
  

 

 

 

 

 

 

 

 

F A C U L T Y  O F  S C I E N C E  

U N I V E R S I T Y  O F  C O P E N H A G E N  

Training restricted Boltzmann machines

Asja Fischer

June 30th, 2014



This thesis has been submitted to the Department of Computer Science, University

of Copenhagen, Denmark in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, Ph.D., in computer science. The thesis has been supervised by

Christian Igel.

c© Copyright 2014 by Asja Fischer



Summary

This thesis is concerned with analyzing and improving training of Restricted Boltzmann

Machines (RBMs). It starts with an introduction to RBMs and their most common

training methods along with the required concepts from undirected graphical models

and Markov chain theory. The second part of the thesis investigates properties of

popular training methods in two empirical and two theoretical studies:

• Common learning algorithms for RBMs, like k-step Contrastive Divergence (CD)

and its refined variants Persistent CD (PCD) and Fast PCD, rely on gradient ascent

on Gibbs sampling based stochastic approximations of the log-likelihood gradient.

The approximations are biased, and the bias can lead to a steady decrease of the

log-likelihood during learning. In this work these divergence effects are investigated

in a detailed empirical study. This includes an analysis of the dependency of the

divergence on the number k of Gibbs sampling steps used to gain a sample, the

number of hidden variables of the RBM, and on the usage of weight-decay or an

adaptive learning rate.

• It was previously reported that despite of the bias the signs of most components

of the CD update are equal to the corresponding signs of the log-likelihood gra-

dient. Therefore, training based on resilient backpropagation as an optimization

technique depending only on the signs is investigated. However, it does not prevent

the divergence caused by the approximation bias.

• The bias of CD depends on k and the mixing rate of the Gibbs chain, which is

slowing down with increasing absolute values of the RBM parameters. In this study

a new upper bound for the bias is derived that reflects these dependencies and is

further affected by the distance in variation between the modeled distribution and

the starting distribution of the Gibbs chain.

• One of the most promising sampling techniques used for RBM training so far is

Parallel Tempering (PT), which maintains several Gibbs chains in parallel and is

designed to produce a faster mixing Markov chain. In this study the convergence

rate of PT for sampling from binary RBMs is analyzed by deriving a lower bound on

the spectral gap, which shows an exponential dependency on the size of the smallest

layer and the sum of the absolute values of the RBM parameters.

The third part of the thesis consists out of three contributions improving different

aspects of RBM training:

• A Metropolis-type transition operator is proposed that maximizes the probability of

state changes and can replace Gibbs sampling in RBM learning algorithms without



4

producing computational overhead. It is shown analytically that the operator in-

duces an irreducible, aperiodic Markov chain, and empirically that it leads to faster

mixing and in turn to more accurate learning.

• Furthermore, an analysis of centered binary RBMs is given, where centering corre-

sponds to subtracting offset values from visible and hidden variables. It is shown

analytically that centering can be reformulated as a different update rule for train-

ing normal binary RBMs. The corresponding update direction becomes equivalent

to the enhanced gradient for a certain choice of offsets and is invariant to inver-

sions of the data set (generated by flipping each bit) for a broad set of offset values.

Numerical simulations show that centering leads to better models in terms of the

log-likelihood, and to an update direction that is closer to the natural gradient.

Optimal model performance is achieved when subtracting mean values from both

visible and hidden variables. It is further shown that the enhanced gradient suffers

from divergence more often than other centering variants, which can be prevented

by using an exponentially moving average for the offset estimation.

• Assessing model performance is difficult since the likelihood of RBMs is not tractable

due to a normalization constant which depends exponentially on the size of the

RBM. It can be reliably estimated using Annealed Importance Sampling (AIS),

which however needs too much computation time to efficiently monitor the training

process. Therefore, alternative techniques from statistical physics for estimating the

normalization constant are explored in this study, including Bennett’s Acceptance

Ratio (BAR). An unifying framework for deriving these methods as well as AIS is

given. An empirical analysis shows that BAR gives superior results and outperforms

AIS, especially when only a small number of bridging chains are employed.

In the last part of the thesis the representational power of Deep Belief Networks (DBNs)

with real valued visible variables is analyzed:

• Deep belief networks are build by stacking RBMs, and known to be able to approx-

imate any distribution over fixed-length binary vectors. However, DBNs are often

used for modeling distributions of real valued variables. Therefore, the approxima-

tion properties of DBNs with two layers of binary hidden units, and visible units

with conditional distributions from the exponential family are analyzed. It is shown

that they can, under mild assumptions, model any additive mixture of distributions

from the exponential family with independent variables. An arbitrarily good ap-

proximation in terms of Kullback-Leibler divergence of an m dimensional mixture

distribution with n components can be achieved by a DBN with a layer of m visible

variables and n and n + 1 hidden variables in the first and second hidden layer,

respectively.



Acknowledgements

I want to thank all people who supported me during my work on this thesis. Especially

I want to thank my supervisor Christian Igel for his continuous support and advice.

Thanks to my colleagues Kai Brügge, Oswin Krause, Jan Melchior, Tobias Glasmachers

and Laurenz Wiskott. It was a pleasure and a lot of fun to work with you!

This work has been supported by the German Federal Ministry of Education and

Research within the National Network Computational Neuroscience under grant num-

ber 01GQ0951 (Bernstein Fokus “Learning behavioral models: From human experi-

ment to technical assistance”).





Contents

Acknowledgements 5

1 Introduction 9

1.1 What RBMs are good for . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Challenges and open questions in RBM training . . . . . . . . . . . . . . 11

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Training RBMs: An introduction 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Graphical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Markov chains and Markov chain Monte Carlo techniques . . . . . . . . 26

2.4 Restricted Boltzmann machines . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Approximating the RBM log-likelihood gradient . . . . . . . . . . . . . 34

2.6 RBMs with real-valued variables . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Where to go from here? . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Empirical analysis of the divergence of Gibbs sampling based learning

algorithms 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Training RBMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Training RBMs based on the signs of the CD approximation 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 RBMs and CD learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Training RBMs with resilient backpropagation . . . . . . . . . . . . . . 65

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



6 Contents

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Bounding the bias of contrastive divergence learning 71

5.1 Training RBMs using contrastive divergence . . . . . . . . . . . . . . . . 72

5.2 Bounding the CD approximation error . . . . . . . . . . . . . . . . . . . 73

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 A bound for the convergence rate of parallel tempering for sampling

RBMs 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Bounding the spectral gap of PT . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 The flip-the-state transition operator for RBMs 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 The flip-the-state transition operator . . . . . . . . . . . . . . . . . . . . 102

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 How to center binary RBMs 119

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2 Restricted Boltzmann machines . . . . . . . . . . . . . . . . . . . . . . . 121

8.3 Centered restricted Boltzmann machines . . . . . . . . . . . . . . . . . . 125

8.4 Initialization of the model parameters . . . . . . . . . . . . . . . . . . . 128

8.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Contents 7

9 On Bennett’s acceptance ratio for estimating the partition function

of RBMs 155

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.2 Restricted Boltzmann machines and parallel tempering . . . . . . . . . . 157

9.3 Optimal estimators of the normalisation constant for a given sampler . . 158

9.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10 Properties of DBNs with binary hidden and real-valued visible units171

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3 Approximation properties . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11 Discussion and conclusion 185

11.1 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

11.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography 196

List of Publications 209





Chapter 1

Introduction

The field of machine learning is concerned with the development and analysis of algo-

rithms that can learn from data. Learning in this context corresponds to extracting and

modeling certain principles underlying the data. Thereby different types of learning

problems can be distinguished. Classification and regression tasks are typical super-

vised learning problems. In a supervised learning problem the training data is given in

form of pairs (x1, y1), (x2, y2), (x3, y3) . . . , where xi is an input and yi the correspond-

ing output value (or label). The learning task is now to extract and model the relation

between input and output values, that is, to infer a function mapping points in the

input space to points in the output space. This function, also referred to as hypothesis,

can then be used to find the outputs corresponding to formerly unseen input values. In

unsupervised learning the training data consists of unlabeled input points x1, x2, x3 . . . ,

and the learning problem corresponds to either finding some structure in the data; to

generating a representation that summarizes and explains key features of the data;

or to building a (generative) model of the data. A resulting representation or model

can for example be used for data compression or for prediction and decision making.

Typical unsupervised learning tasks include clustering, dimensionality reduction and

density estimation.

1.1 What RBMs are good for

This thesis focuses on a particular machine learning model, namely Restricted Boltz-

mann Machines (RBMs, Smolensky, 1986), which are introduced in detail in Chapter

2 together with their statistical background. Restricted Boltzmann machines are undi-

rected graphical models that can also be interpreted as two-layered stochastic neural

networks. As an undirected graphical model, an RBM represents a probability distribu-



10 Chapter 1

tion that can be used in an unsupervised learning problem to model some distribution

over some input space. Given a set of samples x1, x2, x3 . . . as training data, learning

corresponds to adjusting the model parameters of the RBM such that the represented

probability distribution fits the training data as well as possible. The RBM then forms

a model of the distribution underlying the training data.

The trained RBM can be used in various ways, which shall be described in the

following.

RBMs as generative models. When an RBM is used as a generative model, it is

used for drawing samples from the learned distribution. If the training data consists of

images, this can for example be used to generate textures from these images (Le Roux

et al., 2011; Courville et al., 2011; Kivinen and Williams, 2012), or to solve inpainting

tasks (Kivinen and Williams, 2012; Tang et al., 2012) by sampling the missing or

deteriorated parts of a given image from the distribution. Another example is the

modeling and generation of human motion patterns (Taylor et al., 2007; Taylor and

Hinton, 2009; Sukhbaatar et al., 2011).

RBMs as classifiers. Restricted Boltzmann machines can also be used as classifiers.

If labeled training data is given, and the RBM is trained on the joint distribution of

inputs and labels, one can sample the missing label for a represented image from the

distribution or assign a new image to the class with the highest probability under the

model (Salakhutdinov et al., 2007; Larochelle and Bengio, 2008). Furthermore, other

techniques for using RBMs as classifiers exist, where several RBMs are trained, each

modeling the input data from one class (Schmah et al., 2009). Possible applications

are for example the classification of fMRI images (Schmah et al., 2009) or character

recognition and text classification problems (Larochelle et al., 2012).

RBMs as feature extractors. Another branch of applications employs RBMs as

feature extractors. For feature extraction, one makes use of the fact that RBMs com-

prise two types of variables: a layer of visible variables which correspond to the com-

ponents of the inputs, and a layer of hidden (or latent) variables which capture depen-

dencies between the visible neurons. After training, the expected states of the hidden

variables given an input can be interpreted as the (learned) features extracted from

this input pattern. If the number of hidden units is small, this leads to low dimensional

representations, for example of semantic documents which can be utilized in document

retrieval (Xing et al., 2005; Gehler et al., 2006; Salakhutdinov and Hinton, 2009a). An-

other interesting application area where RBMs are employed as feature extractors is for

example the field music similarity measuring as it is needed for music recommendation,

exploration and classification (Schlüter and Osendorfer, 2011; Tran et al., 2014).



Introduction 11

RBMs as building blocks of deep architectures. Restricted Boltzmann ma-

chines got into the focus of attention after being proposed as the building blocks of

multi-layer generative models which are called Deep Belief Networks (DBNs, Hinton

and Salakhutdinov, 2006; Hinton, 2007a). The basic idea underlying these deep archi-

tectures is that the features extracted by the hidden neurons of an RBM can serve as

input for another RBM. By stacking RBMs in this way, one can learn features from

features in the hope of getting a hierarchy of more and more abstract representations.

The resulting multi-layer architecture can either be used as a deep generative model

(Hinton, 2007a; Hinton et al., 2006) or in a discriminative way. For the latter, the

network is regarded as a feed forward neural network (which is possible because of the

structural equivalence of RBMs and neural networks) and augmented by a final layer of

variables that represent the desired outputs. This multi-layer perceptron can then be

fine-tuned in a supervised way by backpropagation (Hinton and Salakhutdinov, 2006;

Hinton, 2007a; Bengio et al., 2007; Erhan et al., 2010). Deep belief networks were for

example applied with great success to audio (Lee et al., 2009b) and image classification

(Ranzato et al., 2007; Larochelle et al., 2007).

