Review of Statistics

Guillaume Obozinski

Ecole des Ponts - ParisTech

Master MVA

Outline

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- 5 Bayesian Inference
- 6 Principal Component Analysis
- Mesures of performance for binary classifiers

Outline

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- 5 Bayesian Inference
- 6 Principal Component Analysis
- 7 Mesures of performance for binary classifiers

• Expectation of
$$X : \mathbb{E}[X] = \sum_{x} x \cdot p(x)$$

____ ▶

æ

• Expectation of $X : \mathbb{E}[X] = \sum_{x} x \cdot p(x)$

• Expectation of f(X), pour f mesurable :

$$\mathbb{E}\left[f\left(X\right)\right] = \sum_{x} f\left(x\right) \cdot p\left(x\right)$$

/₽ ► < ∃ ►

- Expectation of $X : \mathbb{E}[X] = \sum_{x} x \cdot p(x)$
- Expectation of f(X), pour f mesurable :

1

$$\mathbb{E}\left[f\left(X\right)\right] = \sum_{x} f\left(x\right) \cdot p\left(x\right)$$

• Variance :

$$\begin{aligned} \mathsf{Var}\left(X\right) &= & \mathbb{E}\left[\left(X-\mathbb{E}\left[X\right]\right)^2\right] \\ &= & \mathbb{E}\left[X^2\right]-\mathbb{E}\left[X\right]^2 \end{aligned}$$

• Covariance :

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

- Expectation of $X : \mathbb{E}[X] = \sum_{x} x \cdot p(x)$
- Expectation of f(X), pour f mesurable :

$$\mathbb{E}\left[f\left(X\right)\right] = \sum_{x} f\left(x\right) \cdot p\left(x\right)$$

• Variance :

$$\begin{aligned} \mathsf{Var}\left(X\right) &= & \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] \\ &= & \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 \end{aligned}$$

• Covariance :

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

• Conditional expectation of X given Y :

$$\mathbb{E}\left[X|Y\right] = \sum_{x} x \cdot p\left(x|y\right)$$

- Expectation of $X : \mathbb{E}[X] = \sum_{x} x \cdot p(x)$
- Expectation of f(X), pour f mesurable :

$$\mathbb{E}\left[f\left(X\right)\right] = \sum_{x} f\left(x\right) \cdot p\left(x\right)$$

• Variance :

$$\begin{aligned} \mathsf{Var}\left(X\right) &= & \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] \\ &= & \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 \end{aligned}$$

• Covariance :

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

• Conditional expectation of X given Y :

$$\mathbb{E}\left[X|Y\right] = \sum_{x} x \cdot p\left(x|y\right)$$

Variance decomposition

Independence concepts

Independence: $X \perp \!\!\!\perp Y$

We will say that X and Y are independent and write $X \perp Y$ iff:

$$\forall x, y, \qquad P(X = x, Y = y) = P(X = x) P(Y = y)$$

Independence concepts

Independence: $X \perp \!\!\!\perp Y$

We will say that X and Y are independent and write $X \perp Y$ iff:

$$\forall x, y, \qquad P(X = x, Y = y) = P(X = x) P(Y = y)$$

Conditional Independence: $X \perp \!\!\!\perp Y \mid Z$

We will say that X and Y are independent conditionally on Z and
write X ⊥⊥ Y | Z ssi:

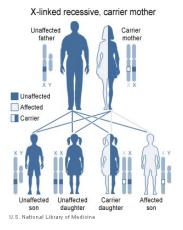
 $\forall x, y, z,$

$$P(X = x, Y = y | Z = z) = P(X = x | Z = z) P(Y = y | Z = z)$$

Conditional Independence exemple

Example of "X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia



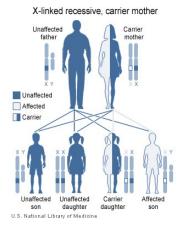
Conditional Independence exemple

Example of "X-linked recessive inheritance":

Transmission of the gene responsible for hemophilia

Risk for sons from an unaffected father:

- dependance between the situation of the two brothers.
- conditionally independent given that the mother is a carrier of the gene or not.



Parametric model – Definition:

Set of distributions parametrized by a vector $\theta \in \Theta \subset \mathbb{R}^p$

$$\mathcal{P}_{\Theta} = \big\{ p_{\theta}(x) \mid \theta \in \Theta \big\}$$

Parametric model – Definition:

Set of distributions parametrized by a vector $\theta\in\Theta\subset\mathbb{R}^p$

$$\mathcal{P}_{\Theta} = \big\{ p_{\theta}(x) \mid \theta \in \Theta \big\}$$

Bernoulli model: $X \sim Ber(\theta)$ $\Theta = [0, 1]$

$$p_{\theta}(x) = \theta^{x}(1-\theta)^{(1-x)}$$

Parametric model – Definition:

Set of distributions parametrized by a vector $\theta \in \Theta \subset \mathbb{R}^p$

$$\mathcal{P}_{\Theta} = \big\{ p_{\theta}(x) \mid \theta \in \Theta \big\}$$

Bernoulli model: $X \sim Ber(\theta)$ $\Theta = [0, 1]$

$$p_{ heta}(x) = heta^x (1- heta)^{(1-x)}$$

Binomial model: $X \sim Bin(n, \theta)$ $\Theta = [0, 1]$

$$p_{\theta}(x) = \binom{n}{x} \theta^{x} (1-\theta)^{(1-x)}$$

Parametric model – Definition:

Set of distributions parametrized by a vector $\theta \in \Theta \subset \mathbb{R}^p$

$$\mathcal{P}_{\Theta} = \big\{ p_{\theta}(x) \mid \theta \in \Theta \big\}$$

Bernoulli model: $X \sim Ber(\theta)$ $\Theta = [0, 1]$

$$p_{\theta}(x) = \theta^{x}(1-\theta)^{(1-x)}$$

Binomial model: $X \sim Bin(n, \theta)$ $\Theta = [0, 1]$

$$p_{\theta}(x) = \binom{n}{x} \theta^{x} (1-\theta)^{(1-x)}$$

Multinomial model: $X \sim \mathcal{M}(n, \pi_1, \pi_2, \dots, \pi_K)$ $\Theta = [0, 1]^K$

$$p_{\theta}(x) = \begin{pmatrix} n \\ x_1, \dots, x_k \end{pmatrix} \pi_1^{x_1} \dots \pi_k^{x_k}$$

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

$$Y_k = \mathbb{1}_{\{C=k\}}$$

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

$Y_k = \mathbb{1}_{\{C=k\}}$

For example if K = 5 and c = 4 then $\mathbf{y} = (0, 0, 0, 1, 0)^{\top}$.

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

$Y_k = 1_{\{C=k\}}$

For example if K = 5 and c = 4 then $\mathbf{y} = (0, 0, 0, 1, 0)^{\top}$. So $\mathbf{y} \in \{0, 1\}^{K}$ with $\sum_{k=1}^{K} y_{k} = 1$.

