\top} x_{i} x_{i}^{\top} v \\
& =v^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) v \\
& =v^{\top} \widehat{\Sigma} v
\end{aligned}
$$

One needs to solve

$$
\max _{\|v\|_{2}=1} v^{\top} \widehat{\Sigma} v
$$

PCA from the analysis point of view

Data vectors live in \mathbb{R}^{d} and one seeks a direction v in \mathbb{R}^{d} such that the variance along this direction is maximal. Or

$$
\begin{aligned}
\operatorname{Var}\left(\left(v^{\top} x_{i}\right)_{i=1 \ldots n}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(v^{\top} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} v^{\top} x_{i} x_{i}^{\top} v \\
& =v^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) v \\
& =v^{\top} \widehat{\Sigma} v
\end{aligned}
$$

One needs to solve

$$
\max _{\|v\|_{2}=1} v^{\top} \widehat{\Sigma} v
$$

Solution: first eigenvectors of $\widehat{\Sigma}$ say v_{1}.

Deflation

What is the second best direction to project the data on in order to maximize the variance?

Deflation

What is the second best direction to project the data on in order to maximize the variance?

One can perform a deflation

$$
\forall i, \quad \widetilde{x}_{i} \leftarrow x_{i}-v_{1}\left(v_{1}^{\top} x_{i}\right)
$$

Deflation

What is the second best direction to project the data on in order to maximize the variance?

One can perform a deflation

$$
\forall i, \quad \widetilde{x}_{i} \leftarrow x_{i}-v_{1}\left(v_{1}^{\top} x_{i}\right)
$$

Which translates at the matrix level: $\quad \widetilde{X} \leftarrow X-X v_{1} v_{1}^{\top}$.

Deflation

What is the second best direction to project the data on in order to maximize the variance?

One can perform a deflation

$$
\forall i, \quad \widetilde{x}_{i} \leftarrow x_{i}-v_{1}\left(v_{1}^{\top} x_{i}\right)
$$

Which translates at the matrix level: $\quad \widetilde{X} \leftarrow X-X v_{1} v_{1}^{\top}$.
Then again find the direction of maximal variance

$$
\widetilde{\widehat{\Sigma}}=\frac{1}{n} \widetilde{X}^{\top} \widetilde{X}
$$

Deflation

What is the second best direction to project the data on in order to maximize the variance?

One can perform a deflation

$$
\forall i, \quad \widetilde{x}_{i} \leftarrow x_{i}-v_{1}\left(v_{1}^{\top} x_{i}\right)
$$

Which translates at the matrix level: $\quad \widetilde{X} \leftarrow X-X v_{1} v_{1}^{\top}$.
Then again find the direction of maximal variance

$$
\widetilde{\widehat{\Sigma}}=\frac{1}{n} \widetilde{X}^{\top} \widetilde{X}
$$

One solves

$$
\max _{\|v\|_{2}} v^{\top} \widetilde{\widehat{\Sigma}} v
$$

Deflation

What is the second best direction to project the data on in order to maximize the variance?

One can perform a deflation

$$
\forall i, \quad \widetilde{x}_{i} \leftarrow x_{i}-v_{1}\left(v_{1}^{\top} x_{i}\right)
$$

Which translates at the matrix level: $\quad \widetilde{X} \leftarrow X-X v_{1} v_{1}^{\top}$.
Then again find the direction of maximal variance

$$
\widetilde{\widetilde{\Sigma}}=\frac{1}{n} \widetilde{X}^{\top} \widetilde{X}
$$

One solves

$$
\max v^{\top} \widetilde{\widehat{\Sigma}} v
$$

$$
\|v\|_{2}
$$

Or equivalently $\max _{\|v\|_{2}} v^{\top} \widehat{\Sigma} v$ tel que $v \perp v_{1}$.

Deflation

What is the second best direction to project the data on in order to maximize the variance?