1.2 Challenges and open questions in RBM training

Compared to 1986 when RBM have been introduced (Smolensky, 1986), RBMs can now

be applied to more interesting problems. This is due to the increase in computational

power and the development of new learning strategies which started around 2002 (Hin-

ton, 2002). Training RBMs corresponds to adjusting the parameters as to maximize

the probability of the training data under the model. This corresponds to maximizing

the likelihood of the parameters given the training data. Maximum likelihood learn-

ing is in general challenging for undirected probabilistic graphical models because the

maximum likelihood parameters cannot be found analytically and the log-likelihood

gradient needed for a gradient based optimization is not tractable. It involves averages

over a number of terms exponential in the size of the model. Obtaining unbiased es-

timates of these averages by Markov Chain Monte Carlo (MCMC) methods typically

requires many sampling steps and thus is computationally too demanding. Hinton

(2002) however showed that the biased estimates obtained after running a Gibbs chain

for just a few steps are sufficient for RBM training. He suggested to initialize the

Gibbs chain with a sample from the training set and usually only one sampling step

is applied. The resulting approximation of the log-likelihood gradient is referred to

as k-step Contrastive Divergence (CD, or CD-k) and optimization by gradient ascent

on the CD approximation still is one of the most popular RBM training techniques

(Hinton, 2002).



12 Chapter 1

Against this background my thesis addresses the following challenges and open

questions regarding the training of RBMs.

Analyzing biased approximations. Due to the bias of the approximation, CD

learning does not necessarily reach a maximum likelihood estimate of the parame-

ters (Carreira-Perpiñán and Hinton, 2005; Bengio and Delalleau, 2009). Yuille (2005)

specified conditions under which CD learning is guaranteed to converge to an optimal

solution. These conditions however need not hold for RBM training in general. Exam-

ples of energy functions and Markov chains for which CD-1 learning does not converge

are given by MacKay (2001). Furthermore, Sutskever and Tieleman (2010) showed

that the CD-1 update is not the gradient of any function, and while a regularized CD

update has a fixed point for a large class of regularization functions, it is possible to

design regularization functions that cause CD learning to cycle indefinitely.

The bias of CD depends not only on the number k of sampling steps, but also on

the mixing rate of the Gibbs chain (i.e. the speed of the convergence of the Markov

chain to the model distribution) and mixing slows down with increasing magnitude

of model parameters (Hinton, 2002; Carreira-Perpiñán and Hinton, 2005; Bengio and

Delalleau, 2009). The magnitude of the RBM parameters increases during training,

and so does the CD-bias. This can lead to a distortion of the learning process: after

some learning iterations, the likelihood can start to diverge in the sense that the model

systematically gets worse (Fischer and Igel, 2009; Desjardins et al., 2010b).

A number of refined learning algorithms for RBM training were introduced which

make use of different sampling techniques and aim at reducing the bias of the gradient

approximation. Persistent CD (PCD, Tieleman, 2008) and Fast PCD (FPCD, Tieleman

and Hinton, 2009) are also based on Gibbs sampling, but do not reinitialize the chain

with a training sample in each iteration. Training RBMs based on the sampling tech-

nique Parallel Tempering (PT), also known as replica exchange or tempered MCMC

sampling, seems especially promising (Salakhutdinov, 2009; Desjardins et al., 2010b;

Cho et al., 2010). PT is designed to overcome the limitations of Metropolis-Hasting

algorithms (like Gibbs sampling) when sampling from multi-modal target distributions

and as a result to lead to faster mixing Markov chains (Swendsen and Wang, 1986;

Geyer, 1991). Consistently, empirical studies show that using PT for RBM training

results in better generative models and can prevent the likelihood from diverging (Des-

jardins et al., 2010b; Cho et al., 2010). But a theoretical analysis of PT based training

is missing so far.

Analyzing and increasing the mixing rate of sampling methods. Since the

bias of the gradient approximations heavily depends on the mixing rate of the Markov



Introduction 13

chain employed for drawing samples, it is of high interest to use sampling techniques

with a fast convergence rate in RBM training algorithms. Likewise, when using RBMs

as generative models, one is interested in sampling techniques leading to a fast conver-

gence of the Markov chain to the stationary distribution, since this is the distribution

one wishes to draw samples from.

Therefore, both an analysis of the mixing rate of sampling methods applied to

RBMs as well as the development of faster mixing sampling techniques are required.

While a well known upper bound for the convergence rate of Gibbs sampling as em-

ployed by CD and (F)PCD exists (see, e.g. Brémaud (1999)) and can easily be applied

to RBMs, the convergence rate of PT applied to RBMs still needs to be investigated.

Making the learning process more robust against changes of the data rep-

resentation. An undesired property of training RBMs based on the log-likelihood

gradient is that the learning procedure is not invariant to the data representation.

For example training an RBM on the MNIST data set of handwritten digits (white

digits on black background) leads to a better model than training it on the data set

generated by flipping each bit (black digits on white background). So far two ways

of becoming invariant to such changes of the data representation have been described.

On the one hand, Cho et al. (2011) designed an alternative update direction referred

to as enhanced gradient that is invariant to flips of the data and can replace the gra-

dient in the learning procedure. On the other hand, Tang and Sutskever (2011) have

shown empirically that subtracting the data mean from the visible variables leads to

similar learning results on flipped and unflipped data sets. Removing the mean of all

variables is generally known as the “centering trick”, which was originally proposed for

feed forward neural networks (LeCun et al., 1998b). Recently, it has also been applied

to the visible and hidden variables of Deep Boltzmann Machines (DBMs) where it has

been shown to lead to better conditioned optimization problems and to improve some

aspects of model performance (Montavon and Müller, 2012).

Assessing model quality. Assessing model quality during RBM training is difficult

because the likelihood (like its gradient) is not tractable for large models. Salakhutdi-

nov and Murray (2008) showed that Annealed Importance Sampling (AIS, Neal, 2001)

can be used to estimate the likelihood. It is however computationally too demanding

to efficiently monitor the training progress and the resulting estimate is not always

reliable (Schulz et al., 2010). More recently, Desjardins et al. (2011) introduced an

estimation procedure that reuses samples generated by PT during training and can

track the likelihood during training without a lot of computational overhead.



14 Chapter 1

Analyzing the representational power of RBMs and DBNs. It is important

to ask what kind of distributions a probabilistic model is able to learn. An RBM having

binary hidden variables and visible variables with a Gaussian conditional distribution

is known to represent a mixture of Gaussian distributions, where the single components

are placed on the vertices of a projected parallelotope (Wang et al., 2012). Because of

this restriction, the model’s capabilities are rather limited. However, RBMs with binary

hidden and visible variables are known to be able to approximate any distribution

over the input variables arbitrarily well, provided that they have sufficiently many

hidden variables (Le Roux and Bengio, 2008; Montufar and Ay, 2011). Furthermore,

it was shown that a binary DBN never needs more variables than a binary RBM to

model a distribution with a certain accuracy (Le Roux and Bengio, 2010). However,

DBNs are frequently applied to model real-valued data, and little is known about their

representational power in this case.

1.3 Outline of the thesis

The aim of the work presented in this thesis is to contribute to a deeper understanding

of RBMs and their training algorithms and to improve the learning process by address-

ing the open questions and challenges outlined above. In a bird-eyes view, the thesis

starts with an introduction to RBMs and their training algorithms in Chapter 2. The

work presented in the Chapters 3 to 6 analyzes properties of existing RBM learning

algorithms empirically and theoretically. Chapters 7 and 8 introduce two ways of im-

proving training. Chapter 9 analyzes techniques to estimate the RBM log-likelihood

and Chapter 10 investigates approximation properties of DBNs. A final conclusion and

discussion is given in Chapter 11.

In more detail and seen in the context of previous work, the thesis can be outlined

as follows. It starts with a review article that introduces RBMs and their training

algorithms along with the needed concepts from graph and Markov chain theory in

Chapter 2. Chapter 3 analyzes the impact of the biased approximations of the log-

likelihood gradient used in the CD algorithm and its refined variants PCD and FPCD

on the learning process. In this analysis the divergence behavior, formerly observed

by Fischer and Igel (2009) and Desjardins et al. (2010b), and its dependencies on

different training settings are further investigated. It was reported by Bengio and De-

lalleau (2009) that despite the bias, the signs of most components of the CD update

are equal to the corresponding signs of the log-likelihood gradient. This suggests re-

placing gradient ascent by an optimization technique such as resilient backpropagation

(Riedmiller, 1994; Igel and Hüsken, 2003), which only depends on the signs. This idea

is investigated in Chapter 4. The bias of CD is theoretically analyzed in Chapter 5



Introduction 15

by deriving a new upper bound on the expectation of the CD approximation error

under the empirical distribution. Chapter 6 presents the first theoretical analysis of

the convergence rate of the advanced sampling technique PT applied to binary RBMs.

Based on general results on the mixing rate of PT (Woodard et al., 2009b), a lower

bound for the spectral gap of PT for sampling in RBMs is derived, giving rise to an

upper bound of the convergence rate. The work presented in Chapter 7 proposes a

Metropolis-type transition operator that maximizes the probability of state changes in

the hope of producing a faster mixing Markov chain. It can replace Gibbs sampling

in RBM learning algorithms and is related to the Metropolized Gibbs sampler often

used to sample from Ising models (Neal, 1993; Liu, 1996). Chapter 8 analyzes centered

RBMs, where centering corresponds to subtracting offset values from the variables.

This work is related to the analysis of centered DBMs by Montavon and Müller (2012)

and includes a unifying view on centering and the approaches of Cho et al. (2011) and

Tang and Sutskever (2011) to yield a training procedure which is invariant to changes

of the data representation. In Chapter 9 different techniques for estimating the like-

lihood of RBMs are explored. This includes different variants of AIS and Bennett’s

Acceptance Ratio (BAR) method (Bennett, 1976), which is one of the components

of the estimator suggested by Desjardins et al. (2011). The representational power

of DBNs with real-valued visible variables is investigated in Chapter 10, which gives

an analysis of the approximation properties of DBNs with two layers of binary hid-

den units and visible units with conditional distributions from the exponential family.

Finally, a summarizing discussion and a conclusion are given in Chapter 11.

Organization. This is a cumulative thesis consisting of papers published in or sub-

mitted to peer-reviewed journals and conferences. Each publication is assigned a sep-

arate chapter, and the content of the publications remained largely unchanged. Only

minimal changes were applied to align the notation and achieve a consistent formatting

throughout the thesis. Furthermore, all references were gathered in a joint bibliography

in the end. Since all papers deal with the analysis of properties or the development

and analysis of learning algorithms of the same class of models, there exists some re-

dundancy in the introduction and background sections of the papers. The reader is

kindly asked to excuse this and may just skip the redundant parts. Chapters 3, 4, and

5 are partially based on work done during my master thesis.





Chapter 2

Training RBMs: An introduction

This chapter is based on the manuscript “Training restricted Boltzmann machines: An

introduction” by A. Fischer and C. Igel published in Pattern Recognition 47, pp. 25-39,

2014.

Abstract

Restricted Boltzmann Machines (RBMs) are probabilistic graphical models that can be

interpreted as stochastic neural networks. They have attracted much attention as build-

ing blocks for the multi-layer learning systems called deep belief networks, and variants

and extensions of RBMs have found application in a wide range of pattern recognition

tasks. This tutorial introduces RBMs from the viewpoint of Markov random fields,

starting with the required concepts of undirected graphical models. Different learning

algorithms for RBMs, including contrastive divergence learning and parallel temper-

ing, are discussed. As sampling from RBMs, and therefore also most of their learning

algorithms, are based on Markov Chain Monte Carlo (MCMC) methods, an introduc-

tion to Markov chains and MCMC techniques is provided. Experiments demonstrate

relevant aspects of RBM training.



18 Chapter 2

2.1 Introduction

In the last years, models extending or borrowing concepts from Restricted Boltzmann

Machines (RBMs, Smolensky, 1986) have enjoyed much popularity for pattern anal-

ysis and generation, with applications including image classification, processing, and

generation (Hinton and Salakhutdinov, 2006; Tang et al., 2012; Le Roux et al., 2011;

Kivinen and Williams, 2012; Schmah et al., 2009; Larochelle and Bengio, 2008); learn-

ing movement patterns (Taylor et al., 2007; Taylor and Hinton, 2009); collaborative

filtering for movie recommendations (Salakhutdinov et al., 2007); extraction of seman-

tic document representations (Salakhutdinov and Hinton, 2009a; Gehler et al., 2006;

Xing et al., 2005); and acoustic modeling (Mohamed and Hinton, 2010). As the name

implies, RBMs are a special case of general Boltzmann machines. The latter were

introduced as bidirectionally connected networks of stochastic processing units, which

can be interpreted as neural network models (Ackley et al., 1985; Hinton, 2007b). A

Boltzmann machine is a parameterized model representing a probability distribution,

and it can be used to learn important aspects of an unknown target distribution based

on samples from this target distribution. These samples, or observations, are referred

to as the training data. Learning or training a Boltzmann machine means adjusting

its parameters such that the probability distribution the machine represents fits the

training data as well as possible.