Let C a r.v. taking values in $\{1, \ldots, K\}$, with

$$\mathbb{P}(C=k)=\pi_k.$$

We will code C with a r.v. $Y = (Y_1, \ldots, Y_K)^\top$ with

$Y_k = \mathbb{1}_{\{C=k\}}$

For example if K = 5 and c = 4 then $\boldsymbol{y} = (0, 0, 0, 1, 0)^{\top}$. So $\boldsymbol{y} \in \{0, 1\}^{K}$ with $\sum_{k=1}^{K} y_{k} = 1$.

$$\mathbb{P}(\mathcal{C}=k)=\mathbb{P}(Y_k=1) \hspace{1mm} ext{and} \hspace{1mm} \mathbb{P}(Y=y)=\prod_{k=1}^K \pi_k^{y_k}.$$

Bernoulli, Binomial, Multinomial

$$Y \sim \text{Ber}(\pi)$$
 $(Y_1, \dots, Y_K) \sim \mathcal{M}(1, \pi_1, \dots, \pi_K)$ $p(y) = \pi^y (1 - \pi)^{1-y}$ $p(y) = \pi_1^{y_1} \dots \pi_K^{y_K}$ $N_1 \sim \text{Bin}(n, \pi)$ $(N_1, \dots, N_K) \sim \mathcal{M}(n, \pi_1, \dots, \pi_K)$ $p(n_1) = \binom{n}{n_1} \pi^{n_1} (1 - \pi)^{n-n_1}$ $p(\mathbf{n}) = \binom{n}{n_1 \dots n_K} \pi_1^{n_1} \dots \pi_K^{n_K}$

with

$$\binom{n}{i} = \frac{n!}{(n-i)!i!} \quad \text{and} \quad \binom{n}{n_1 \dots n_K} = \frac{n!}{n_1! \dots n_K!}$$

æ

'문▶' < 문≯

_ ▶ <

Gaussian model

Scalar Gaussian model : $X \sim \mathcal{N}(\mu, \sigma^2)$ X real valued r.v., and $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}^*_+$.

$$p_{\mu,\sigma^2}(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}
ight)$$

Gaussian model

Scalar Gaussian model : $X \sim \mathcal{N}(\mu, \sigma^2)$ X real valued r.v., and $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}^*_+$.

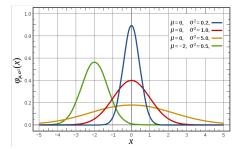
$$p_{\mu,\sigma^2}(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}
ight)$$

Multivariate Gaussian model: $X \sim \mathcal{N}\left(oldsymbol{\mu}, \Sigma
ight)$

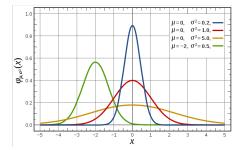
X r.v. taking values in \mathbb{R}^d . If \mathcal{K}_d is the set of positive definite matrices of size $d \times d$, and $\theta = (\mu, \Sigma) \in \Theta = \mathbb{R}^d \times \mathcal{K}_d$.

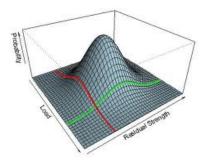
$$p_{\mu, \mathbf{\Sigma}} \left(\mathbf{x}
ight) = rac{1}{\sqrt{\left(2 \pi
ight)^d \det \mathbf{\Sigma}}} \exp \left(-rac{1}{2} \left(\mathbf{x} - \mu
ight)^T \mathbf{\Sigma}^{-1} \left(\mathbf{x} - \mu
ight)
ight)$$

Gaussian densities



Gaussian densities





*ロ * *母 * * ほ * * ほ *

æ

Sample/Training set

The data used to learn or estimate a model typically consists of a collection of observation which can be thought of as instantiations of random variables.

 $X^{(1)}, ..., X^{(n)}$

Sample/Training set

The data used to learn or estimate a model typically consists of a collection of observation which can be thought of as instantiations of random variables.

 $X^{(1)}, \ldots, X^{(n)}$

A common assumption is that the variables are **i.i.d.**

- independent
- identically distributed, i.e. have the same distribution *P*.

Sample/Training set

The data used to learn or estimate a model typically consists of a collection of observation which can be thought of as instantiations of random variables.

 $X^{(1)}, \ldots, X^{(n)}$

A common assumption is that the variables are **i.i.d.**

- independent
- identically distributed, i.e. have the same distribution *P*.

This collection of observations is called

- the sample or the observations in statistics
- the samples in engineering
- the training set in machine learning

Outline

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- Bayesian Inference
- 6 Principal Component Analysis
- 7 Mesures of performance for binary classifiers

The maximum likelihood principle

- Let $\mathcal{P}_{\Theta} = \left\{ p(x; \theta) \mid \theta \in \Theta \right\}$ be a *model*
- Let x be an observation

- Let $\mathcal{P}_{\Theta} = \left\{ p(x; \theta) \mid \theta \in \Theta \right\}$ be a *model*
- Let x be an observation

Likelihood:

$$\mathcal{L} : \Theta \rightarrow \mathbb{R}_+ \ heta \mapsto p(x; heta)$$

_ ▶ <

- Let $\mathcal{P}_{\Theta} = \left\{ p(x; \theta) \mid \theta \in \Theta \right\}$ be a *model*
- Let x be an observation

Likelihood:

$$\mathcal{L} : \Theta \rightarrow \mathbb{R}_+ \ heta \mapsto p(x; \theta)$$

Maximum likelihood estimator:

$$\hat{ heta}_{\mathrm{ML}} = \operatorname*{argmax}_{ heta \in \Theta} p(x; heta)$$

Sir Ronald Fisher (1890-1962)

- Let $\mathcal{P}_{\Theta} = \big\{ p(x; \theta) \mid \theta \in \Theta \big\}$ be a *model*
- Let x be an observation

Likelihood:

$$egin{array}{rcl} \mathcal{L}:\Theta& o&\mathbb{R}_+\ heta&\mapsto&p(x; heta) \end{array}$$

Maximum likelihood estimator:

 $\hat{ heta}_{\mathrm{ML}} = \operatorname*{argmax}_{ heta \in \Theta} p(x; heta)$

Sir Ronald Fisher (1890-1962)

Case of i.i.d data

If $(x_i)_{1 \le i \le n}$ is an i.i.d. sample of size *n*:

$$\hat{ heta}_{ ext{ML}} = rgmax_{ heta \in \Theta} \prod_{i=1}^n p_{ heta}(x_i) = rgmax_{ heta \in \Theta} \sum_{i=1}^n \log \ p_{ heta}(x_i)$$

The maximum likelihood estimator

The MLE

• does not always exists

The maximum likelihood estimator

The MLE

- does not always exists
- is not necessarily unique

The maximum likelihood estimator

The MLE

- does not always exists
- is not necessarily unique

MLE for the Bernoulli model Let $X_1, X_2, ..., X_n$ an i.i.d. sample ~ Ber(θ).

個人 くほん くほん

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

$$\ell(\theta) = \sum_{i=1}^n \log p(x_i; \theta)$$

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(\theta) = \sum_{i=1}^n \log p(x_i; \theta) = \sum_{i=1}^n \log \left[\theta^{x_i} (1-\theta)^{1-x_i} \right]$$

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(heta) = \sum_{i=1}^n \log p(x_i; heta) = \sum_{i=1}^n \log \left[heta^{x_i} (1- heta)^{1-x_i}
ight] \ = \sum_{i=1}^n \left(x_i \log heta + (1-x_i) \log(1- heta)
ight)$$

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta) = \sum_{i=1}^{n} \log \left[\theta^{x_i} (1-\theta)^{1-x_i} \right]$$
$$= \sum_{i=1}^{n} \left(x_i \log \theta + (1-x_i) \log(1-\theta) \right) = N \log(\theta) + (n-N) \log(1-\theta)$$

with $N := \sum_{i=1}^{n} x_i$.

11 ►

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta) = \sum_{i=1}^{n} \log \left[\theta^{x_i} (1-\theta)^{1-x_i} \right]$$
$$= \sum_{i=1}^{n} \left(x_i \log \theta + (1-x_i) \log(1-\theta) \right) = N \log(\theta) + (n-N) \log(1-\theta)$$

with $N := \sum_{i=1}^{n} x_i$. **MLE:** Existence? Uniqueness?

