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10.1 Bayesian Method

10.1.1 Introduction

Vocabulary:

• a priori or prior: p (θ)

• likelihood : p (x|θ)

• marginal likelihood:
´
p (x|θ) p (θ) dθ

• a posteriori or posterior: p (θ|x)

Caricature Bayesian vs Frequentist:

1. the Bayesian is �optimistic�: he thinks that he can come up with good models and
obtain a method by �pulling the Bayesian crank� (basically a high dimensional integral),

2. the frequentist is more �pessimistic� and uses analysis tools.

The Bayesian formulation enables us to introduce the a priori information in the process
of estimation. For instance , let's imagine that we play heads or tails. The Bayesian model
is:

Xi ∈ {0, 1}, Xi|θ ∼ Ber(θ), p(xi|θ) = θxi (1− θ)1−xi

the graphical model associated is represented on Figure 10.1.

θ xi N

Figure 10.1. Graphical model of the biased coin game
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Now we can compute the posterior:

p(θ|x1:n) ∝ p(x1:n|θ)p(θ)

then
p(θ|x1:n) = θn1 (1− θ)n−n1 1[0,1](θ) = Beta(α, β)

where n1 =
∑n

i=1 xi is the number of 1, β = n− n1 + 1 and α = n1 + 1.
Question: what is the probability of head on the next �ip?

• Frequensist: θ̂ML = n1/n by a maximum likelihood approach.

• Bayesian: p(xn+1|x1:n) =
´
p(xn+1|θ)p(θ|x1:n)dθ, where p(θ|x1:n)dθ is the posterior

distribution. Then,

θ̂B =
α

α + β
=
n1 + 1

n+ 2

hence,

θ̂B =
n1

n

[
n

n+ 2

]
+

1

2

[
2

n+ 2

]
= ρnθ̂ML + (1− ρn) θ̂prior

is a convex combination of θ̂ML and θ̂prior. Then we can notice that for n = 0, the

quantity θ̂B = 1
2
whereas θ̂ML is not de�ned. It underlines the importance of the prior

distibution:

� with an �unknown� coin, we've got the information a priori : we'll use the uniform
law for p (θ).

� with a �normal� coin , we'll use a distribution with an important concentration of
mass around 0,5 for p (θ).

For a Bayesian, o�ering a �limited� estimator, as the maximum likelihood estimator,
which gives a unique value for θ, is not enough because the estimator itself do not
translate the inherent uncertainty of the learning process. Thus, its estimator will be
the density a posteriori, obtained from the Bayes rule, which is written in continuous
notations as:

p (θ|x) =
p (x|θ) p (θ)´
p (x|θ) p (θ) dθ

The Bayesian speci�es the uncertainty with distributions that form its estimator, rather
than combining an estimator with con�dence intervals.

If the Bayesian is forced to produce a limited estimator, he uses the expectation of the
underlying quantity under the a posteriori distribution; for instance for θ:

µpost = E [θ|D] = E [θ|x1, x2, . . . , xn] =

ˆ
θp (θ|x1, x2, . . . , xn) dθ
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For more details about Bayesians see subsection B.1 and B.1.1 in annex.

We then need to show that θ̂ML → θ∗. Its variance is the variance of a Beta law

αβ

(α + β)2 (α + β + 1)
=
(n1

n

)(
1− n1

n

)
·O
(

1

n

)
= θ̂ML

(
1− θ̂ML

)
O

(
1

n

)
then the posterior covariance vanishes and

θ̂B
a.s.→ θ̂ML

a.s.→ θ∗

where θ∗ is the �true� parameter of the model.

10.1.2 Bernstein von Mises Theorem

It says that if prior puts non-zero mass around the true model θ∗, then posterior asymptot-
ically concentrate around θ∗ as a Gaussian.

Revisiting example Consider repeating several times the experiment above: T coins
picked randomly each �ipped n times. (Figure 10.2)

θt x
(t)
i N

T

Figure 10.2. Graphical model of the biased coin game repeated T times

As a frequentist, empirical distribution on x1:n will converge (as T →∞) to

p (x1, . . . , xn) =

ˆ
θ

(
n∏
i=1

p(xi|θ)

)
p(θ)dθ

where p(θ) is the distribution of coins of parameter θ in the jar and
∏n

i=1 p (xi|θ) is the
mixture distribution. Note that X1, . . . , Xn are NOT independent.