In general, learning a Boltzmann machine is computationally demanding. However,

the learning problem can be simplified by imposing restrictions on the network topology,

which leads us to RBMs, the topic of this tutorial. In Boltzmann machines two types of

units can be distinguished. They have visible neurons and potentially hidden neurons.

Restricted Boltzmann machines always have both types of units, and these can be

thought of as being arranged in two layers, see Figure 2.1 for an illustration. The visible

units constitute the first layer and correspond to the components of an observation

(e.g., one visible unit for each pixel of a digital input image). The hidden units model

dependencies between the components of observations (e.g., dependencies between the

pixels in the images) and can be viewed as non-linear feature detectors (Hinton, 2007b).

In the RBMs network graph, each neuron is connected to all the neurons in the other

layer. However, there are no connections between neurons in the same layer, and this

restriction gives the RBM its name.

Now, what is learning RBMs good for? After successful learning, an RBM provides

a closed-form representation of the distribution underlying the training data. It is a

generative model that allows sampling from the learned distribution (e.g., to generate

image textures (Le Roux et al., 2011; Kivinen and Williams, 2012)), in particular

from the marginal distributions of interest, see right plot of Figure 2.1. For example,

we can fix some visible units corresponding to a partial observation (i.e., we set the



Training RBMs: An introduction 19

learning generating

visible units 

hidden units 

training data 

parameter fitting 

visible units 

hidden units 

samples 

sampling

Figure 2.1: Left: Learning an RBM corresponds to fitting its parameters such

that the distribution represented by the RBM models the distribution underlying the

training data, here handwritten digits. Right: After learning, the trained RBM can

be used to generate samples from the learned distribution.

corresponding visible variables to the observed values and treat them as constants) and

sample the remaining visible units to complete the observation, for example, to solve an

image inpainting task (Kivinen and Williams, 2012; Tang et al., 2012), see Figure 7.4

in Section 2.7. In this way, RBMs can also be used as classifiers: The RBM is trained

to model the joint probability distribution of inputs (explanatory variables) and the

corresponding labels (response/output variables), both represented by the visible units

of the RBM. This is illustrated in the left plot of Figure 2.2. Afterwards, a new input

pattern can be clamped to the corresponding visible variables and the label can be

predicted by sampling, as shown in the right plot of Figure 2.2.

Compared to the 1980s when RBMs were first introduced (Smolensky, 1986), they

can now be applied to more interesting problems due to the increase in computational

power and the development of new learning strategies (Hinton, 2002). Restricted Boltz-

mann machines have received a lot of attention recently after being proposed as the

building blocks for the multi-layer learning architectures called Deep Belief Networks

(DBNs, Hinton and Salakhutdinov, 2006; Hinton, 2007a). The basic idea underlying

these deep architectures is that the hidden neurons of a trained RBM represent rele-

vant features of the observations, and that these features can serve as input for another

RBM, see Figure 2.3 for an illustration. By stacking RBMs in this way, one can learn

features from features in the hope of arriving at a high-level representation.

It is an important property that single as well as stacked RBMs can be reinter-

preted as deterministic feed-forward neural networks. When viewed as neural networks

they are used as functions mapping the observations to the expectations of the latent

variables in the top layer. These can be interpreted as the learned features, which can,

for example, serve as inputs for a supervised learning system. Furthermore, the neural



20 Chapter 2

visible units 

hidden units 

training data 

parameter fitting 

learning with labels 

Figure 2.2: Left: RBM trained on labeled data, here images of handwritten digits

combined with ten binary indicator variables, one of which is set to 1 indicating that

the image shows a particular digit while the others are set to 0. Right: The label cor-

responding to an input image is obtained by fixing the visible variables corresponding

to the image and then sampling the remaining visible variables corresponding to the

labels from the (marginalized) joined probability distribution of images and labels

modeled by the RBM.

visible units 

hidden units 

sample 

activation of  
hidden units 

learned features 

Figure 2.3: The trained RBM can be used as a feature extractor. An input pattern

is clamped to the visible neurons. The conditional probabilities of the hidden neurons

to be 1 are interpreted as a new representation of the input. This new representation

can serve as input to another RBM or to a different learning system.



Training RBMs: An introduction 21

network corresponding to a trained RBM or DBN can be augmented by an output

layer where the additional units represent labels (e.g., corresponding to classes) of the

observations. Then we have a standard neural network for classification or regression

that can be further trained by standard supervised learning algorithms (Rumelhart

et al., 1986b). It has been argued that this initialization (or unsupervised pretraining)

of the feed-forward neural network weights based on a generative model helps to over-

come some of the problems that have been observed when training multi-layer neural

networks (Hinton and Salakhutdinov, 2006).

Boltzmann machines can be regarded as probabilistic graphical models, namely

undirected graphical models also known as Markov Random Fields (MRFs, Koller and

Friedman, 2009). The embedding into the framework of probabilistic graphical mod-

els provides immediate access to a wealth of theoretical results and well-developed

algorithms. Therefore, we introduce RBMs from this perspective after providing the

required background on MRFs. This approach and the coverage of more recent learning

algorithms and theoretical results distinguishes this tutorial from others. Section 2.2

will provide the introduction to MRFs and unsupervised MRF learning. Training of

RBMs (i.e., the fitting of the parameters) is usually based on gradient-based maxi-

mization of the likelihood of the RBM parameters given the training data, that is, the

probability that the distribution modeled by the RBM generated the data. Computing

the likelihood of an undirected graphical model or its gradient is in general computa-

tionally intensive, and this also holds for RBMs. Thus, sampling-based methods are

employed to approximate the likelihood gradient. Sampling from an undirected graph-

ical model is in general not straightforward, but for RBMs, Markov Chain Monte Carlo

(MCMC) methods are easily applicable in the form of Gibbs sampling. These methods

will be presented along with the basic concepts of Markov chain theory in Section 2.3.

Then RBMs will be formally described in Section 2.4, and the application of MCMC

algorithms to RBMs training will be the topic of Section 2.5. Finally, we will discuss

RBMs with real-valued variables before concluding with some experiments.

2.2 Graphical models

Probabilistic graphical models describe probability distributions by mapping condi-

tional dependence and independence properties between random variables using a

graph structure. Two sets of random variables X and Y are conditionally indepen-

dent given a set of random variables Z if for all values x,y, z of the variables, we

have p(x,y | z) = p(x | z)p(y | z), which implies p(x |y, z) = p(x | z) and p(y |x, z) =
p(y | z). Visualization by graphs can help to develop, understand, and motivate prob-

abilistic models. Furthermore, complex computations (e.g., marginalization) can be



22 Chapter 2

derived efficiently by using algorithms exploiting the graph structure.

There exist graphical models associated with different kinds of graph structures,

for example, factor graphs, Bayesian networks associated with directed graphs, and

Markov random fields, which are also called Markov networks or undirected graphical

models. This tutorial focuses on the last. A general introduction to graphical models

for machine learning can, for example, be found in the book by Bishop (2006). The most

comprehensive resource on graphical models is the textbook by Koller and Friedman

(2009).

2.2.1 Undirected graphs and Markov random fields

First, we will summarize some fundamental concepts from graph theory. An undirected

graph is an ordered pair G = (V,E), where V is a finite set of nodes and E is a set of

undirected edges. An edge consists of a pair of nodes from V . If there exists an edge

between two nodes v and w, i.e., {v, w} ∈ E, w belongs to the neighborhood of v and

vice versa. The neighborhood Nv = {w ∈ V : {w, v} ∈ E} of v is defined by the set of

nodes connected to v. An example of an undirected graph can be seen in Figure 2.4.

Here the neighborhood of node v4 is {v2, v5, v6}.

V

v1

v2

v3

v4

v5

v6

v7

v8

Figure 2.4: An example of an undirected graph. The nodes v1 and v8 are separated

by V = {v4, v5}.

A clique is a subset of V in which all nodes are pairwise connected. A clique is

called maximal if no node can be added such that the resulting set is still a clique. In

the undirected graph in Figure 2.4, both {v1, v2} and {v1, v2, v3} are cliques but only

the latter is maximal. In the following, we will denote by C the set of all maximal

cliques of an undirected graph. We call a sequence of nodes v1, v2, . . . , vm ∈ V , with

{vi, vi+1} ∈ E for i = 1, . . . ,m − 1 a path from v1 to vm. A set V ⊂ V separates two

nodes v /∈ V and w /∈ V if every path from v to w contains a node from V. For an

illustration of this concept, see Figure 2.4.



Training RBMs: An introduction 23

Given an undirected graph G = (V,E), we now associate, to each node v ∈ V ,

a random variable Xv taking values in a state space Λv. To ease the notation, we

assume Λv = Λ for all v ∈ V . The set of random variables X = (Xv)v∈V is called a

Markov Random Field (MRF) if the joint probability distribution p fulfills the (local)

Markov property w.r.t. the graph. This property is fulfilled if for all v ∈ V the random

variable Xv is conditionally independent of all other variables given its neighborhood

(Xw)w∈Nv
. That is, for all v ∈ V and all x ∈ Λ|V |, one has that p(xv | (xw)w∈V \{v}) =

p(xv | (xw)w∈Nv
).

There exist two other types of Markov properties, which are equivalent to the

local Markov property if the probability distribution of the MRF is strictly posi-

tive. The MRF is said to have the global Markov property if for any three disjunct

subsets A,B,S ⊂ V , such that all nodes in A and B are separated by S, the vari-

ables (Xa)a∈A and (Xb)b∈B are conditionally independent given (Xs)s∈S , i.e., for

all x ∈ Λ|V | one has that p ((xa)a∈A | (xt)t∈S∪B) = p ((xa)a∈A | (xt)t∈S). The pair-

wise Markov property means that any two non-adjacent variables are conditionally

independent given all other variables: if {v, w} /∈ E, then p(xv, xw | (xt)t∈V \{v,w}) =

p(xv | (xt)t∈V \{v,w})p(xw | (xt)t∈V \{v,w}) for all x ∈ Λ|V |.

Since conditional independence of random variables and the factorization properties

of the joint probability distribution are closely related, one can ask if there exists a

general factorization of MRF distributions. An answer to this question is given by the

Hammersley–Clifford Theorem (for rigorous formulations and proofs we refer to the

textbooks by Lauritzen (1996) and Koller and Friedman (2009)):

Theorem 2.1. A strictly positive distribution p satisfies the Markov property w.r.t.

an undirected graph G if and only if p factorizes over G.

A distribution is said to factorize over an undirected graph G with maximal cliques

C if there exists a set of non-negative functions {ψC}C⊂C , called potential functions,

satisfying

∀x, x̂ ∈ Λ|V | : (xc)c∈C = (x̂c)c∈C ⇒ ψC(x) = ψC(x̂) (2.1)

and

p(x) =
1

Z

∏

C∈C

ψC(x). (2.2)

The normalization constant Z =
∑

x

∏

C∈C ψC(xC) is called the partition function.

If p is strictly positive, the same holds for the potential functions. Thus we can

write

p(x) =
1

Z

∏

C∈C

ψC(xC) =
1

Z
e
∑

C∈C lnψC(xC) =
1

Z
e−E(x) , (2.3)

where we call E =
∑

C∈C lnψC(xC) the energy function. Thus, the probability distri-

bution of every MRF can (if it is strictly positive) be expressed in the form given by



24 Chapter 2

(2.3), which is also called the Gibbs distribution.

2.2.2 Unsupervised MRF learning

Unsupervised learning means learning (important aspects of) an unknown distribution

q based on sample data. This includes finding new representations of the data that

foster learning, generalization, and communication. If we assume that the structure of

the graphical model is known and that the energy function belongs to a known family

of functions parameterized by θ, unsupervised learning of a data distribution with an

MRF means adjusting the parameters θ. We write p(x |θ) when we want to emphasize

the dependency of a distribution on its parameters.

We consider training data S = {x1, . . . ,xℓ}. The data samples are assumed to be

independent and identically distributed (i.i.d.). That is, they are drawn independently

from some unknown distribution q. A standard way of estimating the parameters of a

statistical model ismaximum–likelihood estimation. Applied to MRFs, this corresponds

to finding the MRF parameters that maximize the probability of S under the MRF

distribution, i.e., training corresponds to finding the parameters θ that maximize the

likelihood given the training data. The likelihood L : Θ → R of an MRF given the

data set S maps parameters θ from a parameter space Θ to L(θ |S) =
ℓ∏

i=1

p(xi |θ).
Maximizing the likelihood is the same as maximizing the log-likelihood given by

lnL(θ |S) = ln
ℓ∏

i=1

p(xi |θ) =
ℓ∑

i=1

ln p(xi |θ) . (2.4)

For the Gibbs distribution of an MRF, it is in general not possible to find the maximum

likelihood parameters analytically. Thus, numerical approximations have to be used,

for example gradient ascent, which is described below.