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta) = \sum_{i=1}^{n} \log \left[\theta^{x_i} (1-\theta)^{1-x_i} \right]$$
$$= \sum_{i=1}^{n} \left(x_i \log \theta + (1-x_i) \log(1-\theta) \right) = N \log(\theta) + (n-N) \log(1-\theta)$$

- with $N := \sum_{i=1}^{n} x_i$. **MLE:** Existence? Uniqueness?
 - $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta) = \sum_{i=1}^{n} \log \left[\theta^{x_i} (1-\theta)^{1-x_i} \right]$$
$$= \sum_{i=1}^{n} \left(x_i \log \theta + (1-x_i) \log(1-\theta) \right) = N \log(\theta) + (n-N) \log(1-\theta)$$

with
$$N := \sum_{i=1}^{n} x_i$$
.
MLE: Existence? Uniqueness?

- $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.
- since ℓ differentiable + strongly concave its maximizer is the unique stationary point

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(heta) = \sum_{i=1}^{n} \log p(x_i; heta) = \sum_{i=1}^{n} \log \left[heta^{x_i} (1- heta)^{1-x_i}
ight]$$

= $\sum_{i=1}^{n} \left(x_i \log heta + (1-x_i) \log(1- heta)
ight) = N \log(heta) + (n-N) \log(1- heta)$

with
$$N := \sum_{i=1}^{n} x_i$$
.
MLE: Existence? Uniqueness?

- $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.
- since l differentiable + strongly concave its maximizer is the unique stationary point

$$abla \ell(heta) = rac{\partial}{\partial heta} \ell(heta) = rac{N}{ heta} - rac{n-N}{1- heta}.$$

Let X_1, X_2, \ldots, X_n an i.i.d. sample $\sim Ber(\theta)$. The log-likelihood is

$$\ell(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta) = \sum_{i=1}^{n} \log \left[\theta^{x_i} (1-\theta)^{1-x_i} \right]$$
$$= \sum_{i=1}^{n} \left(x_i \log \theta + (1-x_i) \log(1-\theta) \right) = N \log(\theta) + (n-N) \log(1-\theta)$$

with
$$N := \sum_{i=1}^{n} x_i$$
.
MLE: Existence? Uniqueness?

- $\theta \mapsto \ell(\theta)$ is strongly concave \Rightarrow the MLE exists and is unique.
- since l differentiable + strongly concave its maximizer is the unique stationary point

$$abla \ell(heta) = rac{\partial}{\partial heta} \ell(heta) = rac{N}{ heta} - rac{n-N}{1- heta} heta$$

Thus

$$\hat{\theta}_{\mathrm{ML}} = \frac{N}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

MLE for the multinomial

Done on the board.

Outline

Statistical concepts

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- Bayesian Inference
- 6 Principal Component Analysis
- 7 Mesures of performance for binary classifiers

Consider a statistical model for a univariate r.v. parameterized by

$$\boldsymbol{ heta} = (heta_1, \dots, heta_K) \in \mathbb{R}^k$$

Denote by μ^k the *k*th moment of a random variable:

$$\mu_1(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X], \quad \mu_2(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^2], \quad \dots, \quad \mu_K(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^K].$$

Consider a statistical model for a univariate r.v. parameterized by

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_K) \in \mathbb{R}^k$$

Denote by μ^k the *k*th moment of a random variable:

$$\mu_1(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X], \quad \mu_2(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^2], \quad \dots, \quad \mu_K(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^K].$$

We have

$$(\mu_1,\ldots,\mu_K)=f(\boldsymbol{\theta})=f(\theta_1,\ldots,\theta_K).$$

Consider a statistical model for a univariate r.v. parameterized by

$$\boldsymbol{ heta} = (heta_1, \dots, heta_K) \in \mathbb{R}^k$$

Denote by μ^k the *k*th moment of a random variable:

$$\mu_1(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X], \quad \mu_2(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^2], \quad \dots, \quad \mu_K(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^K].$$

We have

$$(\mu_1,\ldots,\mu_K)=f(\boldsymbol{\theta})=f(\theta_1,\ldots,\theta_K).$$

Principle of the method of moments

Given a sample X_1, \ldots, X_n

• Estimate the μ_k s with the empirical moments: $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

Consider a statistical model for a univariate r.v. parameterized by

$$\boldsymbol{ heta} = (heta_1, \dots, heta_K) \in \mathbb{R}^k.$$

Denote by μ^k the *k*th moment of a random variable:

$$\mu_1(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X], \quad \mu_2(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^2], \quad \dots, \quad \mu_K(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}}[X^K].$$

We have

$$(\mu_1,\ldots,\mu_K)=f(\boldsymbol{\theta})=f(\theta_1,\ldots,\theta_K).$$

Principle of the method of moments

Given a sample X_1, \ldots, X_n

- Estimate the μ_k s with the empirical moments: $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.
- ${\, \bullet \, }$ The moment estimator is $\hat{\theta}$ defined as the solution to the equation

$$(\hat{\mu}_1,\ldots,\hat{\mu}_K)=f(\hat{\theta}_1,\ldots,\hat{\theta}_K).$$

In many usual cases the *moment estimator* and the *MLE* are equal.

In many usual cases the *moment estimator* and the *MLE* are equal.

Example where $MME \neq MLE$

For the family of gamma distribution

$$p(x; \lambda, p) = \frac{x^{p-1}e^{-\lambda x}}{\lambda^p \, \Gamma(p)} \mathbf{1}_{\{x > 0\}}$$

the MLE is not closed-form (exercise).

In many usual cases the moment estimator and the MLE are equal.

Example where $MME \neq MLE$

For the family of gamma distribution

$$p(x;\lambda,p) = \frac{x^{p-1}e^{-\lambda x}}{\lambda^p \, \Gamma(p)} \mathbf{1}_{\{x>0\}}$$

the MLE is not closed-form (exercise). However

$$\mu_1 = \mathbb{E}[X] = \lambda p, \qquad \mu_2 = \mathbb{E}[X^2] = p(p+1)\lambda^2,$$

In many usual cases the moment estimator and the MLE are equal.

Example where MME \neq MLE

For the family of gamma distribution

$$p(x;\lambda,p) = \frac{x^{p-1}e^{-\lambda x}}{\lambda^p \, \Gamma(p)} \mathbf{1}_{\{x>0\}}$$

the MLE is not closed-form (exercise). However

$$egin{aligned} \mu_1 &= \mathbb{E}[X] = \lambda p, \qquad \mu_2 = \mathbb{E}[X^2] = p(p+1)\lambda^2, ext{ So that} \ \lambda &= rac{\mu_1^2}{\mu_2 - \mu_1^2}, \qquad p = rac{\mu_2 - \mu_1^2}{\mu_1}, \end{aligned}$$

which yields the moment estimators

$$\hat{\lambda} = rac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2}, \qquad p = rac{\hat{\mu}_2 - \hat{\mu}_1^2}{\hat{\mu}_1}$$

Review of Statistics

Outline

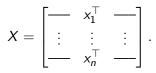
Statistical concepts

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- 5 Bayesian Inference
- 6 Principal Component Analysis
- 7 Mesures of performance for binary classifiers

Design matrix

Consider a finite collection of vectors $x_i \in \mathbb{R}^d$ pour $i = 1 \dots n$.

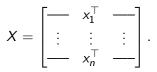
Design Matrix



Design matrix

Consider a finite collection of vectors $x_i \in \mathbb{R}^d$ pour $i = 1 \dots n$.

Design Matrix



We assume that the vectors are centered, i.e. that $\sum_{i=1}^{n} x_i = 0$.

Design matrix

Consider a finite collection of vectors $x_i \in \mathbb{R}^d$ pour $i = 1 \dots n$.