On the other hand, for all π ∈ Sn

p (x1, . . . , xn) = p
(
xπ(1), . . . , xπ(n)

)
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10.1.3 Exchangeable situations

Exchangeablility

The random variables X1, X2, . . . , Xn are exchangeable if they have the same distribution
as Xπ(1),Xπ(2), . . . , Xπ(n) for any permutation of indices π ∈ Sn.

In�nite Exchangeablility

The de�nition naturally generalizes to in�nite families (indexed by N). The random variables
X1, X2, . . . are exchangeable if every �nite subfamily Xi1 , . . . , Xin is exchangeable.

de Finetti's theorem

X1, X2, . . . are in�nitely exchangeable, if and only if ∃! p(θ) (on some space Θ) such that

∀n ∈ N, p (x1, x2, . . . , xn) =

ˆ ( n∏
i=1

p (xi|θ)

)
p(θ)dθ

Why do we care about exchangeable situations?

The i.i.d. variables are a particular case of the situation of exchangeable variables, that we
see in practice. However when the i.i.d. data are combined with non scalar observations,
the di�erent components are no longer independent. In some cases, those components are
nonetheless exchangeable. For instance in a text, words are shown as sequences that are not
exchangeable because of the syntax. But if we forget the order of the words as in the �bag
of word� model, then the components are exchangeable. It's the basic principle used in the
LDA model.

Multinomial example

Let X|θ ∼Mult(θ, 1) where θ ∈ ∆k i.e.

p(X = l|θ) = θl and
k∑
l=1

θl = 1, 0 ≤ θl ≤ 1.

for that distribution we have,

θ̂ML
l =

nl
n

hence if k ≥ n there exists a l such that θ̂ML
l = 0.

In that case this frequentist model over�ts. In the Bayesian model one puts a prior on
∆k = Θ, but which one? A convenient property of prior families is �conjugacy�, introduced
below:
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Conjugacy Consider a family of distribution

F = {p(θ|α) : α ∈ A} .

One says that F is a �conjugate family� for the observation model p(x|θ) if the posterior

p(θ|x, α) =
p(x|θ)p(θ|α)

p(x|α)

belongs to the same family F than the prior, i.e.

∃α′ ∈ A s.t p(θ|x, α) = p(θ|α′)

For the multinomial distribution it gives us

p(x1:n|θ) =
n∏
l=1

p(xl|θ) =
n∏
l=1

θnl
l

so if p(θ) ∝
n∏
l=1

θαl
l , then p(x1:n|θ) ∝

n∏
l=1

θβll .

Dirichlet Distribution

The Dirichlet distribution is the conjugate of the Multinomial law (see on Wikipédia for
more details).

p (θ1, θ2, . . . , θK) =
Γ (α1 + α2 + . . .+αK)

Γ (α1) Γ (α2) . . .Γ (αK)
θα1−1

1 θα2−1
2 . . . θαK−1

K dµ (θ)

Where µ stands for the uniform measure on ∆K =
{
s ∈ RK |

∑
i si = 1 ; ∀i, si ≥ 0

}
(K-dim

simplex).

• E [θl|α1, . . . , αK ],

• V(θl) ≡ O

(
1∑K

j=1 αj

)
,

• If αl = 1 for all l then one gets an uniform distribution,

• if k = 2 one gets the Beta distribution,

• if there exists l such that αl < 1 one gets a ∪ shape distribution,

• if αl ≥ 1 for all l, one gets a ∩ (unimodal bump).

10-5



Cours 10 � December 3, 2015 2015/2016

For the multinomial model, if the we assume that the prior is

p(θ) = Dir(θ|α)

then the posterior is

p(θ|x1:n) ∝
K∏
l=1

θnl+αl−1
l

and the posterior mean is

E [θl|x1:n] =
nl + αl

n+
K∑
j=1

αj

for instance with αl = 1 for all l it adds 1, �smoothing� the maximum likelihood estimator.