Maximizing the likelihood corresponds to minimizing the distance between the

unknown distribution q underlying S and the distribution p of the MRF in terms of

the Kullback–Leibler divergence (KL divergence), which for a finite state space Ω is

given by

KL(q||p) =
∑

x∈Ω

q(x) ln
q(x)

p(x)
=
∑

x∈Ω

q(x) ln q(x)−
∑

x∈Ω

q(x) ln p(x) . (2.5)

The KL divergence is a (non-symmetric) measure of the difference between two dis-

tributions. It is always positive, and it is zero if and only if the distributions are the

same. As becomes clear by equation (2.5), the KL divergence can be expressed as the

difference between the entropy of q and a second term. Only the latter depends on the

parameters subject to optimization. Approximating the expectation over q in this term

by the training samples from q results in the log-likelihood. Therefore, maximizing the

log-likelihood corresponds to minimizing the KL divergence.



Training RBMs: An introduction 25

Optimization by gradient ascent. If it is not possible to find parameters max-

imizing the likelihood analytically, the usual way to find them is by gradient ascent

on the log-likelihood. This corresponds to iteratively updating the parameters θ(t) to

θ(t+1) based on the gradient of the log-likelihood. Let us consider the following update

rule:

θ(t+1) = θ(t) + η
∂

∂θ(t)

(

lnL(θ(t) |S)
)

−λθ(t) + ν∆θ(t−1)

︸ ︷︷ ︸

= ∆θ(t)

(2.6)

If the constants λ ∈ R
+
0 and ν ∈ R

+
0 are set to zero, we have vanilla gradient ascent.

The constant η ∈ R
+ is the learning rate. As we will see later, it can be desirable

to strive for models with weights having small absolute values. To achieve this, we

can optimize an objective function consisting of the log-likelihood minus half of the

norm of the parameters ‖θ‖2/2 weighted by λ. This method is called weight decay,

and penalizes weights with large magnitude. It leads to the −λθ(t) term in our update

rule (2.6). In a Bayesian framework, weight decay can be interpreted as assuming a

zero-mean Gaussian prior on the parameters. The update rule can be further extended

by a momentum term, ∆θ(t−1), weighted by the parameter ν. Using a momentum

term helps against oscillations in the iterative update procedure and can speed up the

learning process, as is seen in feed-forward neural network training (Rumelhart et al.,

1986b).

Introducing latent variables. Suppose we want to model an m-dimensional un-

known probability distribution q (e.g., each component of a sample corresponds to one

ofm pixels of an image). Typically, not all the variables X = (Xv)v∈V in an MRF need

to correspond to some observed component, and the number of nodes is larger than

m. We split X into visible (or observed) variables V = (V1, . . . , Vm) corresponding to

the components of the observations and latent (or hidden) variables H = (H1, . . . , Hn)

given by the remaining n = |V | −m variables. Using latent variables allows describing

complex distributions over the visible variables by means of simple (conditional) distri-

butions. In this case, the Gibbs distribution of an MRF describes the joint probability

distribution of (V ,H) and one is usually interested in the marginal distribution of V ,

which is given by

p(v) =
∑

h

p(v,h) =
1

Z

∑

h

e−E(v,h) , (2.7)

where Z =
∑

v,h e
−E(v,h). While the visible variables correspond to the components

of an observation, the latent variables introduce dependencies between the visible vari-

ables (e.g., between the pixels of an input image).



26 Chapter 2

Log-likelihood gradient of MRFs with latent variables. Restricted Boltzmann

machines are MRFs with hidden variables and RBM learning algorithms are based on

gradient ascent on the log-likelihood. For a model of the form (2.7) with parameters

θ, the log-likelihood given a single training example v is

lnL(θ |v) = ln p(v |θ) = ln
1

Z

∑

h

e−E(v,h) = ln
∑

h

e−E(v,h) − ln
∑

v,h

e−E(v,h) (2.8)

and for the gradient we get

∂lnL(θ |v)
∂θ

=
∂

∂θ

(

ln
∑

h

e−E(v,h)

)

− ∂

∂θ

(

ln
∑

v,h

e−E(v,h)

)

= − 1
∑

h

e−E(v,h)

∑

h

e−E(v,h) ∂E(v,h)

∂θ
+

1
∑

v,h

e−E(v,h)

∑

v,h

e−E(v,h) ∂E(v,h)

∂θ

= −
∑

h

p(h |v)∂E(v,h)

∂θ
+
∑

v,h

p(v,h)
∂E(v,h)

∂θ
. (2.9)

In the last step we used that the conditional probability can be written

p(h |v) = p(v,h)

p(v)
=

1
Z e

−E(v,h)

1
Z

∑

h

e−E(v,h)
=

e−E(v,h)

∑

h

e−E(v,h)
. (2.10)

Note that the last expression of (2.9) is the difference between two expectations: the

expected values of the energy function under the model distribution and under the

conditional distribution of the hidden variables given the training example. Directly

calculating this sums, which run over all values of the respective variables, leads to a

computational complexity which is in general exponential in the number of variables of

the MRF. To avoid this computational burden, the expectations can be approximated

by samples drawn from the corresponding distributions based on MCMC techniques.

2.3 Markov chains and Markov chain Monte Carlo

techniques

Markov chains play an important role in RBM training because they provide a method

to draw samples from “complicated” probability distributions such as the Gibbs dis-

tribution of an MRF. This section will serve as an introduction to some fundamental

concepts of Markov chain theory. A detailed introduction can be found, for example,

in the book by Brémaud (1999) and the aforementioned textbooks by Bishop (2006)

and Koller and Friedman (2009). An emphasis will be put on Gibbs sampling as an

MCMC technique often used for MRF training and in particular for training RBMs.



Training RBMs: An introduction 27

2.3.1 Markov chains

AMarkov chain is a time discrete stochastic process, where the next state of the system

depends only on the current state and not on the sequence of events that preceded it.

Formally, a Markov chain is a family of random variables X = {X(k) | k ∈ N0} taking
values in a (in the following considerations, finite) set Ω and for which ∀k ≥ 0 and

∀j, i, i0, . . . , ik−1 ∈ Ω one has

p
(k)
ij = Pr

(

X(k+1) = j |X(k) = i,X(k−1) = ik−1, . . . , X
(0) = i0

)

= Pr
(

X(k+1) = j |X(k) = i
)

. (2.11)

The “memorylessness” of a stochastic process expressed by (2.11) is also referred to

as Markov property (considering temporal neighborhood, while the Markov properties

discussed in Section 2.2.1 considered neighborhood induced by the graph topology).

If for all points in time k ≥ 0 the p
(k)
ij have the same value pij (i.e., the transition

probabilities do not change over time), the chain is called homogeneous and the matrix

P = (pij)i,j∈Ω is called the transition matrix of the homogeneous Markov chain.

If the starting distribution µ(0) (i.e., the probability distribution ofX(0)) is given by

the probability vector µ(0) = (µ(0)(i))i∈Ω, with µ
(0)(i) = Pr(X(0) = i), the distribution

µ(k) of X(k) is given by µ(k) T = µ(0) TPk .

A distribution π for which πT = πTP is called a stationary distribution. If the

Markov chain at time k has reached the stationary distribution µ(k) = π, then all

subsequent states will be distributed accordingly, that is, µ(k+n) = π for all n ∈ N. A

sufficient (but not necessary) condition for a distribution π to be stationary w.r.t. a

Markov chain described by the transition probabilities pij , i, j ∈ Ω is that ∀i, j ∈ Ω

π(i)pij = π(j)pji . (2.12)

This is called the detailed balance condition.

Especially relevant are Markov chains for which there exists a unique stationary

distribution. For a finite state space Ω, this is the case if the Markov chain is irreducible.

A Markov chain is irreducible if one can get from any state in Ω to any other in a finite

number of transitions or, more formally, ∀i, j ∈ Ω ∃k > 0 with Pr(X(k) = j |X(0) =

i) > 0.

A chain is called aperiodic if every state can reoccur at irregular times. Formally,

a chain is aperiodic if for all i ∈ Ω the greatest common divisor of all elements in the

set {k ∈ N0 | Pr(X(k) = i |X(0) = i) > 0} is 1. One can show that an irreducible

and aperiodic Markov chain on a finite state space is guaranteed to converge to its

stationary distribution. Let for two distributions α and β on a finite state space Ω the



28 Chapter 2

distance of variation be defined as

dV (α,β) =
1

2
|α− β| = 1

2

∑

x∈Ω

|α(x)− β(x)| . (2.13)

To ease the notation, we allow both row and column probability vectors as arguments

of the functions in (2.13). Then we have:

Theorem 2.2. Let π be the stationary distribution of an irreducible and aperiodic

Markov chain on a finite state space with transition matrix P. For an arbitrary starting

distribution µ,

lim
k→∞

dV (µ
TPk,πT ) = 0 . (2.14)

For a proof see, for instance, the textbook by Brémaud (1999).

Markov chain Monte Carlo methods make use of this convergence theorem for

producing samples from a probability distribution by setting up a Markov chain that

converges to the desired distributions. Suppose you want to sample from a distribution

q with a finite state space. Then you construct an irreducible and aperiodic Markov

chain with stationary distribution π = q. This is a non-trivial task. If k is large enough,

the state x(k) of X(k) from the constructed chain is then approximately a sample from

π and therefore from q. Gibbs sampling (Geman, 1984) is such a MCMC method and

will be described in the following section.

2.3.2 Gibbs sampling

Gibbs sampling is a simple MCMC algorithm for producing samples from the joint

probability distribution of multiple random variables. The basic idea is to construct

a Markov chain by updating each variable based on its conditional distribution given

the state of the others. In the following, we will describe this procedure by explaining

how Gibbs sampling can be used to produce samples (approximately) from the Gibbs

distribution of an MRF.

We consider an MRF X = (X1, . . . , XN ) w.r.t. an undirected graph G = (V,E),

where V = {1, . . . , N} for the sake of clearness of notation. The random variables

Xi, i ∈ V take values in a finite set Λ and π(x) = 1
Ze

−E(x) is the joint probability

distribution of X. Furthermore, if we assume that the MRF changes its state over

time, we can consider X = {X(k) | k ∈ N0} as a Markov chain taking values in Ω = ΛN .

Then X(k) = (X
(k)
1 , . . . , X

(k)
N ) describes the state of the MRF at time k ≥ 0. Between

two successive points in time, the new state of the chain is produced by the following

procedure. First, a variable Xi, i ∈ V is randomly picked with a probability q(i) given

by a strictly positive probability distribution q on V . Then, the new state for Xi is

sampled based on its conditional probability distribution given the state (xv)v∈V \i of



Training RBMs: An introduction 29

all other variables (Xv)v∈V \i. We have π
(
xi | (xv)v∈V \i

)
= π (xi | (xw)w∈Ni

) because

of the local Markov property of MRFs (cf. Section 2.2.1). The transition probability

pxy for two states x,y of the MRF X with x 6= y is

pxy =







q(i)π
(
yi | (xv)v∈V \i

)
, if ∃i ∈ V so that ∀v ∈ V with v 6= i: xv = yv

0, else .
(2.15)

And the probability, that the state of the MRF x stays the same, is pxx =
∑

i∈V
q(i)π

(
xi | (xv)v∈V \i

)
.

Convergence of the Gibbs chain. To show that the Markov chain defined by these

transition probabilities (the so called Gibbs chain) converges to the joint distribution π

of the MRF, we have to prove that π is the stationary distribution of the Gibbs chain

and that the chain is irreducible and aperiodic (see Theorem 2.2).

It is easy to see that π is the stationary distribution by showing that the detailed

balance condition (2.12) holds: for x = y this follows directly. If x and y differ

in the value of more than one random variable, then this follows from the fact that

pyx = pxy = 0. Assume now that x and y differ only in the state of exactly one

variable Xi, i.e., yj = xj for j 6= i and yi 6= xi. Then

π(x)pxy = π(x)q(i)π
(
yi | (xv)v∈V \i

)
= π

(
xi, (xv)v∈V \i

)
q(i)

π
(
yi, (xv)v∈V \i

)

π
(
(xv)v∈V \i

)

= π
(
yi, (xv)v∈V \i

)
q(i)

π
(
xi, (xv)v∈V \i

)

π
(
(xv)v∈V \i

) = π(y)q(i)π
(
xi | (xv)v∈V \i

)
= π(y)pyx .

(2.16)

Thus, the detailed balance condition is fulfilled and π is the stationary distribution.