Design Matrix

$$X = \begin{bmatrix} -- & x_1^\top & -- \\ \vdots & \vdots & \vdots \\ -- & x_n^\top & -- \end{bmatrix}.$$

We assume that the vectors are centered, i.e. that $\sum_{i=1}^{n} x_i = 0$.

If x_i are not centered the design matrix of centered data can be constructed with the rows $x_i - \bar{x}^{\top}$ with $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

- We consider the OLS regression for the linear hypothesis space.
- We have $\mathcal{X} = \mathbb{R}^{p}$, $\mathcal{Y} = \mathbb{R}$ and ℓ the square loss.

• We consider the OLS regression for the linear hypothesis space.

• We have $\mathcal{X} = \mathbb{R}^{p}$, $\mathcal{Y} = \mathbb{R}$ and ℓ the square loss.

Consider the hypothesis space:

$$S = \{f_{\boldsymbol{w}} \mid \boldsymbol{w} \in \mathbb{R}^p\}$$
 with $f_{\boldsymbol{w}} : \boldsymbol{x} \mapsto \boldsymbol{w}^\top \boldsymbol{x}.$

• We consider the OLS regression for the linear hypothesis space.

• We have $\mathcal{X} = \mathbb{R}^{p}$, $\mathcal{Y} = \mathbb{R}$ and ℓ the square loss.

Consider the hypothesis space:

 $S = \{f_{\boldsymbol{w}} \mid \boldsymbol{w} \in \mathbb{R}^p\}$ with $f_{\boldsymbol{w}} : \boldsymbol{x} \mapsto \boldsymbol{w}^\top \boldsymbol{x}$.

Given a training set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ we have

$$\widehat{\mathcal{R}}_n(f_w) = \frac{1}{2n} \sum_{i=1}^n (y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2$$

• We consider the OLS regression for the linear hypothesis space.

• We have $\mathcal{X} = \mathbb{R}^{p}$, $\mathcal{Y} = \mathbb{R}$ and ℓ the square loss.

Consider the hypothesis space:

 $S = \{f_{\boldsymbol{w}} \mid \boldsymbol{w} \in \mathbb{R}^{p}\}$ with $f_{\boldsymbol{w}} : \boldsymbol{x} \mapsto \boldsymbol{w}^{\top} \boldsymbol{x}$.

Given a training set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ we have

$$\widehat{\mathcal{R}}_n(f_w) = \frac{1}{2n} \sum_{i=1}^n (y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2 = \frac{1}{2n} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}\|_2^2$$

with

- the vector of outputs $oldsymbol{y}^{ op} = (y_1, \dots, y_n) \in \mathbb{R}^n$
- the design matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ whose *i*th row is equal to \mathbf{x}_i^{\top} .

To solve $\min_{\boldsymbol{w} \in \mathbb{R}^p} \widehat{\mathcal{R}}_n(f_{\boldsymbol{w}})$, we consider that

$$\widehat{\mathcal{R}}_n(f_w) = \frac{1}{2n} \left(\boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{X} \, \boldsymbol{w} - 2 \, \boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{y} + \|\boldsymbol{y}\|^2 \right)$$

is a differentiable convex function whose minima are thus characterized by the

To solve $\min_{\boldsymbol{w} \in \mathbb{R}^p} \widehat{\mathcal{R}}_n(f_{\boldsymbol{w}})$, we consider that

$$\widehat{\mathcal{R}}_n(f_w) = \frac{1}{2n} \left(\boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{w} - 2 \, \boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{y} + \|\boldsymbol{y}\|^2 \right)$$

is a differentiable convex function whose minima are thus characterized by the

Normal equations

$$\boldsymbol{X}^{ op} \boldsymbol{X} \boldsymbol{w} - \boldsymbol{X}^{ op} \boldsymbol{y} = \boldsymbol{0}$$

To solve $\min_{\boldsymbol{w}\in\mathbb{R}^p}\widehat{\mathcal{R}}_n(f_{\boldsymbol{w}}),$ we consider that

$$\widehat{\mathcal{R}}_n(f_w) = \frac{1}{2n} \left(\boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{w} - 2 \, \boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{y} + \|\boldsymbol{y}\|^2 \right)$$

is a differentiable convex function whose minima are thus characterized by the

Normal equations

$$\boldsymbol{X}^{ op} \boldsymbol{X} \boldsymbol{w} - \boldsymbol{X}^{ op} \boldsymbol{y} = \boldsymbol{0}$$

If $\boldsymbol{X}^{\top}\boldsymbol{X}$ is invertible, then \hat{f} is given by:

$$\widehat{f}: \mathbf{x}' \mapsto {\mathbf{x}'}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

To solve $\min_{\boldsymbol{w} \in \mathbb{R}^p} \widehat{\mathcal{R}}_n(f_{\boldsymbol{w}})$, we consider that

$$\widehat{\mathcal{R}}_n(f_w) = \frac{1}{2n} (\boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{w} - 2 \, \boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{y} + \|\boldsymbol{y}\|^2)$$

is a differentiable convex function whose minima are thus characterized by the

Normal equations

$$\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{w} - \boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{0}$$

If $\boldsymbol{X}^{\top}\boldsymbol{X}$ is invertible, then \hat{f} is given by:

$$\widehat{f}: \mathbf{x}' \mapsto {\mathbf{x}'}^\top (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.$$

Problem: $\mathbf{X}^{\top}\mathbf{X}$ is never invertible for p > n and thus the solution is not unique.

Is obtained by applying Tikhonov regularization to OLS regression.

$$\min_{\boldsymbol{w}\in\mathbb{R}^p}\frac{1}{2n}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\|_2^2+\lambda\|\boldsymbol{w}\|_2^2$$

• Problem now strongly convex thus well-posed

Is obtained by applying Tikhonov regularization to OLS regression.

$$\min_{\boldsymbol{w}\in\mathbb{R}^p}\frac{1}{2n}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\|_2^2+\lambda\|\boldsymbol{w}\|_2^2$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$\hat{\pmb{w}}^{(\mathsf{ridge})} = (\pmb{X}^{ op} \pmb{X} + \lambda \pmb{I})^{-1} \pmb{X}^{ op} \pmb{y}$$

Is obtained by applying Tikhonov regularization to OLS regression.

$$\min_{\boldsymbol{w}\in\mathbb{R}^p}\frac{1}{2n}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\|_2^2+\lambda\|\boldsymbol{w}\|_2^2$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$\hat{\boldsymbol{w}}^{(\mathsf{ridge})} = (\boldsymbol{X}^{ op} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^{ op} \boldsymbol{y}$$

Shrinkage effect

Is obtained by applying Tikhonov regularization to OLS regression.

$$\min_{\boldsymbol{w}\in\mathbb{R}^p}\frac{1}{2n}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\|_2^2+\lambda\|\boldsymbol{w}\|_2^2$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$\hat{\boldsymbol{w}}^{(\mathsf{ridge})} = (\boldsymbol{X}^{ op} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^{ op} \boldsymbol{y}$$

• Shrinkage effect

• Regularization improves the conditioning number of the Hessian

Is obtained by applying Tikhonov regularization to OLS regression.

$$\min_{\boldsymbol{w}\in\mathbb{R}^p}\frac{1}{2n}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\|_2^2+\lambda\|\boldsymbol{w}\|_2^2$$

- Problem now strongly convex thus well-posed
- Thus with unique solution:

$$\hat{\pmb{w}}^{(\mathsf{ridge})} = (\pmb{X}^{ op} \pmb{X} + \lambda \pmb{I})^{-1} \pmb{X}^{ op} \pmb{y}$$

- Shrinkage effect
- Regularization improves the conditioning number of the Hessian
- \Rightarrow Problem now easier to solve computationally

Outline

Statistical concepts

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- 5 Bayesian Inference
- 6 Principal Component Analysis
- 7 Mesures of performance for binary classifiers

Bayesian estimation

Bayesians treat the parameter θ as a random variable.

