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Statistical Model

Parametric model – Definition:

Set of distributions parametrized by a vector θ ∈ Θ ⊂ Rp

PΘ =
{
pθ(x) | θ ∈ Θ

}

Bernoulli model: X ∼ Ber(θ) Θ = [0, 1]

pθ(x) = θx(1− θ)(1−x)

Binomial model: X ∼ Bin(n, θ) Θ = [0, 1]

pθ(x) =

(
n

x

)
θx(1− θ)(1−x)

Multinomial model: X ∼M(n, π1, π2, . . . , πK ) Θ = [0, 1]K

pθ(x) =

(
n

x1, . . . , xk

)
π1

x1 . . . πk
xk
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1, . . . ,K}, with

P(C = k) = πk .

We will code C with a r.v. Y = (Y1, . . . ,YK )> with

Yk = 1{C=k}

For example if K = 5 and c = 4 then y = (0, 0, 0, 1, 0)>.
So y ∈ {0, 1}K with

∑K
k=1 yk = 1.

P(C = k) = P(Yk = 1) and P(Y = y) =
K∏

k=1

πykk .
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Bernoulli, Binomial, Multinomial

Y ∼ Ber(π) (Y1, . . . ,YK ) ∼M(1, π1, . . . , πK )

p(y) = πy (1− π)1−y p(y) = πy1
1 . . . πyKK

N1 ∼ Bin(n, π) (N1, . . . ,NK ) ∼M(n, π1, . . . , πK )

p(n1) =
( n
n1

)
πn1 (1− π)n−n1 p(n) =

(
n

n1 . . . nK

)
πn1

1 . . . πnKK

with (
n

i

)
=

n!

(n − i)!i !
and

(
n

n1 . . . nK

)
=

n!

n1! . . . nK !
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Gaussian model

Scalar Gaussian model : X ∼ N (µ, σ2)

X real valued r.v., and θ =
(
µ, σ2

)
∈ Θ = R× R∗+.

pµ,σ2 (x) =
1√

2πσ2
exp

(
−1

2

(x − µ)2

σ2

)

Multivariate Gaussian model: X ∼ N (µ,Σ)

X r.v. taking values in Rd . If Kd is the set of positive definite matrices
of size d × d , and θ = (µ,Σ) ∈ Θ = Rd ×Kd .

pµ,Σ (x) =
1√

(2π)d det Σ
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
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Gaussian densities
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Gaussian densities
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of
random variables.

X (1), . . . ,X (n)

A common assumption is that the variables are i.i.d.

independent

identically distributed, i.e. have the same distribution P.

This collection of observations is called

the sample or the observations in statistics

the samples in engineering

the training set in machine learning
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Maximum likelihood principle

Let PΘ =
{
p(x ; θ) | θ ∈ Θ

}
be a model

Let x be an observation

Likelihood:

L : Θ → R+

θ 7→ p(x ; θ)

Maximum likelihood estimator:

θ̂ML = argmax
θ∈Θ

p(x ; θ)
Sir Ronald Fisher

(1890-1962)

Case of i.i.d data

If (xi )1≤i≤n is an i.i.d. sample of size n:

θ̂ML = argmax
θ∈Θ

n∏
i=1

pθ(xi ) = argmax
θ∈Θ

n∑
i=1

log pθ(xi )
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The maximum likelihood estimator

The MLE

does not always exists

is not necessarily unique
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MLE for the Bernoulli model
Let X1,X2, . . . ,Xn an i.i.d. sample ∼ Ber(θ).

The log-likelihood is

`(θ) =
n∑

i=1

log p(xi ; θ)

=
n∑

i=1

log
[
θxi (1− θ)1−xi

]
=

n∑
i=1

(
xi log θ + (1− xi ) log(1− θ)

)
= N log(θ) + (n − N) log(1− θ)

with N :=
∑n

i=1 xi .

θ 7→ `(θ) is strongly concave ⇒ the MLE exists and is unique.

since ` differentiable + strongly concave its maximizer is the unique
stationary point

∇`(θ) =
∂

∂θ
`(θ) =

N

θ
− n − N

1− θ
.

Thus

θ̂ML =
N

n
=

x1 + x2 + · · ·+ xn
n

.
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MLE for the multinomial

Done on the board.
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Method of moments (Karl Pearson, 1894)
Consider a statistical model for a univariate r.v. parameterized by

θ = (θ1, . . . , θK ) ∈ Rk .

Denote by µk the kth moment of a random variable:

µ1(θ) = Eθ[X ], µ2(θ) = Eθ[X 2], . . . , µK (θ) = Eθ[XK ].

We have
(µ1, . . . , µK ) = f (θ) = f (θ1, . . . , θK ).