Since π is strictly positive, so are the conditional probability distributions of the

single variables. This means that every single variable Xi can take every state xi ∈ Λ

in a single transition step and thus every state of the whole MRF can reach any other

in ΛN in a finite number of steps, so the Markov chain is irreducible. Furthermore, it

follows from the positivity of the conditional distributions that pxx > 0 for all x ∈ ΛN ,

and thus that the Markov chain is aperiodic. Aperiodicity and irreducibility guarantee

that the chain converges to the stationary distribution π.

In practice, the single random variables to be updated are usually not chosen at

random based on a distribution q, but in a fixed predefined order. The corresponding

algorithm is often referred to as the periodic Gibbs sampler. If P is the transition

matrix of the Gibbs chain, the convergence rate of the periodic Gibbs sampler to the

stationary distribution of the MRF is bounded by the following inequality (see for



30 Chapter 2

example Brémaud, 1999):

|µPk − π| ≤ 1

2
|µ− π|(1− e−N△)k, (2.17)

where △ = supl∈V δl and δl = sup{|E(x)− E(y)|;xi = yi∀i ∈ V with i 6= l}. Here µ is

an arbitrary starting distribution and 1
2 |µ − π| is the distance in variation as defined

in (2.13).

Gibbs sampling and Metropolis-Hastings algorithms. Gibbs sampling belongs

to the broader class of Metropolis-Hastings algorithms (Hastings, 1970), see the review

by Neal (1993) for a good overview. All MCMC algorithms of this class generate the

transitions of a Markov chain in two substeps. In the first substep, a candidate state

is picked at random from a so called proposal distribution. In the second substep, the

candidate state is accepted as the new state of the Markov chain with an acceptance

probability ensuring that detailed balance holds. The proposal distribution of Gibbs

sampling always suggests to flip the current state of a single random variable and

accepts this with the conditional probability of the suggested state given the states of

the remaining random variables.

For sampling in Ising models, the same proposal distribution (“flip the state”)

has been combined with the acceptance probability min(1, π(x
′)

π(x) ), where x denotes the

current and x′ the new state of the Markov chain. As discussed by Neal (1993), this

sampling algorithm may be advantageous over Gibbs sampling. Recently, it has been

shown that this indeed also holds true for RBMs (Brügge et al., 2013).

2.4 Restricted Boltzmann machines

An RBM (also denoted as a Harmonium (Smolensky, 1986)) is an MRF associated with

a bipartite undirected graph as shown in Figure 2.5. It consists of m visible units V =

(V1, . . . , Vm) representing the observable data, and n hidden units H = (H1, . . . , Hn)

to capture the dependencies between the observed variables. In binary RBMs, our

focus in this tutorial, the random variables (V ,H) take values (v,h) ∈ {0, 1}m+n and

the joint probability distribution under the model is given by the Gibbs distribution

p(v,h) = 1
Z e

−E(v,h) with the energy function

E(v,h) = −
n∑

i=1

m∑

j=1

wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi . (2.18)

For all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, wij is a real valued weight associated with the

edge between the units Vj and Hi, and bj and ci are real valued bias terms associated

with the jth visible and the ith hidden variable, respectively.



Training RBMs: An introduction 31

Figure 2.5: The network graph of an RBM with n hidden and m visible units.

The graph of an RBM has connections only between the layer of hidden and the

layer of visible variables, but not between two variables of the same layer. In terms

of probability, this means that the hidden variables are independent given the state of

the visible variables and vice versa:

p(h |v) =
n∏

i=1

p(hi |v) and p(v |h) =
m∏

j=1

p(vj |h) . (2.19)

Thus, due to the absence of connections between hidden variables, the conditional

distributions p(h |v) and p(v |h) factorize nicely, and simple expressions for the factors

will be given in Section 2.4.1.

The conditional independence between the variables in the same layer makes Gibbs

sampling especially easy: instead of sampling new values for all variables subsequently,

the states of all variables in one layer can be sampled jointly. Thus, Gibbs sampling

can be performed in just two steps: sampling a new state h for the hidden neurons

based on p(h |v) and sampling a state v for the visible layer based on p(v |h). This is
also referred to as block Gibbs sampling.

Now, how does the RBM distribution over V (e.g., the space of images) look like?

The marginal distribution (2.7) of the visible variables becomes

p(v) =
∑

h

p(v,h) =
1

Z

∑

h

e−E(v,h) =
1

Z

∑

h1

∑

h2

· · ·
∑

hn

e

m∑

j=1

bjvj
n∏

i=1

e
hi

(
ci+

m∑

j=1

wijvj

)

=
1

Z
e

m∑

j=1

bjvj ∑

h1

e
h1

(
c1+

m∑

j=1

w1jvj

)
∑

h2

e
h2

(
c2+

m∑

j=1

w2jvj

)

· · ·
∑

hn

e
hn

(
cn+

m∑

j=1

wnjvj

)

=
1

Z
e

m∑

j=1

bjvj
n∏

i=1

∑

hi

e
hi

(
ci+

m∑

j=1

wijvj

)

=
1

Z

m∏

j=1

ebjvj
n∏

i=1

(

1 + e
ci+

m∑

j=1

wijvj
)

. (2.20)

This equation shows why a (marginalized) RBM can be regarded as a product of experts

model (Hinton, 2002; Welling, 2007), in which a number of “experts” for the individual

components of the observations are combined multiplicatively.



32 Chapter 2

Any distribution on {0, 1}m can be modeled arbitrarily well by an RBM with m

visible and k + 1 hidden units, where k denotes the cardinality of the support set of

the target distribution, that is, the number of input elements from {0, 1}m that have

a non-zero probability of being observed (Le Roux and Bengio, 2008). It has been

shown recently that even fewer units can be sufficient, depending on the patterns in

the support set (Montufar and Ay, 2011).

2.4.1 RBMs and neural networks

The RBM can be interpreted as a stochastic neural network, where the nodes and

edges correspond to neurons and synaptic connections, respectively. The conditional

probability of a single variable being one can be interpreted as the firing rate of a

(stochastic) neuron with sigmoid activation function sig(x) = 1/(1 + e−x), because

p(Hi = 1 |v) = sig

( m∑

j=1

wijvj + ci

)

(2.21)

and

p(Vj = 1 |h) = sig

( n∑

i=1

wijhi + bj

)

. (2.22)

To see this, let v−l denote the state of all visible units except the lth one and let us

define

αl(h) = −
n∑

i=1

wilhi − bl (2.23)

and

β(v−l,h) = −
n∑

i=1

m∑

j=1,j 6=l

wijhivj −
m∑

j=1,j 6=l

bjvj −
n∑

i=1

cihi . (2.24)

Then E(v,h) = β(v−l,h) + vlαl(h), where vlαl(h) collects all terms involving vl and

we can write (Bengio, 2009):

p(Vl = 1 |h) = p(Vl = 1 |v−l,h) =
p(Vl = 1,v−l,h)

p(v−l,h)

=
e−E(vl=1,v−l,h)

e−E(vl=1,v−l,h) + e−E(vl=0,v−l,h)
=

e−β(v−l,h)−1·αl(h)

e−β(v−l,h)−1·αl(h) + e−β(v−l,h)−0·αl(h)

=
e−β(v−l,h) · e−αl(h)

e−β(v−l,h) · e−αl(h) + e−β(v−l,h)
=

e−β(v−l,h) · e−αl(h)

e−β(v−l,h) ·
(
e−αl(h) + 1

)

=
e−αl(h)

e−αl(h) + 1
=

1
eαl(h)

1
eαl(h) + 1

=
1

1 + eαl(h)
= sig(−αl(h)) = sig

( n∑

i=1

wilhi + bl

)

(2.25)

As mentioned in the introduction, an RBM can be reinterpreted as a standard

feed-forward neural network with one layer of nonlinear processing units. From this



Training RBMs: An introduction 33

perspective, the RBM is viewed as a deterministic function {0, 1}m → R
n that maps

an input v ∈ {0, 1}m to y ∈ R
n with yi = p(Hi = 1 |v). That is, an observation is

mapped to the expected value of the hidden neurons given the observation.

2.4.2 The gradient of the log-likelihood

As shown in Section 2.2.2, the log-likelihood gradient of an MRF can be written as

the sum of two expectations, see (2.9). For RBMs the first term of (2.9) (i.e., the

expectation of the energy gradient under the conditional distribution of the hidden

variables given a training sample v) can be computed efficiently because it factorizes

nicely. For example, w.r.t. the parameter wij we get:

∑

h

p(h |v)∂E(v,h)

∂wij
=
∑

h

p(h |v)hivj =
∑

h

n∏

k=1

p(hk |v)hivj

=
∑

hi

∑

h−i

p(hi |v)p(h−i |v)hivj =
∑

hi

p(hi |v)hivj
∑

h−i

p(h−i |v)
︸ ︷︷ ︸

=1

= p(Hi = 1 |v)vj = sig

( m∑

j=1

wijvj + ci

)

vj (2.26)

Since the second term in (2.9) (i.e., the expectation of the energy gradient

under the RBM distribution) can also be written as
∑

v

p(v)
∑

h

p(h |v)∂E(v,h)
∂θ or

∑

h

p(h)
∑

v

p(v |h)∂E(v,h)
∂θ , we can also reduce its computational complexity by apply-

ing the same kind of factorization to the inner sum, either factorizing over the hidden

variables as shown above or factorizing over the visible variables in an analogous way.

However, the computation remains intractable for regular sized RBMs because its com-

plexity is still exponential in the size of the smallest layer (the outer sum still runs over

either 2m or 2n states).

Using the factorization trick (2.26) the derivative of the log-likelihood of a single

training pattern v w.r.t. the weight wij becomes

∂lnL(θ |v)
∂wij

= −
∑

h

p(h |v)∂E(v,h)

∂wij
+
∑

v,h

p(v,h)
∂E(v,h)

∂wij

=
∑

h

p(h |v)hivj −
∑

v

p(v)
∑

h

p(h |v)hivj

= p(Hi = 1|v)vj −
∑

v

p(v)p(Hi = 1|v)vj . (2.27)

For the mean of this derivative over a training set S = {v1, . . . ,vℓ} often the



34 Chapter 2

following notations are used:

1

ℓ

∑

v∈S

∂lnL(θ |v)
∂wij

=
1

ℓ

∑

v∈S

[

−Ep(h | v)

[
∂E(v,h)

∂wij

]

+ Ep(h,v)

[
∂E(v,h)

∂wij

]]

=
1

ℓ

∑

v∈S

[
Ep(h | v) [vihj ]− Ep(h,v) [vihj ]

]

= 〈vihj〉p(h | v)q(v) − 〈vihj〉p(h,v) (2.28)

with q denoting the empirical (or data) distribution. This gives the often stated rule:

∑

v∈S

∂lnL(θ |v)
∂wij

∝ 〈vihj〉data − 〈vihj〉model (2.29)

Analogously to (2.27) we get the derivatives w.r.t. the bias parameter bj of the jth

visible variable
∂lnL(θ |v)

∂bj
= vj −

∑

v

p(v)vj (2.30)

and w.r.t. the bias parameter ci of the ith hidden variable

∂lnL(θ |v)
∂ci

= p(Hi = 1|v)−
∑

v

p(v)p(Hi = 1|v) . (2.31)

To avoid the exponential complexity of summing over all values of the visible vari-

ables (or all values of the hidden if one decides to factorize over the visible variables

beforehand) when calculating the second term of the log-likelihood gradient—or the

second terms of (2.27), (2.30), and (2.31)—one can approximate this expectation by

samples from the model distribution. These samples can, for example, be obtained

by Gibbs sampling. This requires running the Markov chain “long enough” to ensure

convergence to stationarity. Since the computational costs of such an MCMC approach

are still too large to yield an efficient learning algorithm, common RBM learning tech-

niques, as described in the following section, introduce additional approximations.

2.5 Approximating the RBM log-likelihood gradient

All common training algorithms for RBMs approximate the log-likelihood gradient

given some data and perform gradient ascent on these approximations. Selected learn-

ing algorithms will be described in the following section, starting with contrastive

divergence learning.

2.5.1 Contrastive divergence

Obtaining unbiased estimates of the log-likelihood gradient using MCMC methods

typically requires many sampling steps. However, it has been shown that estimates



Training RBMs: An introduction 35

obtained after running the chain for just a few steps can be sufficient for model training

(Hinton, 2002). This leads to Contrastive Divergence (CD) learning, which has become

a standard way to train RBMs (Hinton, 2002; Bengio et al., 2007; Hinton et al., 2006;

Bengio and Delalleau, 2009; Hinton, 2007a).