A priori

The Bayesian has to specify an *a priori* distribution $p(\theta)$ for the model parameters θ , which models his prior belief of the relative plausibility of different values of the parameter.

Bayesian estimation

Bayesians treat the parameter θ as a random variable.

A priori

The Bayesian has to specify an *a priori* distribution $p(\theta)$ for the model parameters θ , which models his prior belief of the relative plausibility of different values of the parameter.

A posteriori

The observation contribute through the likelihood: $p(x|\theta)$. The *a posteriori* distribution on the parameters is then

$$p(\theta|x) = rac{p(x|\theta) p(\theta)}{p(x)} \propto p(x|\theta) p(\theta).$$

 $\rightarrow\,$ The Bayesian estimator is therefore a probability distribution on the parameters.

This estimation procedure is called Bayesian inference,

Dirichlet distribution

We say that $m{ heta}=(heta_1,\ldots, heta_{\mathcal{K}})$ follows the Dirichlet distribution and note $m{ heta}\sim {\sf Dir}(m{lpha})$

for

_ ▶ <

Dirichlet distribution

We say that $m{ heta}=(heta_1,\ldots, heta_{\mathcal{K}})$ follows the Dirichlet distribution and note $m{ heta}\sim {\sf Dir}(m{lpha})$

for $\boldsymbol{\theta}$ in the simplex $riangle_{\mathcal{K}} = \{ \boldsymbol{u} \in \mathbb{R}_+^{\mathcal{K}} \mid \sum_{k=1}^{\mathcal{K}} u_k = 1 \}$ and

Dirichlet distribution

We say that $\theta = (\theta_1, \dots, \theta_K)$ follows the Dirichlet distribution and note $\theta \sim \text{Dir}(\alpha)$

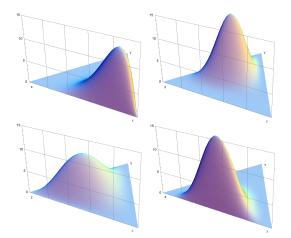
for θ in the simplex $\triangle_{\kappa} = \{ u \in \mathbb{R}_{+}^{\kappa} \mid \sum_{k=1}^{\kappa} u_{k} = 1 \}$ and admitting the density

$$p(\boldsymbol{\theta}; \boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\prod_k \Gamma(\alpha_k)} \, \theta_1^{\alpha_1 - 1} \dots \theta_K^{\alpha_K - 1}$$

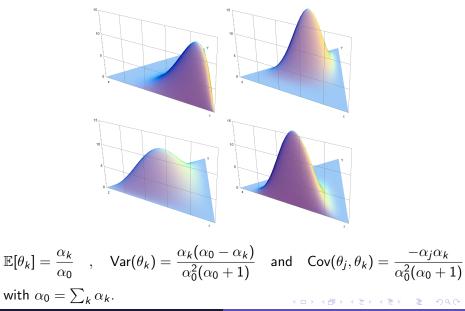
with respect to the uniform measure on the simplex, where

$$\alpha_0 = \sum_k \alpha_k$$
 and $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$

Dirichlet distribution II



Dirichlet distribution II



Review of Statistics

Consider the simple Bayesian Dirichlet-Multinomial model with

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $m{z} \sim \mathcal{M}(1,m{ heta})$

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $oldsymbol{z} \sim \mathcal{M}(1,oldsymbol{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1} \qquad ext{and} \qquad p(oldsymbol{z} | oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$$

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $m{z} \sim \mathcal{M}(1,m{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1}$$
 and $p(oldsymbol{z}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$

Let $z^{(1)}, \ldots, z^{(N)}$ be an i.i.d. sample distributed like z. We have

$$p(\theta|\boldsymbol{z}^{(1)},\ldots,\boldsymbol{z}^{(N)}) =$$

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $m{z} \sim \mathcal{M}(1,m{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1} \qquad ext{and} \qquad p(oldsymbol{z}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$$

Let $z^{(1)}, \ldots, z^{(N)}$ be an i.i.d. sample distributed like z. We have

$$p(\boldsymbol{\theta}|\boldsymbol{z}^{(1)},\ldots,\boldsymbol{z}^{(N)}) = \frac{p(\boldsymbol{\theta})\prod_n p(\boldsymbol{z}^{(n)}|\boldsymbol{\theta})}{p(\boldsymbol{z}^{(1)},\ldots,\boldsymbol{z}^{(N)})}$$

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $m{z} \sim \mathcal{M}(1,m{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1}$$
 and $p(oldsymbol{z}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$

Let $z^{(1)}, \ldots, z^{(N)}$ be an i.i.d. sample distributed like z. We have

$$p(\theta|\boldsymbol{z}^{(1)},\ldots,\boldsymbol{z}^{(N)}) = \frac{p(\theta)\prod_n p(\boldsymbol{z}^{(n)}|\theta)}{p(\boldsymbol{z}^{(1)},\ldots,\boldsymbol{z}^{(N)})} \propto \prod_k \theta_k^{\alpha_k + \sum_n z_{nk} - 1}$$

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $m{z} \sim \mathcal{M}(1,m{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1} \qquad ext{and} \qquad p(oldsymbol{z}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$$

Let $z^{(1)}, \ldots, z^{(N)}$ be an i.i.d. sample distributed like z. We have

$$p(\boldsymbol{\theta}|\boldsymbol{z}^{(1)},\ldots,\boldsymbol{z}^{(N)}) = \frac{p(\boldsymbol{\theta})\prod_{n}p(\boldsymbol{z}^{(n)}|\boldsymbol{\theta})}{p(\boldsymbol{z}^{(1)},\ldots,\boldsymbol{z}^{(N)})} \propto \prod_{k}\theta_{k}^{\alpha_{k}+\sum_{n}z_{nk}-1}$$

So that $(\theta|(Z)) \sim \text{Dir}((\alpha_1 + N_1, \dots, \alpha_K + N_K))$ with $N_k = \sum_n z_{nk}$

Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior distribution model the *uncertainty* that we have in the estimation process. As a consequence, one should always integrate over the uncertainty. So the final estimate for a function $f(\theta)$ is

$$\int f(\boldsymbol{\theta}) \, p(\boldsymbol{\theta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \, d\boldsymbol{\theta}.$$

Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior distribution model the *uncertainty* that we have in the estimation process. As a consequence, one should always integrate over the uncertainty. So the final estimate for a function $f(\theta)$ is

$$\int f(\boldsymbol{\theta}) \, p(\boldsymbol{\theta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \, d\boldsymbol{\theta}.$$

In particular the predictive distribution is

$$p(\mathbf{x}'|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}) = \int p(\mathbf{x}'|\boldsymbol{\theta}) \, p(\boldsymbol{\theta}|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}) \, d\boldsymbol{\theta}.$$

Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior distribution model the *uncertainty* that we have in the estimation process. As a consequence, one should always integrate over the uncertainty. So the final estimate for a function $f(\theta)$ is

$$\int f(\boldsymbol{\theta}) \, p(\boldsymbol{\theta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \, d\boldsymbol{\theta}.$$

In particular the predictive distribution is

$$p(\mathbf{x}'|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}) = \int p(\mathbf{x}'|\boldsymbol{\theta}) \, p(\boldsymbol{\theta}|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}) \, d\boldsymbol{\theta}.$$

If a point estimate is needed for θ then this should be the posterior mean

$$\hat{\boldsymbol{ heta}}_{\mathrm{PM}} = \mathbb{E}\big[\boldsymbol{ heta}|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\big] = \int \boldsymbol{ heta} \ p(\boldsymbol{ heta}|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}) \ d\boldsymbol{ heta}$$