E [θl|x1:n] =
nl + 1

n+K

NB One can consider that posterior can be used for prior of next observation. This is the
sequential approach.
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10.2 Bayesian linear regression

Let us assume that
y = ωTx+ ε (10.1)

where ε ∼ N (0, σ2). Then the observation issue

p(y|x) = N
(
y |ωTx , σ2

)
Then if we also choose a Gaussian prior on ω.

p(ω) = N
(
ω ; 0,

In
λ

)
then the posterior is also a Gaussian with the following parameters

• covariance: Σ̂n = λIn + XTX
σ2

• mean: µ̂n = Σ̂−1
n

(
XT→y/σ2

)
where

X =

x1
...
xn

 and
→
y =

y1
...
yn


the covariance and the mean are the same as the ones for the ridge regression with λ̃ = λσ2.

As a Bayesian: compute predictive distribution

p(ynew|xnew, x1:n, y1:n) =

ˆ
ω

p(ynew|xnew, ω)p(ω|data)dω

= N
(
ynew|µ̂Tnxnew, σ2

predictive

)
where

σ2
predictive(xnew) = σ2 + xTnewΣ̂nxnew,

the real number σ comes from the noise model and the second quantity of the right hand
side comes from the posterior covariance.
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10.3 Model Selection

10.3.1 Introduction

Let's consider two models M1 ⊂M2 with Θ1 ⊂ Θ2. We de�ne:

Θ̂Mi
= arg max

θ∈Θi

log (pθ (x1, x2, . . . , xn))

where i ∈ {1, 2}.

x1

x2 x3

x1

x2 x3

Figure 10.3. Example of Model Section for n = 2 (M1 on the l.h.s and M2 on the r.h.s)

We can't use the maximum likelihood as a score since we have by de�nition:

log
(
pΘ̂M2

)
≥ log

(
pΘ̂M1

)
.

We are interested in the capacity of the generalisation of the model: we'd like to avoid
over-�tting. Commonly, one way of dealing with that task is to select the size of the model
by cross-validation. Here, we'll not develop it furthermore.

In this part we present the Bayes factors, which gives us the main Bayes principal for
selecting models. Also we will show the link with the penalised version BIC, (Bayesian Infor-
mation Criterion) which is used by the frequentists so as to �correct� the maximum likelihood
and which has good proprieties. The issue with the selection model ask is the issue with
the selection of the variables which are an active topic of research. There are others ways of
penalising the maximum likelihood and of selecting models.

If p0 is the distribution of the real data, we wish to choose between di�erence models
(Mi)i∈I by maximising Ep0 [log (pMi

(X∗|D))], where X∗ is a new test sample distributed as
p0 (in fact, it's still the maximum likelihood principle but we take the expectation on new
data).

In the Bayesian framework, we can compute the marginal probability of data for a given
model ˆ

p (x1, x2, . . . , xn|θ) p (θ|Mi) dθ = p (D|Mi)
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and, by applying the Bayes rule, compute the a posteriori probability of the model:

p (Mi|D) =
p (D|Mi) p (Mi)

p (D)

10.3.2 Bayes Factor

Let's introduce the Bayes factors, which enables us to compare two models:

p (M1|D)

p (M2|D)
=
p (D|M1) p (M1)

p (D|M2) p (M2)

The marginal probability of data

p (D|Mi) = p (x1, x2, . . . , xn|Mi)

can decompose itself in a sequential way by using:

p (xn|x1, x2, . . . , xn−1,M) =

ˆ
p (xn|θ) p (θ|x1, x2, . . . , xn−1,M) dθ.