The idea of k-step Contrastive Divergence learning (CD-k) is quite simple: instead

of approximating the second term in the log-likelihood gradient by a sample from the

RBM-distribution (which would require running a Markov chain until the stationary

distribution is reached), a Gibbs chain is run for only k steps (and usually k = 1). The

Gibbs chain is initialized with a training example v(0) of the training set and yields

the sample v(k) after k steps. Each step t consists of sampling h(t) from p(h |v(t)) and

subsequently sampling v(t+1) from p(v |h(t)). The gradient, see (2.9), w.r.t. θ of the

log-likelihood for one training pattern v(0) is then approximated by

CDk(θ,v
(0)) = −

∑

h

p(h |v(0))
∂E(v(0),h)

∂θ
+
∑

h

p(h |v(k))
∂E(v(k),h)

∂θ
. (2.32)

The derivatives in the direction of each single parameter are obtained by “estimating”

the expectations over p(v) in (2.27), (2.30), and (2.31) by the single sample v(k).

Algorithm 2.1: k-step contrastive divergence

Input: RBM (V1, . . . , Vm, H1, . . . , Hn), training batch S

Output: gradient approximation ∆wij , ∆bj and ∆ci for i = 1, . . . , n,

j = 1, . . . ,m

1 init ∆wij = ∆bj = ∆ci = 0 for i = 1, . . . , n, j = 1, . . . ,m

2 forall the v ∈ S do

3 v(0) ← v

4 for t = 0, . . . , k − 1 do

5 for i = 1, . . . , n do sample h
(t)
i ∼ p(hi |v(t))

6 for j = 1, . . . ,m do sample v
(t+1)
j ∼ p(vj |h(t))

7 for i = 1, . . . , n, j = 1, . . . ,m do

8 ∆wij ← ∆wij + p(Hi = 1 |v(0))· v(0)j − p(Hi = 1 |v(k))· v(k)j

9 for j = 1, . . . ,m do

10 ∆bj ← ∆bj + v
(0)
j − v

(k)
j

11 for i = 1, . . . , n do

12 ∆ci ← ∆ci + p(Hi = 1 |v(0))− p(Hi = 1 |v(k))

A batch version of CD-k can be seen in Algorithm 1. In batch learning, the complete

training data set S is used to compute or approximate the gradient in every step.

However, it can be more efficient to consider only a subset S′ ⊂ S in every iteration,



36 Chapter 2

which reduces the computational burden between parameter updates. The subset S′

is called a mini-batch. If in every step only a single element of the training set is used

to estimate the gradient, the process is often referred to as online learning.

Usually the stationary distribution is not reached after k sampling steps. Thus,

v(k) is not a sample from the model distribution and therefore the approximation (5.2)

is biased. Obviously, the bias vanishes as k →∞.

The theoretical results from Bengio and Delalleau (2009) give a good understanding

of the CD approximation and the corresponding bias by showing that the log-likelihood

gradient can, based on a Markov chain, be expressed as a sum of terms containing the

kth sample:

Theorem 2.3 (Bengio and Delalleau, 2009). For a converging Gibbs chain

v(0) ⇒ h(0) ⇒ v(1) ⇒ h(1) . . .

starting at data point v(0), the log-likelihood gradient can be written as

∂

∂θ
lnp(v(0)) = −

∑

h

p(h |v(0))
∂E(v(0),h)

∂θ

+ Ep(v(k) | v(0))

[
∑

h

p(h |v(k))
∂E(v(k),h)

∂θ

]

+ Ep(v(k) | v(0))

[
∂lnp(v(k))

∂θ

]

(2.33)

and the final term converges to zero as k goes to infinity.

The first two terms in equation (2.33) just correspond to the expectation of the

CD approximation (under pk) and the bias is given by the final term.

The approximation error not only depends on the number k of sampling steps,

but also on the rate of convergence or the mixing rate of the Gibbs chain. The rate

describes how fast the Markov chain approaches the stationary distribution and is

determined by the transition probabilities of the chain. The mixing rate of the Gibbs

chain of an RBM depends on the magnitude of the model parameters (Hinton, 2002;

Carreira-Perpiñán and Hinton, 2005; Bengio and Delalleau, 2009; Fischer and Igel,

2011a). This becomes clear by considering that the transition probabilities, that is, the

conditional probabilities p(vj |h) and p(hi |v), are given by thresholding
n∑

i=1

wijhi+ bj

and
m∑

j=1

wijvj + ci by the sigmoid function. If the absolute values of the parameters

are high, the conditional probabilities can get close to one or zero. If this happens, the

states of the Gibbs chain get more and more “predictable”, and thus the chain changes

its state slowly. An empirical analysis of the dependency between the size of the bias

and magnitude of the parameters can be found in the work of Bengio and Delalleau

(2009).



Training RBMs: An introduction 37

An upper bound on the expectation of the CD approximation error under the

empirical distribution is given by the following theorem (Fischer and Igel, 2011a):

Theorem 2.4 (Fischer and Igel, 2011a). Let p denote the marginal distribution of

the visible units of an RBM and let q be the empirical distribution defined by a set of

samples v1, . . . ,vℓ. Then an upper bound on the expectation of the error of the CD-k

approximation of the log-likelihood derivative w.r.t some RBM parameter θa is given

by
∣
∣
∣
∣
Eq(v(0))

[

Ep(v(k)|v(0))

[
∂lnp(v(k))

∂θa

]]∣
∣
∣
∣
≤ 1

2
|q − p|

(

1− e−(m+n)∆
)k

(2.34)

with

∆ = max

{

max
l∈{1,...,m}

ϑl, max
l∈{1,...,n}

ξl

}

,

where

ϑl = max

{∣
∣
∣
∣
∣

n∑

i=1

I{wil>0}wil + bl

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

n∑

i=1

I{wil<0}wil + bl

∣
∣
∣
∣
∣

}

and

ξl = max

{
∣
∣
∣
∣
∣
∣

m∑

j=1

I{wlj>0}wlj + cl

∣
∣
∣
∣
∣
∣

,

∣
∣
∣
∣
∣
∣

m∑

j=1

I{wlj<0}wlj + cl

∣
∣
∣
∣
∣
∣

}

.

The bound (and probably also the bias) depends on the absolute values of the RBM

parameters, on the size of the RBM (the number of variables in the graph), and on the

distance in variation between the modeled distribution and the starting distribution of

the Gibbs chain.

As a consequence of the approximation error, CD learning does not necessarily

lead to a maximum likelihood estimate of the model parameters. Yuille (2005) spec-

ifies conditions under which CD learning is guaranteed to converge to the maximum

likelihood solution, which need not hold for RBM training in general. Examples of

energy functions and Markov chains for which CD-1 learning does not converge are

given by MacKay (2001). The empirical comparisons of the CD approximation and

the true gradient for RBMs (small enough that the gradient is still tractable) con-

ducted by Carreira-Perpiñán and Hinton (2005) and Bengio and Delalleau (2009) show

that the bias can lead to a convergence to parameters that do not reach the maximum

likelihood.

The bias, however, can also lead to a distortion of the learning process: after

some learning iterations the likelihood can start to diverge (see the experiments in

Section 7.4) in the sense that the model systematically gets worse if k is not large

(Fischer and Igel, 2010a). This is especially bad because the log-likelihood is not

tractable in reasonably sized RBMs, and so the misbehavior can not be displayed and

used as a stopping criterion. Because the effect depends on the magnitude of the



38 Chapter 2

weights, weight decay can help to prevent it. However, the weight decay parameter

λ, see equation (2.6), is difficult to tune. If it is too small, the weight decay has no

effect. If it is too large, the learning converges to models with low likelihood (Fischer

and Igel, 2010a) (see Figure 2.8 in Section 7.4).

More recently proposed learning algorithms try to obtain better approximations

of the log-likelihood gradient by sampling from a Markov chain with a greater mixing

rate.

2.5.2 Persistent contrastive divergence

The idea of Persistent Contrastive Divergence (PCD, Tieleman, 2008) is described by

Younes (1991) for log-likelihood maximization of general MRFs and is applied to RBMs

by Tieleman (2008). The PCD approximation is obtained from the CD approximation

(5.2) by replacing the sample v(k) by a sample from a Gibbs chain that is independent

of the sample v(0) of the training distribution. The algorithm corresponds to standard

CD learning without reinitializing the visible units of the Markov chain with a training

sample each time we want to draw a sample v(k) approximately from the RBM dis-

tribution. Instead one keeps “persistent” chains which are run for k Gibbs steps after

each parameter update (i.e., the initial state of the current Gibbs chain is equal to v(k)

from the previous update step). The fundamental idea underlying PCD is that one

could assume that the chains stay close to the stationary distribution if the learning

rate is sufficiently small and thus the model changes only slightly between parameter

updates (Younes, 1991; Tieleman, 2008). The number of persistent chains used for

sampling (or the number of samples used to approximate the second term of gradient

(2.9)) is a hyperparameter of the algorithm. In the canonical form, there exists one

Markov chain per training example in a batch.

The PCD algorithm was further refined in a variant called Fast Persistent Con-

trastive Divergence (FPCD, Tieleman and Hinton, 2009). Fast PCD tries to reach

a faster mixing of the Gibbs chain by introducing additional parameters wfij , b
f
j , c

f
i

(for i = 1, . . . , n and j = 1, . . . ,m) referred to as the fast parameters. This new

set of parameters is only used for sampling and not in the model itself. When cal-

culating the conditional distributions for Gibbs sampling, the regular parameters are

replaced by the sum of the regular and the fast parameters, i.e., Gibbs sampling is

based on the probabilities p̃(Hi = 1 |v) = sig

(
m∑

j=1

(wij + wfij)vj + (ci + cfi )

)

and

p̃(Vj = 1 |h) = sig

(
n∑

i=1

(wij +wfij)hi + (bj + bfj )

)

instead of the conditional probabili-

ties given by (2.21) and (2.22). The learning update rule for the fast parameters is the

same as the one for the regular parameters, but with an independent, large learning

rate leading to faster changes as well as a large weight decay parameter. Weight decay



Training RBMs: An introduction 39

can also be used for the regular parameters, but it has been suggested that regularizing

just the fast weights is sufficient (Tieleman and Hinton, 2009).

Neither PCD nor FPCD seem to increase the mixing rate (or decrease the bias of

the approximation) sufficiently to avoid the divergence problem, as can be seen in the

empirical analysis by Fischer and Igel (2010a).

2.5.3 Parallel tempering

One of the most promising sampling techniques used for RBM training so far is Parallel

Tempering (PT, Salakhutdinov, 2009; Desjardins et al., 2010b; Cho et al., 2010). It

introduces supplementary Gibbs chains that sample from more and more smoothed

replicas of the original distribution. This can be formalized in the following way.

Given an ordered set of M temperatures 1 = T1 < T2 < · · · < TM , we define a set of

M Markov chains with stationary distributions

pr(v,h) =
1

Zr
e−

1
Tr
E(v,h) (2.35)

for r = 1, . . . ,M , where Zr =
∑

v,h e
− 1

Tr
E(v,h) is the corresponding partition function,

and p1 is exactly the model distribution. With increasing temperature the probabil-

ity mass of the Gibbs distribution (2.35) gets more and more equally distributed (or

smoother), and thus the mixing of the corresponding Markov chain gets more and

more facilitated. As T →∞, the uniform distribution is reached, in which subsequent

samples of the Gibbs chain are independent from each other and thus the stationary

distribution is reached after just one sampling step.