Often, it is too hard or too costly to compute the posterior mean

$$\hat{\boldsymbol{ heta}}_{\mathrm{PM}} = \int \boldsymbol{ heta} \, p(\boldsymbol{ heta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \, d\boldsymbol{ heta}.$$

Often, it is too hard or too costly to compute the posterior mean

$$\hat{\boldsymbol{ heta}}_{\mathrm{PM}} = \int \boldsymbol{ heta} \, p(\boldsymbol{ heta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \, d\boldsymbol{ heta}.$$

An alternative is to compute the

posterior mode or maximum a posteriori:

$$\hat{ heta}_{ ext{MAP}} = rg\max_{oldsymbol{ heta}} p(oldsymbol{ heta}|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)})$$

Often, it is too hard or too costly to compute the posterior mean

$$\hat{\boldsymbol{ heta}}_{\mathrm{PM}} = \int \boldsymbol{ heta} \, p(\boldsymbol{ heta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \, d\boldsymbol{ heta}.$$

An alternative is to compute the

posterior mode or maximum a posteriori:

$$\begin{split} \hat{\theta}_{\text{MAP}} &= \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \\ &= \arg \max_{\boldsymbol{\theta}} p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) \end{split}$$

Often, it is too hard or too costly to compute the posterior mean

$$\hat{\boldsymbol{ heta}}_{\mathrm{PM}} = \int \boldsymbol{ heta} \, p(\boldsymbol{ heta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) \, d\boldsymbol{ heta}.$$

An alternative is to compute the

posterior mode or maximum a posteriori:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)})$$

$$= \arg \max_{\boldsymbol{\theta}} p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} | \boldsymbol{\theta}) p(\boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p(\mathbf{x}^{(i)} | \boldsymbol{\theta}) + \log p(\boldsymbol{\theta})$$

... corresponds to a form of regularized maximum likelihood.

Conjugate priors

A family of prior distribution

$$\mathcal{P}_{\mathcal{A}} = \{ p_{\alpha}(\theta) \mid \alpha \in \mathcal{A} \}$$

is said to be **conjugate** to a model \mathcal{P}_{Θ} , if, for a sample

$$X^{(1)},\ldots,X^{(n)}\stackrel{\text{i.i.d.}}{\sim} p_{ heta}$$
 with $p_{ heta}\in\mathcal{P}_{\Theta},$

the distribution q defined by

$$q(\theta) = p(\theta|x^{(1)}, \dots, x^{(n)}) = \frac{p_{\alpha}(\theta) \prod_{i} p_{\theta}(x^{(i)})}{\int p_{\alpha}(\theta) \prod_{i} p_{\theta}(x^{(i)}) d\theta}$$

is such that

$$q \in \mathcal{P}_A$$
.

Outline

Statistical concepts

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- 5 Bayesian Inference
- 6 Principal Component Analysis

7 Mesures of performance for binary classifiers

Principal Component Analysis (1901)

Karl Pearson (1857 - 1936)

For centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} X^{\top} X = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$$

For centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} X^{\top} X = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$$

For non centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})^{\top}$$

For centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} X^{\top} X = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$$

For non centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})^\top$$

Another common operation is to normalize the data by dividing each column of X by its standard deviation. This leads to the empirical covariance matrix.

$$\mathcal{C} = \mathsf{Diag}(\widehat{\sigma})^{-1}\widehat{\Sigma}\,\mathsf{Diag}(\widehat{\sigma})^{-1} \qquad \mathsf{avec} \quad \widehat{\sigma}_k^2 = \widehat{\Sigma}_{k,k}.$$

For centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} X^{\top} X = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$$

For non centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})^{\top}$$

Another common operation is to normalize the data by dividing each column of X by its standard deviation. This leads to the empirical covariance matrix.

$$C = \operatorname{Diag}(\widehat{\sigma})^{-1}\widehat{\Sigma}\operatorname{Diag}(\widehat{\sigma})^{-1} \quad \text{avec} \quad \widehat{\sigma}_k^2 = \widehat{\Sigma}_{k,k}.$$
$$C_{k,k'} = \frac{1}{n} \sum_{i=1}^n \Big(\frac{x_i^{(k)} - \bar{x}^k}{\widehat{\sigma}_k}\Big) \Big(\frac{x_i^{(k')} - \bar{x}^{k'}}{\widehat{\sigma}_{k'}}\Big).$$

For centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} X^{\top} X = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$$

For non centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})^\top$$

Another common operation is to normalize the data by dividing each column of X by its standard deviation. This leads to the empirical covariance matrix.

$$\begin{split} \mathcal{C} &= \mathsf{Diag}(\widehat{\sigma})^{-1} \widehat{\Sigma} \, \mathsf{Diag}(\widehat{\sigma})^{-1} \qquad \mathsf{avec} \quad \widehat{\sigma}_k^2 = \widehat{\Sigma}_{k,k}. \\ \mathcal{C}_{k,k'} &= \frac{1}{n} \sum_{i=1}^n \Big(\frac{x_i^{(k)} - \bar{x}^k}{\widehat{\sigma}_k} \Big) \Big(\frac{x_i^{(k')} - \bar{x}^{k'}}{\widehat{\sigma}_{k'}} \Big). \end{split}$$

Normalisation is optional...

PCA from the analysis point of view

Data vectors live in \mathbb{R}^d and one seeks a direction v in \mathbb{R}^d such that the variance along this direction is maximal. Or

$$Var((v^{\top}x_i)_{i=1...n}) = \frac{1}{n} \sum_{i=1}^n (v^{\top}x_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^n v^{\top}x_i x_i^{\top} v$$

Data vectors live in \mathbb{R}^d and one seeks a direction v in \mathbb{R}^d such that the variance along this direction is maximal. Or

$$Var((v^{\top}x_i)_{i=1...n}) = \frac{1}{n} \sum_{i=1}^n (v^{\top}x_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^n v^{\top}x_i x_i^{\top} v$$
$$= v^{\top} \left(\frac{1}{n} \sum_{i=1}^n x_i x_i^{\top}\right) v$$

Data vectors live in \mathbb{R}^d and one seeks a direction v in \mathbb{R}^d such that the variance along this direction is maximal. Or

$$Var((v^{\top}x_i)_{i=1...n}) = \frac{1}{n} \sum_{i=1}^n (v^{\top}x_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^n v^{\top}x_i x_i^{\top} v$$
$$= v^{\top} \left(\frac{1}{n} \sum_{i=1}^n x_i x_i^{\top}\right) v$$
$$= v^{\top} \widehat{\Sigma} v$$

Data vectors live in \mathbb{R}^d and one seeks a direction v in \mathbb{R}^d such that the variance along this direction is maximal. Or

$$Var((v^{\top}x_i)_{i=1...n}) = \frac{1}{n} \sum_{i=1}^n (v^{\top}x_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^n v^{\top}x_i x_i^{\top} v$$
$$= v^{\top} \left(\frac{1}{n} \sum_{i=1}^n x_i x_i^{\top}\right) v$$
$$= v^{\top} \widehat{\Sigma} v$$

Data vectors live in \mathbb{R}^d and one seeks a direction v in \mathbb{R}^d such that the variance along this direction is maximal. Or

$$Var((v^{\top}x_i)_{i=1...n}) = \frac{1}{n} \sum_{i=1}^{n} (v^{\top}x_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} v^{\top}x_i x_i^{\top} v$$
$$= v^{\top} \left(\frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}\right) v$$
$$= v^{\top} \widehat{\Sigma} v$$

One needs to solve

$$\max_{\|v\|_2=1} v^\top \widehat{\Sigma} v$$

Data vectors live in \mathbb{R}^d and one seeks a direction v in \mathbb{R}^d such that the variance along this direction is maximal. Or

$$Var((v^{\top}x_i)_{i=1...n}) = \frac{1}{n} \sum_{i=1}^n (v^{\top}x_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^n v^{\top}x_i x_i^{\top} v$$
$$= v^{\top} \left(\frac{1}{n} \sum_{i=1}^n x_i x_i^{\top}\right) v$$
$$= v^{\top} \widehat{\Sigma} v$$

One needs to solve

max $v^{\top}\widehat{\Sigma}v$ $||v||_2 = 1$ Solution: first eigenvectors of $\widehat{\Sigma}$ say v_1 . 40/52

What is the second best direction to project the data on in order to maximize the variance ?