Principle of the method of moments

Given a sample X1, . . . ,Xn

Estimate the µks with the empirical moments: µ̂k =
1

n

n∑
i=1

X k
i .

The moment estimator is θ̂ defined as the solution to the equation

(µ̂1, . . . , µ̂K ) = f (θ̂1, . . . , θ̂K ).
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Method of moments: illustration
In many usual cases the moment estimator and the MLE are equal.

Example where MME 6= MLE

For the family of gamma distribution

p(x ;λ, p) =
xp−1e−λx

λp Γ(p)
1{x>0}

the MLE is not closed-form (exercise). However

µ1 = E[X ] = λp, µ2 = E[X 2] = p(p + 1)λ2, So that

λ =
µ2

1

µ2 − µ2
1

, p =
µ2 − µ2

1

µ1
,

which yields the moment estimators

λ̂ =
µ̂2

1

µ̂2 − µ̂2
1

, p =
µ̂2 − µ̂2

1

µ̂1
.
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Linear regression
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Design matrix

Consider a finite collection of vectors xi ∈ Rd pour i = 1 . . . n.

Design Matrix

X =

—– x>1 —–
...

...
...

—– x>n —–

 .

We assume that the vectors are centered, i.e. that
∑n

i=1 xi = 0.

If xi are not centered the design matrix of centered data can be
constructed with the rows xi − x̄> with x̄ = 1

n

∑n
i=1 xi .
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Linear regression

We consider the OLS regression for the linear hypothesis space.

We have X = Rp, Y = R and ` the square loss.

Consider the hypothesis space:

S = {fw | w ∈ Rp} with fw : x 7→ w>x.

Given a training set {(x1, y1), . . . , (xn, yn)} we have

R̂n(fw ) =
1

2n

n∑
i=1

(yi −w>xi )
2 =

1

2n
‖y − Xw‖2

2

with

the vector of outputs y> = (y1, . . . , yn) ∈ Rn

the design matrix X ∈ Rn×p whose ith row is equal to x>i .
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Solving linear regression

To solve min
w∈Rp

R̂n(fw), we consider that

R̂n(fw ) =
1

2n

(
w>X>Xw − 2w>X>y + ‖y‖2

)
is a differentiable convex function whose minima are thus characterized
by the

Normal equations

X>Xw − X>y = 0

If X>X is invertible, then f̂ is given by:

f̂ : x′ 7→ x′
>

(X>X)−1X>y.

Problem: X>X is never invertible for p > n and thus the solution is not
unique.
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Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

min
w∈Rp

1

2n
‖y − Xw‖2

2 + λ‖w‖2
2

Problem now strongly convex thus well-posed

Thus with unique solution:

ŵ(ridge) = (X>X + λI)−1X>y

Shrinkage effect

Regularization improves the conditioning number of the Hessian

⇒ Problem now easier to solve computationally
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Principal Component Analysis (1901)

Karl Pearson (1857 - 1936)
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Empirical covariance and correlation
For centered vectors :

Σ̂ =
1

n
X>X =

1

n

n∑
i=1

xix
>
i

For non centered vectors :

Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)>

Another common operation is to normalize the data by dividing each
column of X by its standard deviation. This leads to the empirical
covariance matrix.

C = Diag(σ̂)−1Σ̂ Diag(σ̂)−1 avec σ̂2
k = Σ̂k,k .

Ck,k ′ =
1

n

n∑
i=1

(x (k)
i − x̄k

σ̂k

)(x (k ′)
i − x̄k

′

σ̂k ′

)
.

Normalisation is optional...
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PCA from the analysis point of view
Data vectors live in Rd and one seeks a direction v in Rd such that the
variance along this direction is maximal. Or

Var((v>xi )i=1...n) =
1

n

n∑
i=1

(v>xi )
2

=
1

n

n∑
i=1

v>xix
>
i v

= v>
(1

n

n∑
i=1

xix
>
i

)
v

= v>Σ̂v

One needs to solve
max
‖v‖2=1

v>Σ̂v

Solution: first eigenvectors of Σ̂ say v1.
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Deflation
What is the second best direction to project the data on in order to
maximize the variance ?

One can perform a deflation

∀i , x̃i ← xi − v1(v>1 xi )

Which translates at the matrix level: X̃ ← X − Xv1v
>
1 .

Then again find the direction of maximal variance

˜̂
Σ =

1

n
X̃>X̃

One solves max
‖v‖2

v>
˜̂
Σv

Or equivalently max
‖v‖2

v>Σ̂v tel que v ⊥ v1.

Solution: This yields the second eigenvector of Σ̂ say v2. Etc.
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Principal directions

We usually call

principal directions (or factors) of the points cloud the vectors

v1, v2, . . . , vk .

principal components:
the projection of the data on the k principal directions.