In each step of the algorithm, we run k (usually k = 1) Gibbs sampling steps

in each tempered Markov chain yielding samples (v1,h1), . . . , (vM ,hM ). After this,

two neighboring Gibbs chains with temperatures Tr and Tr−1 may exchange particles

(vr,hr) and (vr−1,hr−1) with an exchange probability based on the Metropolis ratio,

min

{

1,
pr
(
vr−1,hr−1

)
pr−1

(
vr,hr

)

pr
(
vr,hr

)
pr−1

(
vr−1,hr−1

)

}

, (2.36)

which gives, for RBMs,

min

{

1, exp

((
1

Tr
− 1

Tr−1

)

· (E(vr,hr)− E(vr−1,hr−1))

)}

. (2.37)

After performing these swaps between chains, which increase the mixing rate, we take

the (eventually exchanged) sample v1 of the original chain (with temperature T1 = 1)

as a sample from the RBM distribution. This procedure is repeated L times, yielding

the samples v1,1, . . . ,v1,L used for the approximation of the expectation under the

RBM distribution in the log-likelihood gradient (i.e., for the approximation of the



40 Chapter 2

Algorithm 2.2: k-step parallel tempering with M temperatures

Input: RBM (V1, . . . , Vm, H1, . . . , Hn), training batch S, current state vr of

Markov chain with stationary distribution pr for r = 1, . . . ,M

Output: gradient approximation ∆wij , ∆bj and ∆ci for i = 1, . . . , n,

j = 1, . . . ,m

1 init ∆wij = ∆bj = ∆ci = 0 for i = 1, . . . , n, j = 1, . . . ,m

2 forall the v ∈ S do

3 for r = 1, . . . ,M do

4 v
(0)
r ← vr

5 for i = 1, . . . , n do sample h
(0)
r,i ∼ p(hr,i |v

(0)
r )

6 for t = 0, . . . , k − 1 do

7 for j = 1, . . . ,m do sample v
(t+1)
r,j ∼ p(vr,j |h(t)

r )

8 for i = 1, . . . , n do sample h
(t+1)
r,i ∼ p(hr,i |v(t+1)

r )

9 vr ← v
(k)
r

/* swapping order below works well in practice (Lingenheil

et al., 2009) */

10 for r ∈ {s | 2 ≤ s ≤M and s mod 2 = 0} do
11 swap (v

(k)
r ,h(k)

r ) and (v
(k)
r−1,h

(k)
r−1) with probability given by (2.37)

12 for r ∈ {s | 3 ≤ s ≤M and s mod 2 = 1} do
13 swap (vkr ,h

k
r ) and (vkr−1,h

k
r−1) with probability given by (2.37)

14 for i = 1, . . . , n, j = 1, . . . ,m do

15 ∆wij ← ∆wij + p(Hi = 1 |v)· vj − p(Hi = 1 |v(k)
1 )· v(k)1,j

16 for j = 1, . . . ,m do

17 ∆bj ← ∆bj + vj − v(k)1,j

18 for i = 1, . . . , n do

19 ∆ci ← ∆ci + p(Hi = 1 |v)− p(Hi = 1 |v(k)
1 )



Training RBMs: An introduction 41

second term in (2.9)). Usually L is set to the number of samples in the (mini) batch of

training data as shown in algorithm 2.

Recently, several approaches to improving PT for RBMs have been suggested.

Desjardins et al. (2010a) has shown how the number M of parallel chains and the

values of the temperatures used can be adapted automatically. Other work has been

focused on increasing the swapping rate by allowing samples to swap not only between

neighboring chains (Brakel et al., 2012), and on using all samples (not only those of

the first chain) to approximate the gradient by weighted averages (Brakel et al., 2012;

Fischer and Igel, 2011b).

Compared to CD, PT introduces computational overhead, but produces a more

quickly mixing Markov chain, and thus a less biased gradient approximation. This can

lead to better learning, as shown in the experiments in Section 7.4.

2.6 RBMs with real-valued variables

So far, we have only considered observations represented by binary vectors, but often

one would like to model distributions over continuous data. There are several ways to

define RBMs with real-valued visible units. As demonstrated by Hinton et al. (2006),

one can model a continuous distribution with a binary RBM by a simple “trick.” The

input data is scaled to the interval [0, 1] and modeled by the probability of the visible

variables to be one. That is, instead of sampling binary values, the expectation p(Vj =

1 |h) is regarded as the current state of the variable Vj . Except for the continuous

values of the visible variables and the resulting changes in the sampling procedure, the

learning process remains the same.

When keeping the energy function as given in (2.18) and just replacing the state

space {0, 1}m of V by [0, 1]m, the conditional distributions of the visible variables

belong to the class of truncated exponential distributions. This can be shown in the

same way as the sigmoid function for binary RBMs is derived in (2.25). Using the same

notation and writing the energy as E(v,h) = β(v−l,h) + vlαl(h), we have

p(vl |h) = p(vl |v−l,h) =
p(vl,v−l,h)

p(v−l,h)

=
e−E(vl,v−l,h)I[0,1]

∫
e−E(vl,v−l,h)I[0,1](vl)dvl

=
e−β(v−l,h) · e−vlαl(h)I[0,1](vl)

∫
e−β(v−l,h) · e−vlαl(h)I[0,1](vl)dvl

=
e−vlαl(h)I[0,1](vl)

∫
e−vlαl(h)I[0,1](vl)dvl

, (2.38)

where the characteristic function I[0,1](vl) is 1 if vl ∈ [0, 1] and 0 otherwise. That

(2.38) is a truncated exponential with parameter αl(h) can be seen from dropping the

restriction to the interval [0, 1] , which yields e−vlαl(h)
∫ ∞
0
e−vlαl(h)dvl

= αl(h)e
−vlαl(h).



42 Chapter 2

Widely used are Gaussian-Binary-RBMs where the visible variables given the state

of the binary hidden units are normally distributed. Visible neurons with a Gaussian

distributed conditionals are gained (in an analogous way to (2.38)) by augmenting the

energy with quadratic terms, which can be written as

E(v,h) = −
n∑

i=1

m∑

j=1

wijhi
vj
σ2
j

+

m∑

j=1

(vj − bj)2
2σ2

j

−
n∑

i=1

cihi , (2.39)

(see Cho et al., 2010).

Making use of the factorization as in (2.20), the partition function of the Gaussian-

Binary-RBMs can be written as

Z =
∑

h

∫

e

n∑

i=1

m∑

j=1

wijhi

vj

σ2
j

−
m∑

j=1

(vj−bj)
2

2σ2
j

+
n∑

i=1

cihi

dv

=
∑

h

e

n∑

i=1
cihi

m∏

j=1

∫

e

n∑

i=1
wijhi

vj

σ2
j

−
(vj−bj)

2

2σ2
j dvj

=
∑

h

e

n∑

i=1
cihi

m∏

j=1

√

2πσ2
j e

2bj
∑

i wijhi+(
∑

i wijhi)
2

2σ2
j . (2.40)

This yields a tractable expression when the number of hidden variables is small

enough (e.g., to visualize the log-likelihood in experiments such as shown in Section 7.4).

In contrast to the universal approximation capabilities of standard RBMs on

{0, 1}m, the subset of real-valued distributions that can be modeled by an RBM with

real-valued visible and binary hidden units is rather constrained (Wang et al., 2012).

However, if we add an additional layer of binary latent variables, we can model any

strictly positive density over a compact domain with arbitrary high accuracy (Krause

et al., 2013).

More generally, it is possible to cover continuous valued variables by extending the

definition of an RBM to any MRF whose energy function satisfies p(h |v) =∏i p(hi |v)
and p(v |h) =∏j p(vj |h). As follows directly from the Hammersley–Clifford theorem,

and as also discussed by Hinton et al. (2006), this holds for any energy function of the

form

E(v,h) =
∑

i,j

φi,j(hi, vj) +
∑

j

ωj(vj) +
∑

i

νi(hi) (2.41)

with real-valued functions φi,j , ωj , and νi ,i = 1, . . . , n and j = 1, . . . ,m, fulfilling the

constraint that the partition function Z is finite. Welling et al. (2005) come to almost

the same generalized form of the energy function in their framework for constructing

exponential family harmoniums from arbitrary marginal distributions p(vj) and p(hi)

from the exponential family.



Training RBMs: An introduction 43

2.7 Experiments

This section will present experiments illustrating the behavior of RBMs in practice.

After an introduction to the experimental setup, we will consider sampling from a

trained RBM solving an inpainting task. Then, an experiment will show the difference

between CD learning with and without “Rao-Blackwellization” (Swersky et al., 2010).

After that, typical learning curves will be shown for different parameter settings of CD

and PT. Finally, we will look at the receptive fields learned by RBM hidden units.

All experiments in this section can be reproduced using the open source machine

learning library Shark (Igel et al., 2008), which implements most of the models and

algorithms that were discussed.

2.7.1 Experimental setup

The experiments were performed on two benchmark problems taken from the literature.

As a toy problem we considered a 4× 4 variant of the Bars-and-Stripes (BAS) bench-

mark (MacKay, 2002; Hinton and Sejnowski, 1986). Each observation corresponds to a

square of 4× 4 units. The data set is generated by randomly choosing for each pattern

an orientation (vertical or horizontal) with equal probability first, and then picking

the state for all units of every row or column uniformly at random. Thus, the data

set consists out of 32 patterns, six of which can be seen in the top of Figure 2.6. Fur-

thermore, we considered the MNIST handwritten digit recognition benchmark (LeCun

et al., 1998a). The training set consists out of 60000 samples of digits, see the bottom

of Figure 2.6 for examples. Each image consists out of 28× 28 grayscale pixels, which

are binarized with a threshold value of 127.

For training, the RBMs were initialized with small random weights and zero bias

parameters. In the BAS experiments, the number of hidden units was set to 16. If

not stated otherwise, 20 hidden units were used for modeling the MINIST data. The

models were trained using gradient ascent on CD-k with k ∈ {1, 2, 4, 10, 100} or PT

with M ∈ {4, 5, 10, 50}. The temperatures used in the parallel chains were chosen such

that the inverse temperatures were equally distributed over [0, 1] (which may not be

the optimal choice (Desjardins et al., 2010a)). If not stated otherwise, the update rule

used for gradient ascent was equal to the one resulting from (2.6) by replacing the log-

likelihood by either the mean of the CD- or the PT-approximation over the training

batch. For BAS, standard batch learning was used, while for MNIST the training data

was split into mini-batches of 100 and 600 samples in the experiments in Section 2.7.5

and Section 2.7.4, respectively. The learning rate was η = 0.1 for BAS when training

with CD and 0.05 when training with PT and η = 0.3 for CD-learning on MNIST. To

keep the number of hyperparameters small, we did not use a momentum term (ν = 0).



44 Chapter 2

Figure 2.6: Top: Patterns from the BAS data set. Bottom: Images from the MNIST

data set.

In our experience, using momentum does not qualitatively change the results of the

reported experiments. If not stated otherwise, no weight decay term was used (λ = 0).

The experiments in Section 2.7.3 and Section 2.7.4 were repeated 25 times.

2.7.2 Application example: Reconstruction of images

As outlined in the introduction, a trained RBM can be used as a generative model of

the target distribution. That is, we can use it to sample from p(V ). If the visible units

correspond to pixels from an image, this means that we can generate images from (an

approximation of) the target distribution. Now consider the case where we observe only

a part of the image, say V1 = v1, . . . , Vo = vo, o < m. Then we can use the trained RBM

for image inpainting by sampling from p(Vo+1, . . . , Vm |V1 = v1, . . . , Vo = vo). To do so,

we clamp the observed variables to the observation, that is, we fix V1 = v1, . . . , Vo = vo,

and sample the states of the remaining variables, for example using Gibbs sampling.

This is demonstrated in Figure 2.7. We trained an RBM on BAS. At different

stages of the training procedure, we clamped the first column of the input image to

a certain pattern and sampled from the RBM (all other states were initialized with

0.5 and Gibbs sampling was employed). In the beginning, when the RBM distribution

was almost uniform, the samples did not resemble the target distribution, as shown

in the first row of Figure 2.7. After some training, the samples started to reveal the

structure of the BAS distribution. As the model distribution got close to the training

distribution, the RBM successfully reconstructed the BAS pattern in a few sampling

steps, as can be seen in the third row of Figure 2.7.



Training RBMs: An introduction 45

Figure 2.7: Reconstruction of an incomplete image by sampling from an RBM. Each

row shows the initialization of the visible units and the first four samples from the

Gibbs chain. First row: After one iteration of batch learning (log-likelihood 356, 154).

Second row: After 1500 iterations of batch learning (log-likelihood 210, 882). Third

row: After 4000 iterations of batch learning (log-likelihood 154, 618).

This toy experiment indicates how an RBM can be used for classification as illus-

trated in Figure 2.2. The RBM can be trained on the joint probability distributed

of the data and the corresponding labels. After training, a new image is clamped

to the corresponding units (i.e., the corresponding visible units are fixed to the pixel

values), and the label units are sampled. Another possibility of course is to use the

RBM weights to initialize a feed-forward neural network augmented with an output

layer corresponding to the labels, which can then be fine tuned in a supervised way for

classification.

2.7.3 To sample or not to sample?

Algorithm 1 differs in a small detail from the description of the CD algorithm in article

by Bengio (2009). To approximate the first sum of the log-likelihood gradient we use

the probabilities p(Hi = 1 |v(0)), i = 1, . . . , n, exactly (e.g., see lines 8 and 12 in

Algorithm 1), while in the article by Bengio (2009) this quantity is approximated by

the h
(0)
i from the Gibbs sampling procedure.

To see the difference, RBMs were trained on BAS using the two different approaches

and the log-likelihood was calculated in every iteration. The results are shown in

Figure 2.8.