One can perform a deflation

$$
\forall i, \quad \widetilde{x}_{i} \leftarrow x_{i}-v_{1}\left(v_{1}^{\top} x_{i}\right)
$$

Which translates at the matrix level: $\quad \widetilde{X} \leftarrow X-X v_{1} v_{1}^{\top}$.
Then again find the direction of maximal variance

$$
\widetilde{\widetilde{\Sigma}}=\frac{1}{n} \widetilde{X}^{\top} \widetilde{X}
$$

One solves

$$
\max v^{\top} \widetilde{\widehat{\Sigma}} v
$$

$$
\|v\|_{2}
$$

Or equivalently $\max _{\|v\|_{2}} v^{\top} \widehat{\Sigma} v$ tel que $v \perp v_{1}$.
Solution: This yields the second eigenvector of $\widehat{\Sigma}$ say v_{2}. Etc.

Principal directions

We usually call

- principal directions (or factors) of the points cloud the vectors

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

Principal directions

We usually call

- principal directions (or factors) of the points cloud the vectors

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

- principal components: the projection of the data on the k principal directions.

Principal directions

We usually call

- principal directions (or factors) of the points cloud the vectors

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

- principal components: the projection of the data on the k principal directions.

The principal directions are the eigenvectors of $\widehat{\Sigma}=V S^{2} V^{\top}$.

Singular value decomposition and PCA

The SVD of a matrix $X \in \mathbb{R}^{n \times p}$ with $n \leq p$ is of the form $X=U S V^{\top}$, avec

- $U \in \mathbb{R}^{n \times n}$ an orthogonal basis of \mathbb{R}^{n}
- $S \in \mathbb{R}^{n \times p}$ a (rectangular) diagonal matrix.
- $V \in \mathbb{R}^{p \times p}$ une base orthogonale de \mathbb{R}^{p}

Singular value decomposition and PCA

The SVD of a matrix $X \in \mathbb{R}^{n \times p}$ with $n \leq p$ is of the form $X=U S V^{\top}$, avec

- $U \in \mathbb{R}^{n \times n}$ an orthogonal basis of \mathbb{R}^{n}
- $S \in \mathbb{R}^{n \times p}$ a (rectangular) diagonal matrix.
- $V \in \mathbb{R}^{p \times p}$ une base orthogonale de \mathbb{R}^{p}

Reduced SVD

The reduced SVD is more often used: If r is the rank of X then $X=U S V^{\top}$ with,

- $U \in \mathbb{R}^{n \times r}$ whose columns are orthonormal.
- $S \in \mathbb{R}^{r \times r}$ a squared diagonal matrix.
- $V \in \mathbb{R}^{r \times p}$ whose columns are orthonormal.

Singular value decomposition and PCA

The SVD of a matrix $X \in \mathbb{R}^{n \times p}$ with $n \leq p$ is of the form $X=U S V^{\top}$, avec

- $U \in \mathbb{R}^{n \times n}$ an orthogonal basis of \mathbb{R}^{n}
- $S \in \mathbb{R}^{n \times p}$ a (rectangular) diagonal matrix.
- $V \in \mathbb{R}^{p \times p}$ une base orthogonale de \mathbb{R}^{p}

Reduced SVD

The reduced SVD is more often used: If r is the rank of X then $X=U S V^{\top}$ with,

- $U \in \mathbb{R}^{n \times r}$ whose columns are orthonormal.
- $S \in \mathbb{R}^{r \times r}$ a squared diagonal matrix.
- $V \in \mathbb{R}^{r \times p}$ whose columns are orthonormal.

If the diagonal of S is such that $s_{1}>s_{2}>\ldots>s_{r}>0$ and $U_{1 k} \geq 0$ for all k the reduced SVD is unique. We have that

- $U S^{2} U^{\top}$ is a (compact) diagonalisation of $X X^{\top}$
- $V S^{2} V^{\top}$ is a (compact) diagonalisation of $X^{\top} X$

Outline

(1) Statistical concepts

(2) The maximum likelihood principle
(3) Method of moments
4. Linear regression
(5) Principal Component Analysis
(6) Bayesian Inference

Bayesian estimation

Bayesians treat the parameter θ as a random variable.
A priori
The Bayesian has to specify an a priori distribution $p(\theta)$ for the model parameters θ, which models his prior belief of the relative plausibility of different values of the parameter.

Bayesian estimation

Bayesians treat the parameter θ as a random variable.

A priori

The Bayesian has to specify an a priori distribution $p(\theta)$ for the model parameters θ, which models his prior belief of the relative plausibility of different values of the parameter.

