
Statistics review : Solutions

Semaine de pré-rentrée du master MVA

Multinomial random variables

1.
If Z = (Z1, ..., ZK) ∼M(π1, ..., πK ; 1) we have

P (Zk = 1) = P (Z = e(k)), with e(k) = (0, ..., 0, 1︸︷︷︸
k

, 0, ..., 0)

=

(
1

e(k)

) K∏
j=1

π
e
(k)
j

j 1{∑K
j=1 e

(k)
j =1

}
= πk

2.
For (n1, ..., nK) ∈ NK such that

∑
k nk = n, let

Zn1,..,nK
:=

{
(z(1), ..., z(n)) ∈

(
{0; 1}K

)n | ∀i ∈ {1, . . . , n}, K∑
k=1

z
(i)
k = 1 and ∀k ∈ {1, . . . ,K},

n∑
i=1

z
(i)
k = nk

}

P (N1 = n1, ..., NK = nK) = P ((Z(1), ..., Z(n)) ∈ Zn1,..,nK
)

=
∑

(z(1),...,z(n))∈Zn1,..,nK

P ((Z(1), ..., Z(n)) = (z(1), ..., z(n)))

=
∑

(z(1),...,z(n))∈Zn1,..,nK

P (Z(1) = z(1))...P (Z(n) = z(n))

=
∑

(z(1),...,z(n))∈Zn1,..,nK

πn1
1 πn2

2 ... πnK

K

=

(
n

n1, ..., nK

) K∏
k=1

πnk

k 1{∑i ni=n}

This shows that N := (N1, ..., NK) follows the distributionM(π1, ..., πK ;n) since the multinomial coefficient(
n

n1, ..., nK

)
:=

n!

n1! . . . nK !

is exactly equal to the number of ordered partitions of {1, . . . , n} into sets of cardinalities n1, . . . , nK .
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Sufficient Statistic
We first show that the conditional independence statement implies the proposed factorization. Indeed,

we have
p(x, t, θ) = p(θ|t)p(t|x)p(x)

but since t = T (x) is assumed to be a function of x, p(t|x) = δ
(
t− T (x)

)
and

p(x, t, θ) = p
(
θ|T (x)

)
δ
(
t− T (x)

)
p(x),

where we have introduced the Dirac function (more precisely the Dirac in 0), so that after marginalizing t
out we obtain :

p(x, θ) = p
(
θ|T (x)

)
p(x),

and so

p(x|θ) =
p
(
θ|T (x)

)
p(θ)

p(x),

which is of the desired form.
We now show conversely that the factorization of p(x|θ) implies the conditional independence statement.

If
p(x|θ) = f

(
x, T (x)

)
g
(
T (x), θ

)
then

p(t, x, θ) = δ
(
T (x)− t

)
f
(
x, T (x)

)
g
(
T (x), θ

)
p(θ) = δ

(
T (x)− t

)
f(x, t) g(t, θ) p(θ),

where p(θ) is the density of the prior distribution over θ with respect to a reference measure on θ.
(To be rigorous, we should not write that this is a joint density for (t, x, θ) but that it is a derivative in

the sense of generalized functions of a joint probability measure over the triple (t, x, θ) ; that is, we should call
for example µ(t, x, θ) the joint measure and instead of writing p(x, t, θ) we should write dµ(x, t, θ). However,
to avoid to write things that are unnecessarily abstract we will stick to these non-rigorous notations. The
reasoning is however itself rigorous.)

As a consequence we have

p(t, θ) =

∫
x

p(t, x, θ) =

∫
x

δ
(
T (x)− t

)
f(x, t) g(t, θ) dx = h(t) g(t, θ) p(θ).

(Note that here p(t, θ) is again very rigorously a density with respect to a reference measure in R2). For t
such that p(t, θ) 6= 0, we have

p(x|t, θ) =
p(x, t, θ)

p(t, θ)
= δ
(
T (x)− t

)f(x, t) g(t, θ) p(θ)

h(t) g(t, θ) p(θ)
= δ
(
T (x)− t

)f(x, t)

h(t)
,

which shows that p(x|t, θ) = p(x|t). If p(t, θ) = 0, we can define p(x|t, θ) the way we want (because on a set
of probability zero, its value does not matter) and in particular we may set p(x|t, θ) = p(x|t).