Indeed, we get:

p(D|M) = p(xn|x− 1, . . . , xn−1,M) p(xn−1|x− 1, . . . , xn−2,M) . . . p(x1|M)

Such as

1

n
log p (D|Mi) =

1

n

n∑
i=1

log p(xi|x1, . . . , xi−1,M) ' Ep0 [log pM (X|D)]

10.3.3 Bayesian Information Criterion

The Bayesian score is approximated by the BIC:

log p (D|M) = log pθ̂MV
(D)− K

2
log (n) +O (1)

With pθ̂MV
(D) the data's distribution when the parameter is the maximum likelihood esti-

mator θ̂MV , K is the number of parameters of the model and n the number of observations.
In the following section, we outline the proof of this result in the case of an exponential

family given by p (x|θ) = exp (〈θ, φ (X)〉 − A (θ)).
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10.3.4 Laplace's Method

p (D|M) =

ˆ n∏
i=1

p (xi|θ) p (θ) dθ

=

ˆ
exp

(〈
θ, nφ̄

〉
− nA (θ)

)
p (θ) dθ

〈θ, nφ̄〉 − nA(θ) = 〈θ̂, nφ̄〉 − nA(θ̂) + 〈θ − θ̂, nφ̄〉

− n(θ − θ̂)T∇θA(θ̂)− 1

2
(θ − θ̂)Tn∇2

θA(θ̂)(θ − θ̂)

+ Rn

where Rn is a negligible rest.
But the maximum likelihood is the dual of the maximum entropy: maxH(pθ) such that

µ(θ) = φ̄.

µ(θ̂) = φ̄

p(D|M) ' exp(〈θ̂, nφ̄〉 − nA(θ̂))×
ˆ

exp

(
−1

2
(θ − θ̂)TnΣ̂(θ − θ̂)

)
p(θ)dθ

However:

1. the information of �sher is equal to Σ̂−1

2.

ˆ
exp

(
−1

2

(
θ − θ̂

)T
nΣ̂
(
θ − θ̂

))
p (θ) dθ ' c

√√√√(2π)k

∣∣∣∣∣Σ̂−1

n

∣∣∣∣∣
Thus:

log p (D|M) = log pθ̂ (X) +
1

2
log

(
(2π)k

∣∣∣∣∣Σ̂−1

n

∣∣∣∣∣
)

= log pθ̂ (X) +
k

2
log (2π) +

1

2
log

((
1

n

)k ∣∣∣Σ̂−1
∣∣∣)

= log pθ̂ (X) +
k

2
log (2π)− k

2
log (n) +

1

2
log
(∣∣∣Σ̂−1

∣∣∣)
The main reason why presenting the BIC is that a theorem prove the consistency of the

BIC. In other words, when the number of observations is su�cient, thanks to this criterion
we choose with a probability that converges to 0, a model that satis�es:

Mk ∈ ArgmaxM Ep0
[
log
(
pθ̂MV

(X ; M)
)]
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To bring a quick clari�cation about the notations used in this part (model selection),
please read below. The notation is a bit confusing (it was used for example in Bishop's
book, but is a bit sloppy).

From the Bayesian perspective, we could treat the model choice as a random variable
M . In the M1 vs. M2 vs. M3 example, there are only 3 models, and thus M is a discrete
variable with 3 possible values (M = M1, M = M2 or M = M3).

Therefore, when we were writing quantities like the Bayes factor p(M1|D)/p(M2|D),
It really meant p(M =M1|D)/p(M =M2|D). It did not mean that M1 and M2 were two
di�erent random variables which can take complicated values (someone asked what space
M1 was in and it seemed very complicated � what is meant is just that M is an index in
possible (few) models).

D was the data random variable as usual. The mixing of random variables (here M)
vs. their possible values (M = 1, 2 etc) in the same notation (like p(M1|D)) is usual but
confusing; better to use the explicit p(M = M1|D) notation to distinguish a value vs. a
generic random variable. . . .

However, in general, M could be as complicated as we want. For example, it could
be a vector of hyper-parameters for the prior distributions. Or it could also have binary
component indicating the absence or presence of an edge in graphical model, etc. It does
not have to just be an index. It could even be a continuous objects !

It is also �ne to have in�nite dimensional objects1. For example, consider the latent
variable model: x is observed, θ and α are latent variables; and M decides the prior over α.
I.e. suppose p(x|θ, α,M) = Multi(θ, 1), p(θ|α,M) = Dir(θ|α), and p(α|M) = M(α) i.e. M
ranges over possible distributions over the positive vector α. M here is quite a complicated
object, but this is �ne. . .