A posteriori
The observation contribute through the likelihood: $p(x \mid \theta)$. The a posteriori distribution on the parameters is then

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)} \propto p(x \mid \theta) p(\theta) .
$$

\rightarrow The Bayesian estimator is therefore a probability distribution on the parameters.

This estimation procedure is called Bayesian inference.

Conjugate priors

A family of prior distribution

$$
\mathcal{P}_{A}=\left\{p_{\alpha}(\theta) \mid \alpha \in A\right\}
$$

is said to be conjugate to a model \mathcal{P}_{Θ}, if, for a sample

$$
X^{(1)}, \ldots, X^{(n)} \stackrel{\text { i.i.d. }}{\sim} p_{\theta} \quad \text { with } \quad p_{\theta} \in \mathcal{P}_{\Theta}
$$

the distribution q defined by

$$
q(\theta)=p\left(\theta \mid x^{(1)}, \ldots, x^{(n)}\right)=\frac{p_{\alpha}(\theta) \prod_{i} p_{\theta}\left(x^{(i)}\right)}{\int p_{\alpha}(\theta) \prod_{i} p_{\theta}\left(x^{(i)}\right) d \theta}
$$

is such that

$$
q \in \mathcal{P}_{A} .
$$

Dirichlet distribution

We say that $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right)$ follows the Dirichlet distribution and note

$$
\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})
$$

for

Dirichlet distribution

We say that $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right)$ follows the Dirichlet distribution and note

$$
\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})
$$

for $\boldsymbol{\theta}$ in the simplex $\triangle_{K}=\left\{\mathbf{u} \in \mathbb{R}_{+}^{K} \mid \sum_{k=1}^{K} u_{k}=1\right\}$ and

Dirichlet distribution

We say that $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right)$ follows the Dirichlet distribution and note

$$
\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})
$$

for $\boldsymbol{\theta}$ in the simplex $\triangle_{K}=\left\{\mathbf{u} \in \mathbb{R}_{+}^{K} \mid \sum_{k=1}^{K} u_{k}=1\right\}$ and admitting the density

$$
p(\boldsymbol{\theta} ; \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \theta_{1}^{\alpha_{1}-1} \ldots \theta_{K}^{\alpha_{K}-1}
$$

with respect to the uniform measure on the simplex, where

$$
\alpha_{0}=\sum_{k} \alpha_{k} \quad \text { and } \quad \Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Dirichlet distribution II

Dirichlet distribution II

$\mathbb{E}\left[\theta_{k}\right]=\frac{\alpha_{k}}{\alpha_{0}} \quad, \quad \operatorname{Var}\left(\theta_{k}\right)=\frac{\alpha_{k}\left(\alpha_{0}-\alpha_{k}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)} \quad$ and $\quad \operatorname{Cov}\left(\theta_{j}, \theta_{k}\right)=\frac{-\alpha_{j} \alpha_{k}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}$ with $\alpha_{0}=\sum_{k} \alpha_{k}$.

Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{\theta})$

Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{\theta})$

$$
p(\boldsymbol{\theta}) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \quad \text { and } \quad p(\mathbf{z} \mid \boldsymbol{\theta})=\prod_{k=1}^{K} \theta_{k}^{z_{k}}
$$

Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{\theta})$

$$
p(\boldsymbol{\theta}) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \quad \text { and } \quad p(\mathbf{z} \mid \boldsymbol{\theta})=\prod_{k=1}^{K} \theta_{k}^{z_{k}}
$$

Let $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}$ be an i.i.d. sample distributed like \mathbf{z}.
We have

$$
p\left(\boldsymbol{\theta} \mid \mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\right)=
$$

Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{\theta})$

$$
p(\boldsymbol{\theta}) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \quad \text { and } \quad p(\mathbf{z} \mid \boldsymbol{\theta})=\prod_{k=1}^{K} \theta_{k}^{z_{k}}
$$

Let $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}$ be an i.i.d. sample distributed like \mathbf{z}.
We have

$$
p\left(\boldsymbol{\theta} \mid \mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\right)=\frac{p(\boldsymbol{\theta}) \prod_{n} p\left(\mathbf{z}^{(n)} \mid \theta\right)}{p\left(\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\right)}
$$

Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{\theta})$

$$
p(\boldsymbol{\theta}) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \quad \text { and } \quad p(\mathbf{z} \mid \boldsymbol{\theta})=\prod_{k=1}^{K} \theta_{k}^{z_{k}}
$$

Let $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}$ be an i.i.d. sample distributed like \mathbf{z}.
We have

$$
p\left(\boldsymbol{\theta} \mid \mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\right)=\frac{p(\boldsymbol{\theta}) \prod_{n} p\left(\mathbf{z}^{(n)} \mid \theta\right)}{p\left(\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\right)} \propto \prod_{k} \theta_{k}^{\alpha_{k}+\sum_{n} z_{n k}-1}
$$

Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $\boldsymbol{\theta} \sim \operatorname{Dir}(\boldsymbol{\alpha})$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{\theta})$

$$
p(\boldsymbol{\theta}) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \quad \text { and } \quad p(\mathbf{z} \mid \boldsymbol{\theta})=\prod_{k=1}^{K} \theta_{k}^{z_{k}}
$$

Let $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}$ be an i.i.d. sample distributed like \mathbf{z}.
We have

$$
p\left(\boldsymbol{\theta} \mid \mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\right)=\frac{p(\boldsymbol{\theta}) \prod_{n} p\left(\mathbf{z}^{(n)} \mid \theta\right)}{p\left(\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}\right)} \propto \prod_{k} \theta_{k}^{\alpha_{k}+\sum_{n} z_{n k}-1}
$$

So that $(\theta \mid(Z)) \sim \operatorname{Dir}\left(\left(\alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)\right)$ with $N_{k}=\sum_{n} z_{n k}$

Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior distribution model the uncertainty that we have in the estimation process. As a consequence, one should always integrate over the uncertainty. So the final estimate for a function $f(\theta)$ is

$$
\int f(\boldsymbol{\theta}) p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior distribution model the uncertainty that we have in the estimation process. As a consequence, one should always integrate over the uncertainty. So the final estimate for a function $f(\theta)$ is

$$
\int f(\boldsymbol{\theta}) p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

In particular the predictive distribution is

$$
p\left(\mathbf{x}^{\prime} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right)=\int p\left(\mathbf{x}^{\prime} \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior distribution model the uncertainty that we have in the estimation process. As a consequence, one should always integrate over the uncertainty. So the final estimate for a function $f(\theta)$ is

$$
\int f(\boldsymbol{\theta}) p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

In particular the predictive distribution is

$$
p\left(\mathbf{x}^{\prime} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right)=\int p\left(\mathbf{x}^{\prime} \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

If a point estimate is needed for $\boldsymbol{\theta}$ then this should be the posterior mean

$$
\hat{\boldsymbol{\theta}}_{\mathrm{PM}}=\mathbb{E}\left[\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right]=\int \boldsymbol{\theta} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean

$$
\hat{\boldsymbol{\theta}}_{\mathrm{PM}}=\int \boldsymbol{\theta} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean

$$
\hat{\boldsymbol{\theta}}_{\mathrm{PM}}=\int \boldsymbol{\theta} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

An alternative is to compute the posterior mode or maximum a posteriori:

$$
\hat{\boldsymbol{\theta}}_{\mathrm{MAP}}=\arg \max _{\boldsymbol{\theta}} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right)
$$

Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean

$$
\hat{\boldsymbol{\theta}}_{\mathrm{PM}}=\int \boldsymbol{\theta} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

An alternative is to compute the posterior mode or maximum a posteriori:

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}_{\mathrm{MAP}} & =\arg \max _{\boldsymbol{\theta}} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) \\
& =\arg \max _{\boldsymbol{\theta}} p\left(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta})
\end{aligned}
$$

Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean

$$
\hat{\boldsymbol{\theta}}_{\mathrm{PM}}=\int \boldsymbol{\theta} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) d \boldsymbol{\theta}
$$

An alternative is to compute the posterior mode or maximum a posteriori:

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}_{\mathrm{MAP}} & =\arg \max _{\boldsymbol{\theta}} p\left(\boldsymbol{\theta} \mid \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right) \\
& =\arg \max _{\boldsymbol{\theta}} p\left(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta}) \\
& =\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)+\log p(\boldsymbol{\theta})
\end{aligned}
$$

... corresponds to a form of regularized maximum likelihood.