Method of moments vs maximum likelihood estimation

1.
a)

p(x1, ..., xn|θ) =
1

θn

n∏
i=1

1xi∈[0;θ]
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θ̂MLE = argmax
θ

p(x1, ..., xn|θ)

= argmax
θ

1

θn
1{(maxi xi)∈[0;θ]}

= argmin
θ

θ s.t. θ ≥ max
i∈{1,...,n}

xi

= max
i∈{1,...,n}

xi

b)

P (θ̂MLE ≤ x) = P (∀i ∈ {1, . . . , n}, xi ≤ x)

=
(x
θ

)n
pθ̂MLE

(z) = n
zn−1

θn

Thus, θ̂MLE

θ follows a Beta distribution whose parameters are α = n and β = 1.

c)

We can use the given formulas :
Eθ[θ̂MLE ] = θ

n

n+ 1

Varθ(θ̂MLE) = θ2
n

(n+ 1)2(n+ 2)

d)

θ̂MO =
2

n

n∑
i=1

xi

Eθ[θ̂MO] = θ

Varθ(θ̂MO) =
4

n2
· n · θ

2

12
=
θ2

3n

e)

MSE = E[(θ − θ̂)2]

= E[(θ − E[θ̂])2] + E[(θ̂ − E[θ̂])2]

=

{
θ2

3n for MO
θ2

(n+1)2 + θ2n
(n+1)2(n+2) = 2θ2

(n+1)(n+2) for MLE
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Computation of maximum likelihood estimators

1
a)

argmax
θ

P (x1, ..., xn|θ) = argmax
θ

θ
∑n

i=1 xi · (1− θ)n−
∑n

i=1 xi

= argmax
θ

exp
( n∑
i=1

xi log(θ) + (n−
n∑
i=1

xi) log(1− θ)
)

= argmax
θ

N log(θ) + (n−N) log(1− θ),

with N :=
∑n
i=1. Each term is continuous, strictly concave and their sum goes to −∞ towards 0 and 1 so

the MLE is unique.

b)

Let l(x1, ..., xn|θ) = N log(θ) + (n−N) log(1− θ),

∂l(x1, ..., xn|θ)
∂θ

=
N

θ
− n−N

1− θ

=
N − nθ
θ(1− θ).

Thus,

θ̂MLE =
N

n
.

2.
a)

P (Z1, ..., Zn| {πk}k) = π
∑n

i=1 Zi,1

1 ...π
∑n

i=1 Zi,K

K

= πN1
1 ...πNK

K

So (N1, ..., NK) is a sufficient statistic for the sample because the likelihood depends on the data only through
these quantities (see the exercise called Sufficient statistic for definition).

b)

argmax
π

πN1
1 ...πNK

K = argmax
π

N1 log(π1) + ...NK log(πK)

The MLE is solution of the constrained convex optimization problem

argmax
π≥0,

∑K
k=1 πk=1

K∑
k=1

Nk log(πk)
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c)

Let L(π, λ) =
∑
k, Nk>0Nk log(πk)− λ(

∑
k πk − 1) be the associated Lagrangian.

∂L

∂πk
=
Nk
π̂k
− λ

So,

π̂k = αNk, with α =
1

λ

=
Nk
n

since
K∑
k=1

π̂k = 1.

Note that we only introduced Lagrange multipliers for the equality constraint and not for the positivity
constraints πk ≥ 0 because, the log-likelihood diverges to −∞ on the edge of the domain which ensures that
the constraints will be satisfied. We can indeed check that the estimators π̂k are all non-negative.

3.

f(µ+ h) = u>µ+ u>h

dfµ(h) = u>h

∇f(µ) = u

g(µ+ h) = µ>Aµ+ µ>Ah+ µ>A>h+ h>Ah

dgµ(h) = µ>(A+A>)h

∇g(µ) = (A+A>)µ

a)

If Σ is fixed and positive definite,

argmax
µ

p(x1, ..., xn|µ) = argmax
µ

−n
2

log((2π)d|Σ|)− 1

2

∑
i

(µ>Σ−1µ− µ>Σ−1xi − x>i Σ−1µ+ x>i Σ−1xi)

= argmin
µ

∑
i

(µ>Σ−1µ− µ>Σ−1xi − x>i Σ−1µ+ x>i Σ−1xi)

Let’s compute the gradient of the log-likelihood,

∇l(µ) =
∑
i

2Σ−1µ− 2Σ−1xi

This gives us,

µ̂MLE =
1

n

∑
i

xi
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b)

If µ is fixed and Λ = Σ−1, since∑
i

(xi − µ)>Σ−1(xi − µ) = tr

(∑
i

(xi − µ)>Σ−1(xi − µ)