1This would be in the �non-parametric setting� � non-parametric = in�nite dimensional.
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Appendix A

A.1 Example of model

A.1.1 Bernoulli variable

Let's consider random variables Xi ∈ {0, 1}. We'll assume that the Xi are i.i.d. conditionally
to θ. Then they follow a Bernoulli law:

p (x|θ) = θx (1− θ)1−x

A.1.2 Priors

Let's introduce the distribution Beta whose density on [0, 1] is

p(θ;α, β) =
1

B(α, β)
θα−1(1− θ)β−1

Where B(α, β) is a short-name of the Beta function:

∀α > 0, ∀β > 0, B (α, β) =

ˆ 1

0

θα−1 (1− θ)β−1 dθ

And the Gamma function:

Γ (x) =

ˆ +∞

0

tx−1 exp (−t) dt

We can show that B (α, β) is symmetric and satis�es:

B (α, β) =
Γ (α) Γ (β)

Γ (α + β)

We choose as the prior distribution on θ the Beta distribution:

12
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p (θ) ∝ θα−1 (1− θ)β−1

p (θ) =
θα−1 (1− θ)β−1

B (α, β)

A.1.3 A posteriori

p (θ|x) =
p (x, θ)

p (x)
∝ p (x, θ)

But:

p (x, θ) = θx (1− θ)1−x θ
α−1 (1− θ)β−1

B (α, β)

Hence:

p (θ|x) ∝
θx+α−1 (1− θ)1−x+β−1

B (α, β)

p (θ|x) =
θx+α−1 (1− θ)1−x+β−1

B (x+ α, 1− x+ β)

Thus, if instead of considering a unique variable , we observe an i.i.d. sample of data,
the joint distribution can be written as:

θα−1 (1− θ)β−1
n∏
i=1

θxi (1− θ)1−xi .

Let's introduce:

k =
n∑
i=1

xi

Then we get:

p (θ|x1, x2, . . . , xn) =
θk+α−1 (1− θ)n−k+β−1

B (k + α, n− k + β)

A.2 Special case of the Beta distribution

We remind that:
θ ∼ Beta (α, β)

For α = β = 1, we get a uniform prior.
For α = β > 1, we get a bell curve.
For α = β < 1, we get a U curve.

10-13



Cours 10 � December 3, 2015 2015/2016

E [θ] = α
α+β

V [θ] = αβ

(α+β)2(α+β+1)
= α

(α+β)
× β

(α+β)
× 1

(α+β+1)

For α > 1 and β > 1, we get the mode: α−1
α+β−2

.
In the case, let's write D for the data:

θpost = E [θ|D] =
α + k

α + β + n
=

α

(α + β)
× (α + β)

(α + β + n)
+

n

(α + β + n)
× k

n

We can see that the a posteriori expectation of the parameter is a convex combination
of the maximum likelihood estimator and the prior expectation. It converges asymptotically
to the maximum likelihood estimator .

If we use a uniform prior distribution, E [θ|D] = k+1
n+2

. Laplace proposed to correct the
frequentist estimator, it seemed odd to him that he was not de�ned in the absence of data.
He proposed to add two virtual observation (0 and 1) such that in the absence of data the
estimator equals 1

2
. This correction is known as Laplace's correction.

The variance of the a posteriori distribution decrease in 1
n
.

V [θ|D] = θM (1− θM)
1

(α + β + n)

We have chosen a sharper distribution around θM , in the same way than in a frequen-
tist approach, the con�dence intervals narrow around the estimator when the number of
observations increase.

A.2.1 Playful propriety

p (x1, x2, . . . , xn) =
B (k + α, n− k + β)

B (α, β)
=

Γ (α + k) Γ (β + n− k) Γ (α + β)

Γ (α + β + n) Γ (α) Γ (β)
(A.1)

Let's use this well-known property of the Gamma function:

Γ (n+ 1) = n!

and ∀x > −1, Γ (x+ 1) = xΓ (x)

such that
Γ (α + k) = (α + k − 1) (α + k − 2) . . . αΓ (α)

let's write α[k] = α (α + 1) . . . (α + k − 1) and simplify the expression A.1:

p (x1, x2, . . . , xn) =
α[k]β[n−k]