____ ▶

What is the second best direction to project the data on in order to maximize the variance ?

One can perform a deflation

$$\forall i, \quad \widetilde{x}_i \leftarrow x_i - v_1(v_1^\top x_i)$$

What is the second best direction to project the data on in order to maximize the variance ?

One can perform a deflation

$$\forall i, \quad \widetilde{x}_i \leftarrow x_i - v_1(v_1^\top x_i)$$

Which translates at the matrix level: $\widetilde{X} \leftarrow X - X v_1 v_1^\top$.

What is the second best direction to project the data on in order to maximize the variance ?

One can perform a deflation

$$\forall i, \quad \widetilde{x}_i \leftarrow x_i - v_1(v_1^\top x_i)$$

Which translates at the matrix level: $\widetilde{X} \leftarrow X - Xv_1v_1^\top$.

Then again find the direction of maximal variance

$$\widetilde{\widehat{\Sigma}} = \frac{1}{n} \widetilde{X}^{\top} \widetilde{X}$$

What is the second best direction to project the data on in order to maximize the variance ?

One can perform a deflation

$$\forall i, \quad \widetilde{x}_i \leftarrow x_i - v_1(v_1^\top x_i)$$

Which translates at the matrix level: $\widetilde{X} \leftarrow X - Xv_1v_1^\top$.

Then again find the direction of maximal variance

$$\widetilde{\widehat{\Sigma}} = \frac{1}{n} \widetilde{X}^{\top} \widetilde{X}$$

One solves

$$\max_{\|v\|_2} v^\top \widetilde{\widehat{\Sigma}} v$$

What is the second best direction to project the data on in order to maximize the variance ?

One can perform a deflation

$$\forall i, \quad \widetilde{x}_i \leftarrow x_i - v_1(v_1^\top x_i)$$

Which translates at the matrix level: $\widetilde{X} \leftarrow X - Xv_1v_1^\top$.

Then again find the direction of maximal variance

$$\widetilde{\widehat{\Sigma}} = \frac{1}{n} \widetilde{X}^{\top} \widetilde{X}$$

One solves

Or equivalently

$$\max_{ \|v\|_2} v^\top \widetilde{\widehat{\Sigma}} v \\ \max_{ \|v\|_2} v^\top \widehat{\Sigma} v \quad \text{tel que} \quad v \perp v_1.$$

What is the second best direction to project the data on in order to maximize the variance ?

One can perform a deflation

$$\forall i, \quad \widetilde{x}_i \leftarrow x_i - v_1(v_1^\top x_i)$$

Which translates at the matrix level: $\widetilde{X} \leftarrow X - Xv_1v_1^\top$.

Then again find the direction of maximal variance

$$\widetilde{\widehat{\Sigma}} = \frac{1}{n} \widetilde{X}^{\top} \widetilde{X}$$

One solves $\max_{\substack{\|v\|_2}} v^\top \widehat{\Sigma} v$ Or equivalently $\max_{\substack{\|v\|_2}} v^\top \widehat{\Sigma} v$ tel que $v \perp v_1$.

Solution: This yields the second eigenvector of $\hat{\Sigma}$ say v_2 . Etc.

Principal directions

We usually call

• principal directions (or factors) of the points cloud the vectors

 $v_1, v_2, \ldots, v_k.$

Principal directions

We usually call

• principal directions (or factors) of the points cloud the vectors

 $v_1, v_2, \ldots, v_k.$

• principal components:

the projection of the data on the k principal directions.

Principal directions

We usually call

• principal directions (or factors) of the points cloud the vectors

 $v_1, v_2, \ldots, v_k.$

• principal components:

the projection of the data on the k principal directions.

The principal directions are the eigenvectors of $\widehat{\Sigma} = V S^2 V^{\top}$.

Singular value decomposition and PCA

The SVD of a matrix $X \in \mathbb{R}^{n \times p}$ with $n \leq p$ is of the form $X = USV^{\top}$, avec

- $U \in \mathbb{R}^{n imes n}$ an orthogonal basis of \mathbb{R}^n
- $S \in \mathbb{R}^{n imes p}$ a (rectangular) diagonal matrix .
- $V \in \mathbb{R}^{p imes p}$ une base orthogonale de \mathbb{R}^p

Singular value decomposition and PCA

The SVD of a matrix $X \in \mathbb{R}^{n \times p}$ with $n \le p$ is of the form $X = USV^{\top}$, avec

- $U \in \mathbb{R}^{n imes n}$ an orthogonal basis of \mathbb{R}^n
- $S \in \mathbb{R}^{n imes p}$ a (rectangular) diagonal matrix .
- $V \in \mathbb{R}^{p imes p}$ une base orthogonale de \mathbb{R}^p

Reduced SVD

The reduced SVD is more often used: If r is the rank of X then $X = USV^{\top}$ with,

- $U \in \mathbb{R}^{n \times r}$ whose columns are orthonormal.
- $S \in \mathbb{R}^{r \times r}$ a squared diagonal matrix.
- $V \in \mathbb{R}^{r \times p}$ whose columns are orthonormal.

Singular value decomposition and PCA

The SVD of a matrix $X \in \mathbb{R}^{n \times p}$ with $n \le p$ is of the form $X = USV^{\top}$, avec

- $U \in \mathbb{R}^{n imes n}$ an orthogonal basis of \mathbb{R}^n
- $S \in \mathbb{R}^{n imes p}$ a (rectangular) diagonal matrix .
- $V \in \mathbb{R}^{p imes p}$ une base orthogonale de \mathbb{R}^p

Reduced SVD

The reduced SVD is more often used: If r is the rank of X then $X = USV^{\top}$ with,

- $U \in \mathbb{R}^{n \times r}$ whose columns are orthonormal.
- $S \in \mathbb{R}^{r \times r}$ a squared diagonal matrix.
- $V \in \mathbb{R}^{r \times p}$ whose columns are orthonormal.