)

= tr

(∑
i

Σ−1(xi − µ)(xi − µ)>

)
We have :

p(x1, ..., xn|Σ) =
1

((2π)d|Σ|) 1
2

exp(−1

2
tr(Σ̂Λ))

d)

〈A,B +H〉F − 〈A,B〉F = 〈A,H〉F

e)

f : A→ log(|A|)
Let H = (hi,j)i,j ∈ Rn

2

|I +H| =
∑
σ∈Sn

sgn(σ)

n∏
i=1

(1σ(i)=i + hi,σ(i))

=

n∏
i=1

(1 + hi,i) +
∑

σ∈Sn\In

sgn(σ)

n∏
i=1

(1σ(i)=i + hi,σ(i))

= 1 +

n∑
i=1

hi,i +O(|H|2)

d|.|I(H) = tr(H)

A symmetric positive definite, H symmetric such that A+H positive definite :

log det(A+H) = log(detA.det(I +A−1H))

= log detA+ log det(I +A−1H)

= log detA+ tr(A−1H)

d| .|A(H) = tr(A−1H)

∇f(A) = (A−1)>

f)

log p(x1, ..., xn|Λ) = −d
2

log((2π) +
1

2
log |Λ| − 1

2
tr(Σ̂Λ)

∇f(Λ) =
1

2
Λ−1 − 1

2
Σ̂

ΛMLE = Σ̂−1

ΣMLE = Σ̂

Indeed, if θ̂ ∈ argmaxθ f(θ) and θ̂ = φ(α̂) then α̂ ∈ argmaxα f(φ(α)).
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g)

p(x1, ..., xn|µ,Σ) =
1

((2π)d|Σ|) 1
2

exp
(
− 1

2

∑
i

(xi − µ)>Σ−1(xi − µ)
)

If Σ̂ is not invertible, let’s write Σ̂ = U diag(λ1, ..., λK , 0, ..., 0)U> with U an orthogonal matrix and set
Λα = U diag(λ1, ..., λK , α, ..., α)−1U>.

log p(x1, ..., xn|Λα) = −d
2

log((2π) +
1

2
log |Λα| −

1

2
tr(Σ̂Λα)

The second term goes to ∞ with α while the two others are constant, so the log-likelihood is unbounded. In
practice, the maximum likelihood estimator is extended by continuity to these case ; the obtained estimator
can also be though of as the maximum likelihood estimators for Gaussian densities on the subspace spanned
by {x1, . . . , xn}.

Bayesian estimation

1.
a)

p(π|α, n) = p(n|α, π) · p(π|α)

p(n|α)

∝
K∏
k=1

πnk

k

Γ(α1 + ...+ αK)∏K
k=1 Γ(αk)

∏
παk−1
k

∝
K∏
k=1

πnk+αk−1
k

b)

We denote by 4 the canonical simplex 4 :=
{
u ∈ RK+ |

∑K
k=1 uk = 1

}
. we then have

E[πj |Z] =

∫
4
πj p(π|Z) dπ

Let us consider a fixed value for j ∈ {1, . . . ,K} and define βk = αk + nk for all k.

E[πj |Z] =
Γ(β1 + . . .+ βK)∏K

k=1 Γ(βk)

∫
4
πj

K∏
k=1

πβk−1
k dπ

=
Γ(β1 + . . .+ βK)∏K

k=1 Γ(βk)
·

Γ(βj + 1)
∏
k 6=j Γ(βk)

Γ(β1 + . . .+ βK + 1)

=
Γ(βj + 1)

Γ(βj)
· Γ(β1 + . . .+ βK)

Γ(β1 + . . .+ βK + 1)

=
βj

β1 + . . .+ βK

=
αj + nj
αtot + n

,

with αtot = α1 + . . .+ αK .
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c)

E[π1|n1, n2] =
n1 + 1

n1 + n2 + 2

Without smoothing, if x1 = 0 or x2 = 0, which is common if π1 is close to 0 or 1, the maximum likelihood
estimator estimates that pi = 0 even though pi > 0. This is a major problem because then the probability
of some non-zero event is assessed to be equal to 0, which makes all probabilistic reasonings fail.

2.