(α + β)[n]
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We shall note the analogy with the Polya urn model: let us consider (α + β) balls of
colour: α are black, β are white. When drawing a �rst black ball, the probability of the
event is:

P (X1 = 1) =
α

α + β

After the drawing, we put back the ball in the urn and we add a ball of the same colour.
Let's imagine that we draw again a black ball then the probability of this event is:

P (X1 = 1, X2 = 1) = P (X1 = 1)P (X2 = 1|X1 = 1) =
α

α + β
× α + 1

α + β + 1

However:

P (X1 = 1, X2 = 0) =
α

α + β
× β

α + β + 1

In more general case , we show by recurrence that the marginal probability of obtaining
some sequence of colours by drawing from a Polya urn is exactly the marginal probability of
obtaining the same result from the marginal model, obtained by integrating on a priori theta.
First, this show that drawings from a Polya urn are exchangeable; Secondly, the mechanism
of this type of urn, and its exchangeability, we'll be useful for the Gibbs sampling and for
the same type of Bayesian models.

A.2.2 Conjugate priors

Let F be a set. We assume that p (x|θ) known, we deduce from that: p (θ) ∈ F such that
p (θ|x) ∈ F. We say that p (θ) is conjugated to the model p (x|θ).

Exponential model

Let's consider:

p (x|θ) = exp (〈θ, φ (x)〉 − A (θ))

p (θ) = exp (〈α, θ〉 − τA (θ)−B (α, τ))

For p (x|θ), θ is the canonical parameter. For p (θ), α is the canonical parameter and θ
is the su�cient statistic. Let us note that B do not stand for the Beta distribution.

p (θ|x) ∝ p (x|θ) p (θ) ∝ exp (〈θ, φ (x)〉 − A (θ) + 〈α, θ〉 − τA (θ)−B (α, τ))

Let us de�ne:

φ̄ =
1

n

n∑
i=1

φ (xi)

Then:

p (θ|xi) ∝ exp (〈θ, α + φ (xi)〉 − (τ + 1)A (θ)−B (α + φ (xi) , τ + 1))
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p (θ|x1, x2, . . . , xn) ∝ exp
(〈
θ, α + nφ̄

〉
− (τ + n)A (θ)−B

(
α + nφ̄, τ + n

))
p (x1, x2, . . . , xn) ∝ exp

(
B (α, τ)−B

(
α + nφ̄, τ + n

))
Since the family is an exponential one,

νpost = E [θ|D] = ∇αB
(
α + nφ̄, τ + n

)
θMAP results from:

∇θp (θ|x1, x2, . . . , xn) = 0

α + nφ̄ = (τ + n)∇θA (θ) = (τ + n)µ (θ)

Thus we get µMAP = µ (θ) in the previous equation. Consequently:

µMAP =
α + nφ̄

τ + n
=
α

τ
× τ

τ + n
+

n

τ + n
φ̄

Univariate Gaussian

With and a priori on µ but not on σ2

p
(
x|µ, σ2

)
=

1√
2πσ2

exp

(
−1

2

(x− µ)2

σ2

)

p
(
µ|µ0, τ

2
)

=
1√

2πτ 2
exp

(
−1

2

(µ− µ0)2

τ 2

)
Thus:

p
(
D|µ, σ2

)
= p

(
x1, x2, . . . , xn|µ, σ2

)
=

(
1√

2πσ2

)n
exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2

)

p (µ|D) = p (µ|x1, x2, . . . , xn)

= exp

(
−1

2

(
(µ− µ0)2

τ 2
+

n∑
i=1

(xi − µ)2

σ2

))

= exp

(
−1

2

(
µ2 − 2µµ0 + µ2

0

τ 2
+

n∑
i=1

µ2 − 2µxi + x2
i

σ2

))

= exp

(
−1

2

(
µ2Λ− 2µη +

(
µ2

0

τ 2
+

n∑
i=1

x2
i

σ2

)))
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Where:

Λ =
1

τ 2
+

n

σ2

η =
µ0

τ 2
+
nx

σ2

x =
1

n

n∑
i=1

xi

Thus:

µpost = E [µ|D]

=
η

Λ

=
µ0
τ2

+ nx
σ2

1
τ2

+ n
σ2

=
σ2µ0 + nτ 2x

σ2 + nτ 2

=
σ2

σ2 + nτ 2
µ0 +

nτ 2

σ2 + nτ 2
x

And:

Σ̂2
post = V [µ|D]

=
1

Λ

=
σ2τ 2

σ2 + nτ 2

Indeed, the variance decreases in 1
n
.