The principal directions are the eigenvectors of Σ̂ = V S2V>.
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Singular value decomposition and PCA
The SVD of a matrix X ∈ Rn×p with n ≤ p is of the form X = USV>,
avec

U ∈ Rn×n an orthogonal basis of Rn

S ∈ Rn×p a (rectangular) diagonal matrix .

V ∈ Rp×p une base orthogonale de Rp

Reduced SVD

The reduced SVD is more often used: If r is the rank of X then
X = USV> with,

U ∈ Rn×r whose columns are orthonormal.

S ∈ Rr×r a squared diagonal matrix.

V ∈ Rr×p whose columns are orthonormal.

If the diagonal of S is such that s1 > s2 > . . . > sr > 0 and U1k ≥ 0 for
all k the reduced SVD is unique. We have that

U S2U> is a (compact) diagonalisation of XX>

V S2V> is a (compact) diagonalisation of X>X
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Outline

1 Statistical concepts
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5 Principal Component Analysis
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Bayesian estimation
Bayesians treat the parameter θ as a random variable.

A priori

The Bayesian has to specify an a priori distribution p (θ) for the model
parameters θ, which models his prior belief of the relative plausibility of
different values of the parameter.

A posteriori

The observation contribute through the likelihood: p (x |θ).
The a posteriori distribution on the parameters is then

p (θ|x) =
p (x |θ) p (θ)

p (x)
∝ p (x |θ) p (θ) .

→ The Bayesian estimator is therefore a probability distribution on the
parameters.

This estimation procedure is called Bayesian inference.
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Conjugate priors

A family of prior distribution

PA = {pα(θ) | α ∈ A}

is said to be conjugate to a model PΘ, if, for a sample

X (1), . . . ,X (n) i.i.d.∼ pθ with pθ ∈ PΘ,

the distribution q defined by

q(θ) = p(θ|x (1), . . . , x (n)) =
pα(θ)

∏
i pθ
(
x (i)
)∫

pα(θ)
∏

i pθ
(
x (i)
)
dθ

is such that
q ∈ PA.
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Dirichlet distribution

We say that θ = (θ1, . . . , θK ) follows the Dirichlet distribution and note

θ ∼ Dir(α)

for

θ in the simplex 4K = {u ∈ RK
+ |
∑K

k=1 uk = 1} and admitting the
density

p(θ;α)=
Γ(α0)∏
k Γ(αk)

θα1−1
1 . . . θαK−1

K

with respect to the uniform measure on the simplex, where

α0 =
∑
k

αk and Γ(x) :=

∫ ∞
0

tx−1e−tdt
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Dirichlet distribution II

E[θk ] =
αk

α0
, Var(θk) =

αk(α0 − αk)

α2
0(α0 + 1)

and Cov(θj , θk) =
−αjαk

α2
0(α0 + 1)

with α0 =
∑

k αk .
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with

A Dirichlet prior on the parameter of the multinomial: θ ∼ Dir(α)

A multinomial random variable z ∼M(1,θ)

p(θ) ∝
K∏

k=1

θαk−1
k and p(z|θ) =

K∏
k=1

θzkk

Let z(1), . . . , z(N) be an i.i.d. sample distributed like z.
We have

p(θ|z(1), . . . , z(N)) =
p(θ)

∏
n p(z(n)|θ)

p(z(1), . . . , z(N))
∝

∏
k

θ
αk+

∑
n znk−1

k

So that (θ|(Z )) ∼ Dir((α1 + N1, . . . , αK + NK )) with Nk =
∑

n znk
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Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior
distribution model the uncertainty that we have in the estimation
process. As a consequence, one should always integrate over the
uncertainty. So the final estimate for a function f (θ) is∫

f (θ) p(θ|x(1), . . . , x(n)) dθ.

In particular the predictive distribution is

p(x′|x(1), . . . , x(n)) =

∫
p(x′|θ) p(θ|x(1), . . . , x(n)) dθ.

If a point estimate is needed for θ then this should be the posterior mean

θ̂PM = E
[
θ|x(1), . . . , x(n)

]
=

∫
θ p(θ|x(1), . . . , x(n)) dθ
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Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean

θ̂PM =

∫
θ p(θ|x(1), . . . , x(n)) dθ.

An alternative is to compute the

posterior mode or maximum a posteriori:

θ̂MAP = arg max
θ

p(θ|x(1), . . . , x(n))

= arg max
θ

p(x(1), . . . , x(n)|θ)p(θ)

= arg max
θ

n∑
i=1

log p(x(i)|θ) + log p(θ)

... corresponds to a form of regularized maximum likelihood.
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