P = {p(x|θ), θ ∈ Θ}
Π = {pα(θ), α ∈ A}

Π is a conjugate family of distributions for P if for all pα ∈ Π, there exists pα′ ∈ Π such that we can write
pα(θ|x) = pα′(θ).

pBernoulli(x|θ) = θx(1− θ)1−x

The family of beta distributions pα,β(θ) ∝ θα−1(1−θ)β−1 is a conjugate family of distributions for the family
of Bernoulli distributions.

pPoisson(x|λ) =
λ
∑n

i=1 xie−nλ∏n
i=1(xi!)

The family of gamma distributions pα,β(λ) ∝ λα−1e−βλ is a conjugate family of distributions for the family
of Poisson distributions.

pexp(x|µ) ∝ exp
(
−
∑
i

(µ− xi)tΣ−1(µ− xi)− (µ− µ0)tΣ−10 (µ− µ0)
)

The family of gaussian distributions with the given covariance and unknown mean is a conjugate family of
distributions for the family of gaussian random variables with fixed known covariance and unknown mean
(cf. ex. 3).

3.
a)

As the product of two gaussian distributions, the a posteriori distribution is still a gaussian N(µ̂PM , ω).
On the one hand,

exp
(
− (µ− µ̂PM )2

2ω2

)
= exp

(
− µ2

2ω2
+

2µµ̂PM
2ω2

− µ̂2
PM

2ω2

)
On the other hand,

exp
(∑

− (xi − µ)2

2σ2
− (µ0 − µ)2

2τ2

)
= exp

(
− µ2.(

n

2σ2
+

1

2τ2
) + 2µ(

∑ xi
2σ2

+
µ0

2τ2
)− (

∑ x2i
2σ2

+
µ2
0

2τ2
)
)

By identification
1

ω2
=

n

σ2
+

1

τ2
,

and we get the posterior mean :

µ̂PM =

∑ xi

σ2 + µ0

τ2

n
σ2 + 1

τ2

.
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b)

µ̂PM =

∑
xi
n
· λn + µ0 · (1− λn) , with λn =

n
σ2

n
σ2 + 1

τ2

d)

In this case and if µ0 = 0 :

argmin
µ
− log p(x1, ..., xn|µ) +

λ

2
µ2 = argmin

µ
− log p(x1, ..., xn|µ) · p(µ) for λ =

1

τ2

Thus the MAP estimator can be viewed as a minimizer of the log-likelihood with some ridge regularization.

e)

µMAP = µPM

This property doesn’t hold for a Bernoulli distribution with a Beta prior.

f)

E[log p(X ′|ν, σ)] = E[− (X ′ − ν)2

2σ2
]

g)

R(ν) = E[(ν −X ′)2]

= E[(ν − E[X ′] + E[X ′]−X ′)2]

= E[(ν − E[X ′])2] + E[(E[X ′]−X ′)2] + 2E[(ν − E[X ′])(E[X ′]−X ′)]
= (µ− ν2) + Var(X ′)

h)

EDn [E(µ̂)] = EDn [R(µ̂)−R(µ)]

= EDn
[(µ̂− µ)2]

= EDn
[(µ̂− EDn

[µ̂])2] + (EDn
[µ̂]− µ)2

i)

EDn [E(µMLE)] = EDn [(µMLE − EDn [µMLE ])2] + 0

=
σ2

n
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EDn
[E(µMAP )] = EDn

[(µMAP − EDn
[µMAP ])2] + (EDn

[µMAP ]− µ)2

=
n
σ2

( nσ2 + 1
τ2 )2

+
(µ−µ0)

2

τ4

( nσ2 + 1
τ2 )2

j)

Rπ(MLE) =
σ2

n

Rπ(PM) =
σ2

n

(1 + σ2

nτ2 )

l)

Eµ∼π,Dn
[(µ̂− µ)2] = EDn

[Eµ∼π[(µ̂− µ)2|Dn]]

The inner quantity is minimized for every possible Dn by using the posterior mean.

Bregman divergence

1.

DF (p, q) = 〈p, p〉 − 〈q, q〉 − 2〈q, p〉+ 2〈q, q〉 = 〈p− q, p− q〉

2.