With an a priori on σ2 but not onµ We get p (σ2) as an Inverse Gamma form.

With an a priori on µ and σ2 Gaussian a priori on x and µ, Inverse Gamma a priori on
σ2. Please refer to the chapter 9 of the course handout (Jordan's polycopié).
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Appendix B

B.1 A posteriori Maximum (MAP)

θMAP = arg max
θ
p (θ|x1, x2, . . . , xn)

= arg max
θ
p (x1, x2, . . . , xn|θ) p (θ)

Because, with the Bayes rule:

p (θ|x1, x2, . . . , xn) =
p (x1, x2, . . . , xn|θ) p (θ)

p (x)

The a posteriori maximum is not really Bayesian, it's rather a slight modi�cation brought
to the frequentist estimator.

B.1.1 Predictive probability

In the Bayesian paradigm, the probability of a future observation x∗ will be estimated by
the Predictive probability :

p (x∗|D) = p (x∗|x1, x2, . . . , xn)

=

ˆ
p (x∗|θ) p (θ|x1, x2, . . . , xn) dθ

p (θ|x1, x2, . . . , xn) ∝ p (xn|θ) p (x1|θ) p (x2|θ) . . . p (xn−1|θ) p (θ)

∝ p (xn|θ) p (θ|x1, x2, . . . , xn−1) p (x1, x2, . . . , xn−1)

∝ p (xn|θ) p (θ|x1, x2, . . . , xn−1)
p (x1, x2, . . . , xn−1)

p (x1, x2, . . . , xn)
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A sequential calculus is possible since:

p (θ|x1, x2, . . . , xn) =
p (xn|θ) p (θ|x1, x2, . . . , xn−1)

p (xn|x1, x2, . . . , xn−1)

Vocabulary:

• a priori information: p (θ|x1, x2, . . . , xn−1)

• likelihood: p (xn|θ)

• a posteriori information: p (θ|x1, x2, . . . , xn)

p (x1, x2, . . . , xn) =

ˆ n∏
i=1

p (xi|θ) p (θ) dθ

B.2 Naive Bayes

B.2.1 Introduction

Remarque: Contrary to its name, �Naive Bayes� is not a Bayesian method.

Let's Consider the following problem of classi�cation x ∈ Xp 7−→ y ∈ {1, 2, . . . ,M}.
Here, x = (x1, x2, . . . , xp) is a vector of descriptors (or features): ∀i ∈ {1, 2, . . . , p} , xi ∈

X, with X = {1, 2, . . . , K} (or X = R).
Goal: Learn p (y|x).
A very naive method will trigger o� a combinatorial explosion: θ ∈ RKp

.
Bayes formula gets us:

p (y|x) =
p (x|y) p (y)

p (x)

The Naive Bayes method consists in assuming that the features xi are all conditionally
independent from the class, hence:

p (x|y) =

p∏
i=1

p (xi|y)

Then, the Bayes formula gives us:

p (y|x) =

p (y)
p∏
i=1

p (xi|y)

p (x)
=

p (y)
p∏
i=1

p (xi|y)∑
y′
p (y′)

p∏
i=1

p (xi|y′)
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We consider the case where the features take discrete values. Consequently the new
graphical model contains only discrete random variables. Then, we can write a discrete
model as an exponential family. Indeed we can write:

log p (xi = k|y = k′) = δ (xi = k, y = k′) θikk′

and

log p (y = k′) = δ (y = k′) θk′

We can see that the dummy functions δ(xi = k, y = k′) and δ(y = k′) are the su�cient

statistics of the joint distribution model for y and the variables xi, where θikk′ and θk′ are
canonical parameters. Thus , we can write:

log p(y, x1, . . . , xp) =
∑
i,k,k′

δ(xi = k, y = k′)θikk′ +
∑
k′

δ(y = k′)θk′ − A((θikk′)i,k,k′ , (θk′)k′)

Where A((θikk′)i,k,k′ , (θk′)k′) is the log-partition function.