If the diagonal of S is such that $s_1 > s_2 > \ldots > s_r > 0$ and $U_{1k} \ge 0$ for all k the reduced SVD is unique. We have that

- $U S^2 U^{\top}$ is a (compact) diagonalisation of XX^{\top}
- $V S^2 V^{\top}$ is a (compact) diagonalisation of $X^{\top} X$

Eckart-Young theorem

is

Let $X = USV^{\top}$ be the SVD of X. Let

- $U_{[k]} \in \mathbb{R}^{n imes k}$ the matrix formed by the k first columns of U
- $V_{[k]} \in \mathbb{R}^{p imes k}$ the matrix formed by the k first columns of V

• $S_{[k]} \in \mathbb{R}^{k \times k}$ the diagonal matrix with the k first singular values in SThe solution of

$$\begin{split} \min_{Z} \|X - Z\|_{F}^{2} \quad \text{s.t.} \quad \operatorname{rank}(Z) \leq k \\ Z = X_{[k]} \quad \text{with} \quad X_{[k]} := U_{[k]}S_{[k]}V_{[k]}^{\top}. \end{split}$$

(人間) ト く ヨ ト く ヨ ト

Analysis view

Find projection $v \in \mathbb{R}^p$ maximizing variance:

 $\begin{aligned} \max_{v \in \mathbb{R}^p} & v^\top X^\top X v \\ \text{s.t.} & \|v\|_2 \leq 1 \end{aligned}$

Analysis view

Find projection $v \in \mathbb{R}^{p}$ maximizing variance:

Synthesis view

Find $V = [v_1, \ldots, v_k]$ s.t. x_i have low reconstruction error on span(V):

 $\begin{aligned} \max_{v \in \mathbb{R}^p} \quad v^\top X^\top X \, v \\ \text{s.t.} \quad \|v\|_2 \leq 1 \end{aligned}$

 $\min_{u_i, v_i \in \mathbb{R}^p} \|X - \sum_{i=1}^k u_i v_i^\top\|_F^2$

Analysis view

Find projection $v \in \mathbb{R}^{p}$ maximizing variance:

Synthesis view

Find $V = [v_1, \ldots, v_k]$ s.t. x_i have low reconstruction error on span(V):

 $\min_{u_i,v_i\in\mathbb{R}^p} \|X-\sum_{i=1}^k u_iv_i^\top\|_F^2$

• For regular PCA, the two views are equivalent!

Analysis view

Find projection $v \in \mathbb{R}^p$ maximizing variance:

Synthesis view

Find $V = [v_1, \ldots, v_k]$ s.t. x_i have low reconstruction error on span(V):

 $\begin{aligned} \max_{v \in \mathbb{R}^p} \quad v^\top X^\top X \ v \\ \text{s.t.} \quad \|v\|_2 \leq 1 \end{aligned}$

$$\min_{u_i,v_i\in\mathbb{R}^p} \|X-\sum_{i=1}^k u_iv_i^\top\|_F^2$$

Outline

Statistical concepts

- 2 The maximum likelihood principle
- 3 Method of moments
- 4 Linear regression
- Bayesian Inference
- 6 Principal Component Analysis
- Mesures of performance for binary classifiers

	Predicted		
ıl		"Р"	"N"
ctual	Р	ТР	FN
A	N	FP	TN

• sensitivity, true positive rate or recall $r_{TP} = \frac{|TP|}{|P|}$

	Predicted		
ıl		"Р"	"N"
ctual	Р	ТР	FN
A	N	FP	TN

sensitivity, true positive rate or recall r_{TP} = |TP| |P|
 specificity or true negative rate r_{TN} = |TN| |N|

	Predicted		
ıl		"Р"	"N"
ctual	Р	ТР	FN
A	Ν	FP	TN

- **sensitivity**, true positive rate or **recall** $r_{TP} = \frac{|TP|}{|P|}$
- **specificity** or true negative rate $r_{TN} = \frac{|TN|}{|N|}$
- false positive rate (type I error) $\alpha = r_{FP} = \frac{|FP|}{|N|} = 1 r_{TN}$

	Predicted		
ıl		"Р"	"N"
ctua]	Р	ТР	FN
A	N	FP	TN

- sensitivity, true positive rate or recall $r_{TP} = \frac{|TP|}{|P|}$
- **specificity** or true negative rate $r_{TN} = \frac{|TN|}{|N|}$
- false positive rate (type I error) $\alpha = r_{FP} = \frac{|FP|}{|N|} = 1 r_{TN}$
- false negative rate (type II error) $\beta = r_{FN} = \frac{|FN|}{|P|} = 1 r_{TP}$

	Predicted		
ıl		"Р"	"N"
ctual	Р	ТР	FN
A	Ν	FP	TN

- sensitivity, true positive rate or recall $r_{TP} = \frac{|TP|}{|P|}$
- specificity or true negative rate $r_{TN} = \frac{|TN|}{|N|}$
- false positive rate (type I error) $\alpha = r_{FP} = \frac{|FP|}{|N|} = 1 r_{TN}$
- false negative rate (type II error) $\beta = r_{FN} = \frac{|FN|}{|P|} = 1 r_{TP}$
- precision $prec = \frac{|TP|}{|FP|+|TP|}$

	Predicted		
ıl		"Р"	"N"
ctual	Р	ТР	FN
A	Ν	FP	TN

- sensitivity, true positive rate or recall $r_{TP} = \frac{|TP|}{|P|}$
- specificity or true negative rate $r_{TN} = \frac{|TN|}{|N|}$
- false positive rate (type I error) $\alpha = r_{FP} = \frac{|FP|}{|N|} = 1 r_{TN}$
- false negative rate (type II error) $\beta = r_{FN} = \frac{|FN|}{|P|} = 1 r_{TP}$
- precision $prec = \frac{|TP|}{|FP|+|TP|}$

Sensitivity, specificity, etc

	Р	N
	Sensitivity (TPR)	FPR
\widehat{P}	TP P	FP N
	FNR	Specificity (TNR)
Ñ	FN P	$\frac{TN}{N}$

TPR True Positive Rate FPR False Positive Rate FNR False Negative Rate NPR True Negative Rate

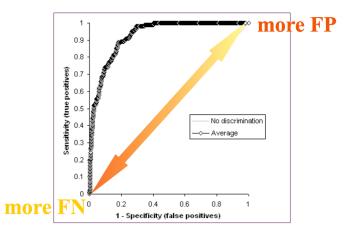
Precision, FDR, etc

	Р	N
	Precision (PPV)	FDR
\widehat{P}	$\frac{TP}{\widehat{P}}$	<u>FP</u> P
	FOR	NPV
Ñ	$rac{FN}{\widehat{N}}$	$\frac{TN}{\widehat{N}}$

PPV Positive Predictive ValueFDR False Discovery RateFOR False Omission RateNPV Negative Predictive Value

ROC curve: definition

The **Receiver Operating Characteristic** is a representation of the trade-off between r_{TP} vs r_{FP} as one changes the parameter controlling the sensitivity of the classifier, such as the offset *b*.



50/52

More precisely, the ROC plot is a representation of the attainable regimes.

More precisely, the ROC plot is a representation of the attainable regimes.

Convexity property of the ROC plot: Given two points

- (α_0, β_0) for classifier c_0
- (α_1, β_1) for classifier c_1 .

Consider the classifier c_{λ} that uses c_1 with probability λ and c_0 with probability $1 - \lambda$. Then

 $(\alpha_{\lambda},\beta_{\lambda}) = \lambda(\alpha_{1},\beta_{1}) + (1-\lambda)(\alpha_{0},\beta_{0}).$

More precisely, the ROC plot is a representation of the attainable regimes.

Convexity property of the ROC plot: Given two points

- (α_0, β_0) for classifier c_0
- (α_1, β_1) for classifier c_1 .

Consider the classifier c_{λ} that uses c_1 with probability λ and c_0 with probability $1 - \lambda$. Then

 $(\alpha_{\lambda}, \beta_{\lambda}) = \lambda(\alpha_1, \beta_1) + (1 - \lambda)(\alpha_0, \beta_0).$

Attainable points form a convex set.

More precisely, the ROC plot is a representation of the attainable regimes.

Convexity property of the ROC plot: Given two points

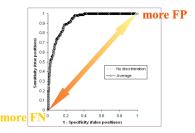
- (α_0, β_0) for classifier c_0
- (α_1, β_1) for classifier c_1 .

Consider the classifier c_{λ} that uses c_1 with probability λ and c_0 with probability $1 - \lambda$. Then

$$(\alpha_{\lambda}, \beta_{\lambda}) = \lambda(\alpha_1, \beta_1) + (1 - \lambda)(\alpha_0, \beta_0).$$

Attainable points form a convex set.

"Ideal" ROC curve is the concave envelope of the attainable points.



Precision Recall curve