(∇H(q))i = − log qi − 1

DH(p, q) =
∑

pi log pi −
∑

qi log qi −
∑

(log qi + 1)(pi − qi)

=
∑

pi(log pi − log qi)

= KL(p, q)

3.
We assume the loss is differentiable.

F (µ) = EX [l(µ,X)]− EX [l(µ∗, X)]
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1 Ridge regression and PCA

1.
a)

X = USV >, X− = V S−U>, S = diag(si)

XX−X = USV >V S−U>USV

= U diag(1si 6=0)SV >)V >

= USV > = X

b)

(X>X)− = (V S2V >)−

= V (S−)2V >

X−(X−)> = V (S−)2V >

(X>X)−X> = X−(X−)>X>

= V S−S−SU>

= V S−U>

c)

X>XX− = V SU>USV >V S−U> = V SU>

d)

First suppose X = S. Let w be a solution to the normal equation.

s2i,iwi = si ⇒ wi = s−i y if si 6= 0

(S>y)i = 0 if si = 0

So it is true if X = S.
For any X, let w̃ = V >w, ỹ = U>y.
w is a solution to the normal equation iff w̃ is a solution of S2w̃ = Sỹ

2.
X = USV >, U and V are square matrices. The columns of U and the columns of V are called the

left-singular vectors and right-singular vectors of X.
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a)

Since U and V are orthogonal matrices, we have for all w ∈ Rn : ‖Xw‖ = ‖USV >w‖ = ‖SV >w‖

argmax
w∈Rn,‖w‖=1

‖Xw‖ = V > argmax
w∈Rn,‖w‖=1

‖Sw‖

b)

Σ̂ =
1

n
V S2V >

c)

∑
i

(cj,i − c̄j)2 =
∑
i

((Xvj)i −
∑
k

(Xvj)k)2

=
∑

(Xvj)
2

= s2j · 1

d)

XX>Xvj = USV >V >SUUSV >vj = US3V vj = s2j,jXvj

3.
a)

∑
i

‖y(i) − (c
(i)
1:k)>w‖2 =

∑
i

‖y(i) − (x>i vj)j=1:kw‖2

= ‖y − (XV1:k)w‖2

= ‖y − UkSkw‖2

with Uk = (u1, ..., uk), Sk = diag(s1, ..., sk). So,

w̃ = ((UkSk)>UkSk)−1(UkSk)>y = S−1k U>k y.

b)

w̃>(〈x− x̄0, v1〉, ..., 〈x− x̄0, vk〉) =
∑
j

ŵj〈x− x̄0, vj〉 = 〈x− x̄0,
∑
j

1

sj
〈uj , y〉vj〉
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c)

wR = (X>X + λIp)
−1X>y

= (V (S2 + λIp)V
>)−1V SU>y

= V diag(
si

s2i + λ
)U>y

=

m∑
j=1

sj
s2j + λ

〈uj , y〉vj

d)

The coefficients for j > k will vanish.

e)

〈X>y, vj〉 = 〈V SU>y, vj〉
= (SU>Y )J

= sj〈uj , y〉

f)

Andrei Tikhonov and Karl Pearson

Area under the curve and Mann-Whitney U statistic
a)

Let C0 be the set of elements that belong to class 0, C1 be the set of elements that belong to class 1.

rTP (b) =
P (s(x) > b, x ∈ C1)

P (x ∈ C1)

=
P (s(x) > b).P (x ∈ C1)

P (x ∈ C1)
, since s(x) doesn’t depend on x.

= 1− F (b)

rFP (b) =
P (s(x) > b, x ∈ C0)

P (x ∈ C0)

=
P (s(x) > b).P (x ∈ C0)

P (x ∈ C0)

= 1− F (b)

Hence,

AUC =
1

2
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b)

WLOG, suppose s(x1) < ... < s(xn), s(y1) < ... < s(ym). On the one hand,

U =

n∑
i=1

| {s(z)|z ∈ DN ∪DP and s(z) ≤ s(xi)} | −
n(n+ 1)

2

=

n∑
i=1

| {s(z)|z ∈ DN and s(z) ≤ s(xi)} |+
n∑
i=1

| {s(z)|z ∈ DP and s(z) ≤ s(xi)} |︸ ︷︷ ︸
=i

−n(n+ 1)

2

=

n∑
i=1

| {s(z)|z ∈ DN and s(z) ≤ s(xi)} |

On the other hand,

rTP (s(xi)) = 1− i

n

and

rFP (s(xi)) =
| {s(z)|z ∈∈ DN and s(z) > s(xi)} |

m

= 1− | {s(z)|z ∈ DN and s(z) ≤ s(xi)} |
m

so

U

m.n
=

1

n

n∑
i=1

(
1− rFP (s(xi))

)
=

n∑
i=1

(
1− rFP (s(xi))

)
.(rTP (s(xi))− rTP (s(xi−1))) with x0 = −∞

= AUC
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