We have rewritten the joint distribution model of (y, x1, . . . , xp) as an exponential fam-
ily. Given that the maximum of likelihood estimator of an exponential family, where the
canonical parameters are not combined, is also the maximum entropy estimator; as seen in
a previous course and provided that the statistical moments of the su�cient statistics equal
their empirical moments.

Thus, if we introduce
Nikk′ = # {(xi, y) = (k, k′)}

N =
∑
i,k,k′

Nikk′ ,

The maximum likelihood estimator must satisfy the moment constraints

p̂ (y = k′) =

∑
i,k

Nikk′

N
et p̂ (xi = k|y = k′) =

Nikk′∑
k′′
Nik′′k′

,

which de�ne them completely.
Then, we can write the estimators of the canonical parameters as:

θ̂ikk′ = log p̂ (xi = k|y = k′) et θ̂k′ = log p̂ (y = k′) .

However, our goal is to obtain a classi�cation model, that is to say, a model of only
the conditional probability law. From the approximated generative model and applying the
Bayes rule we can get:
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log p̂ (y = k′|x) =

p∑
i=1

log p̂ (xi|y = k′) + log p̂ (y = k′)− log
∑
k′

(
p̂ (y = k′)

p∏
i=1

p̂ (xi|y = k′)

)

We can re write the conditional model as an exponential family

log p (y|x) =
∑
i,k,k′

δ(xi = k, y = k′)θikk′ +
∑
k′

δ(y = k′)θk′ − log p(x)

Its su�cient statistics and canonical parameters are equal to those of the generative
model, but seen as functions of the random variable y, given that x is �xed (we could write
φx,i,k,k′(y) = δ(xi = k, y = k′)). As for the log-partition function, it is now equal to log p(x).

Warning: θ̂ikk′ is the maximum likelihood estimator in the generative model which, usu-
ally, is not equal to the maximum likelihood estimator in the conditional model.

B.2.2 Advantages and Drawbacks

Advantages:

• Doable in line.

• Computationally tractable solution.

Drawbacks:

• Generative: generative models produce good estimator whenever the model is �true�, or
in statistical words well speci�ed, which means that the process that generate the real
data induce a distribution equal to the one of the generative model. When the model
is not well speci�ed (which is the most common case) we'd better use a discriminative
method.

B.2.3 Discriminative method

The problem that we have considered in the previous section is the generative model for
classi�cation in K classes. How to learn, in a discriminatory way , a classi�er in K classes?
Is it possible to use an exponential family?

We have already seen the logistic regression for 2 classes classi�cation:

p (y = 1|x) =
exp

(
ωTx

)
1 + exp (ωTx)

Let's study the K-multiclass logistic regression:
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p (y = k′|x) =
exp

(∑p
i=1

∑K
k=1 δ (xi = k) θikk′

)
∑M

k′′=1 exp
(∑p

i=1

∑K
k=1 δ (xi = k) θikk′′

)
= exp

(
p∑
i=1

K∑
k=1

δ (xi = k) θikk′ − log

(
M∑

k′′=1

exp

(
p∑
i=1

K∑
k=1

δ (xi = k) θikk′′

)))

= exp

(
θTk′φ (x)− log

(
M∑

k′′=1

exp
(
θTk′′φ (x)

)))

=
exp

(
θTk′φ (x)

)∑M
k′′=1 exp (θTk′′φ (x))

Although we have built the model from di�erent staring consideration, the resulting mod-
elling (that is the set of possible distribution) is of the same exponential family than the
Naive Bayes model.

Nonetheless, the �tted model in a discriminatory approach will be di�erent from the one
�tted in a generative approach: the �tting of the K-multiclass logistic regression results from
the maximisation of the likelihood of the classes y(j) of a set of learning, given that x(j) are
�xed. In other words, the �tting is obtained by computing the maximum likelihood estimator
in the conditional model. Unlike what happens in the generative model, the estimator can't
be obtained in a analytical form and the learning requires solving a numerical optimisation
problem.
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