Both procedures led to similar log-likelihood values, but using the expectation



46 Chapter 2

0 1000 2000 3000 4000 5000 6000

−
24

0
−

22
0

−
20

0
−

18
0

−
16

0

iterations

lo
g−

lik
el

ih
oo

d

0 1000 2000 3000 4000 5000 6000

−
24

0
−

22
0

−
20

0
−

18
0

−
16

0

iterations

lo
g−

lik
el

ih
oo

d
Figure 2.8: Evolution of the log-likelihood during training of an RBM with CD-

1 where the first expectation is calculated directly (solid line) or approximated by

a sample (dashed line). Left: Medians over 25 runs, error bars indicate quartiles.

Right: Exemplary single runs.

instead of the sample reduced the variance of both the log-likelihood values in a single

trial (i.e., oscillations were reduced) as well as in between the different trials as indicated

by the error bars in Figure. 2.8. This result was to be expected, the additional sampling

noise increases the variance, while using the expectation reduces the variance of the

estimator. The latter is clear from the Rao-Blackwell theorem as also mentioned in the

recommended review by Swersky et al. (2010).

2.7.4 Learning curves using CD and PT

The following experiments shall give an idea about the evolution of the log-likelihood

during RBM training. The considered RBMs have so few neurons that the log-

likelihood is tractable and can be used to show the learning process over time.

The learning curves of CD-k with different numbers of sampling steps k are depicted

in Figure 2.9. Shown are the median values over 25 trials. As could be observed in

the BAS example, for some learning problems, the log-likelihood steadily decreases

after an initial increase if k is not large enough. Thus, after some iterations of the

learning process the model starts to get worse. This behavior can be explained by

the increasing magnitude of the weights: as explained in Section 2.5.1, the mixing

rate of the Gibbs chain decreases with increasing absolute values of the weights and

thus the CD approximation gets more and more biased. As suggested by Theorem 2.3

and Theorem 2.4, the larger k the less biased the approximation gets. Accordingly,

the experiments show that the larger k the less severe the divergence and the higher

the maximum log-likelihood value reached during training. The effect of weight-decay



Training RBMs: An introduction 47

0 5000 10000 15000 20000

−
30

0
−

25
0

−
20

0
−

15
0

iterations

lo
g−

lik
el

ih
oo

d

0 200 400 600 800 1000

−
2.

5e
+

07
−

1.
5e

+
07

iterations

lo
g−

lik
el

ih
oo

d
Figure 2.9: Evolution of the log-likelihood during training of RBMs with CD-k

where different values for k were used. The left plot shows the results for BAS (from

bottom to top k = 1, 2, 5, 10, 20, 100) and the right plot for MNIST (from bottom to

top k = 1, 2, 5, 10, 20). The values are medians over 25 runs.

with different weight-decay parameters λ is shown in the left plot in Figure 2.10. The

results indicate that the choice of the λ is crucial. If chosen correctly, the divergence

problem was solved. But if the hyperparameter λ was too large, learning stagnated

on a low log-likelihood level and thus the RBMs did not model the target distribution

accurately. And if the parameter was too small, the weight decay term could not

prevent divergence.

As can be seen in the right plot of Figure 2.10, the performance of PT on BAS

clearly depends on the number of Gibbs chains used in parallel. The more chains are

used, the better the mixing, leading to better gradient approximations and thus better

learning. Compared to CD-1, PT-1 (i.e., PT with k = 1 sampling step performed in

every chain at each learning iteration) led to significant higher likelihood values, but

needed more computational power. However, PT-1 withM = 4 was comparable to CD

with k = 10 in terms of model quality, but computationally less demanding. It seems

that divergence problems can be prevented with PT if the number of parallel chains is

not too small.

Of course, the wallclock runtime of the learning algorithms strongly depends on

the implementation. However, to give an idea about actual runtimes we will report

some measurements.1 All results refer to the median of 5 trials. In our experiments,

learning BAS with 1000 iterations of CD-1 took 0.14 s. Changing to CD-10 increased

the runtime to 0.8 s. Using PT withM = 5 instead required 0.67 s for the same number

1The experiments were conducted on a computer with an Intel Core i3 CPU with 3.07GHz running

Ubuntu 3.2.0. We used the Shark library (Igel et al., 2008) and gcc 4.8.0, and the learning ran in a

single thread.



48 Chapter 2

0 10000 20000 30000 40000 50000

−
35

0
−

30
0

−
25

0
−

20
0

−
15

0

iterations

lo
g−

lik
el

ih
oo

d

0 5000 10000 15000 20000

−
35

0
−

30
0

−
25

0
−

20
0

−
15

0

iterations

lo
g−

lik
el

ih
oo

d
Figure 2.10: Evolution of the log-likelihood during training of an RBM on BAS.

Left plot: with CD-1 and different values of the weight decay parameter (from bottom

to top: λ = 0.05, 0, 00005, 0, 0005). Right Plot: with PT with different numbers M

of temperatures (from bottom to top M = 4, 5, 10, 50). The values correspond to the

medians over 25 runs.

of iterations. Increasing the number of chains toM = 20 increased the runtime to 2.18 s.

Running CD-1 on MNIST for 100 iterations over mini-batches with 600 samples took

84.67 s for RBMs having 500 hidden units.

2.7.5 Hidden units as filters

As mentioned in the introduction, the hidden units can be viewed as feature detectors.

Let the visible units correspond to the pixels of an image. Then we can ask how

observed images should look like in order to activate a certain hidden unit most strongly

(i.e., to lead to a high probability of this unit being 1). To answer this question, we

color-code the weights of the hidden unit and plot them arranged as the corresponding

visible units. The resulting image visualizes the preferred input pattern, which is

referred to as the learned filter or, in biological terms, the receptive field of the hidden

neuron.

Figure 2.11 shows the weights of RBMs with 16 and 100 hidden units trained on

MNIST for 100 epochs. Each square corresponds to the 784 weights of one hidden

neuron to the 28 × 28 = 784 visible neurons. The squares are ordered according to

the probabilities of the corresponding hidden units to be 1 given the training set in

decreasing order.

When only 16 hidden units were used, the learned filters are rather complex and

it is even possible to recognize digits in them. When 100 hidden units were used, the

receptive fields get more localized and show stroke-like features.



Training RBMs: An introduction 49

Figure 2.11: Visualization of the weights of RBMs with 16 and 100 hidden units

(left and right plot, respectively) trained on MNIST. In the two plots, each square

image shows the weights of one hidden unit. These images have the size of the input

images, and each weight is visualized at the position of the corresponding visible unit.

The gray values represent the size of the weights.

2.8 Where to go from here?

The previous sections have introduced the most basic RBM models. However, sev-

eral generalizations and extensions of RBMs exist. A notable example are conditional

RBMs (e.g., Taylor et al., 2007; Mnih et al., 2011). In these models, some of the

parameters in the RBM energy are replaced by parametrized functions of some con-

ditioning random variables, see the article by Bengio (2009) for an introduction. An

obvious generalization is to remove the “R” from the RBM, which brings us back to

the original Boltzmann machine (Ackley et al., 1985). The graph of a BM corresponds

to the graph of an RBM with additional connections between the variables of one layer.

These dependencies make sampling more complicated (in Gibbs sampling each variable

has to be updated independently) and thus training more difficult. However, special-

ized learning algorithms for particular “deep” graph structures have been developed

(Salakhutdinov and Hinton, 2009b).

The goal of this article was to introduce RBMs from the probabilistic graphical

model perspective. It is meant to supplement existing tutorials (Bengio, 2009; Swersky



50 Chapter 2

et al., 2010; Hinton, 2012), and it is biased in the sense that it focuses on material

that we have found helpful in our work. We hope that the reader is now equipped

to move on to advanced models building on RBMs—in particular, to deep learning

architectures, where the review by Bengio (2009) may serve as an excellent starting

point.



Chapter 3

Empirical analysis of the divergence

of Gibbs sampling based learning

algorithms for RBMs

This chapter is based on the manuscript “Empirical analysis of the divergence of Gibbs

sampling based learning algorithms for restricted Boltzmann machines” by A. Fischer

and C. Igel published in K. Diamantaras, W. Duch, and L. S. Iliadis, eds.: Interna-

tional Conference on Artificial Neural Networks (ICANN), 6354 of LNCS, pp. 208-217.

Springer, 2010.

Abstract

Learning algorithms relying on Gibbs sampling based stochastic approximations of the

log-likelihood gradient have become a common way to train Restricted Boltzmann Ma-

chines (RBMs). We study three of these methods, Contrastive Divergence (CD) and its

refined variants Persistent CD (PCD) and Fast PCD (FPCD). As the approximations

are biased, the maximum of the log-likelihood is not necessarily obtained. Recently, it

has been shown that CD, PCD, and FPCD can even lead to a steady decrease of the

log-likelihood during learning. Taking artificial data sets from the literature we study

these divergence effects in more detail. Our results indicate that the log-likelihood

seems to diverge especially if the target distribution is difficult to learn for the RBM.

The decrease of the likelihood can not be detected by an increase of the reconstruction

error, which has been proposed as a stopping criterion for CD learning. Weight-decay

with a carefully chosen weight-decay-parameter can prevent divergence.



52 Chapter 3

3.1 Introduction

Training large undirected graphical models by vanilla likelihood maximization is in

general computationally intractable because it involves averages over an exponential

number of terms. Obtaining unbiased estimates of these averages by Markov chain

Monte Carlo methods typically requires many sampling steps. However, biased esti-

mates obtained after running a Gibbs chain for just a few steps can be sufficient for

model training (Hinton, 2002). This is exploited by Contrastive Divergence (CD, Hin-

ton, 2002) learning and its variants Persistent CD (PCD, Tieleman, 2008) and Fast

PCD (FPCD, Tieleman and Hinton, 2009), which have been, for example, successfully

applied to training of Restricted Boltzmann Machines (RBMs), the building blocks of

Deep Belief Networks (DBNs, Hinton et al., 2006; Hinton and Salakhutdinov, 2006).

Contrastive Divergence learning is a biased approximation of gradient-ascent on

the log-likelihood of the model parameters and thus does not necessarily reach the

maximum likelihood estimate of the parameters. The bias depends on the mixing rate

of the Markov chain, and mixing slows down with increasing model parameters (Hinton,

2002; Carreira-Perpiñán and Hinton, 2005; Bengio and Delalleau, 2009).1 Recently it

has been shown that the bias can lead to a divergence of the log-likelihood when training

RBMs (Fischer and Igel, 2009; Desjardins et al., 2010b). In this study, we further

investigate this divergence behavior and its dependence on the number of sampling

steps used for the approximation, the number of hidden neurons of the RBM, and the

choice of the weight decay parameter. After a brief description of CD, PCD, and FPCD,

we describe our experiments, discuss the results and finally draw our conclusions.

3.2 Training RBMs

An RBM is an undirected graphical model (Hinton, 2002; Smolensky, 1986). Its struc-

ture is a bipartite graph consisting of one layer of visible units V = (V1, . . . , Vm) to

represent observable data and one layer of hidden units H = (H1, . . . , Hn) to capture

dependencies between observed variables. It is parametrized by the connection weights

wij as well as the biases bj and ci of visible and hidden units, respectively (i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}). Given these parameters, jointly denoted as θ, the modeled joint

distribution of V and H is p(v,h) = e−E(v,h)/Z, where Z =
∑

v,h e
−E(v,h) and the

energy E is given by

E(v,h) = −
n∑

i=1

m∑

j=1

wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi .

1When referring to sizes of model parameters, we refer to their absolute values.



Empirical analysis of the divergence of Gibbs sampling based learning algorithms 53

Differentiating the log-likelihood ℓ(θ|vl) of the model parameters θ given one training

example vl with respect to θ yields

∂

∂θ
ℓ(θ|vl) = −

∑

h

p(h|vl)
∂E(vl,h)

∂θ
+
∑

v

p(v)
∑

h

p(h|v)∂E(v,h)

∂θ
. (3.1)

Computing the first term on the right side of the equation is straightforward because it

factorizes. The computation of the second term is intractable for regular sized RBMs

because its complexity is exponential in the size of the smallest layer. However, the

expectation over p(v) can be approximated by alternating Gibbs sampling (Ackley

et al., 1985; Hinton and Sejnowski, 1986). But since the sampling chain needs to be

long to get almost unbiased samples of the distribution modeled by the RBM, the

computational effort is still too large.

Contrastive divergence. Instead of running the Gibbs chain until a near-to-

equilibrium distribution is reached, in the k-step Contrastive Divergence (CDk) al-

gorithm (Hinton, 2002) the chain is run for only k steps, starting from an example

v(0) of the training set and yielding the sample v(k). Each step t consists of sampling

h(t) from p(h|v(t)) and sampling v(t+1) from p(v|h(t)) subsequently. The gradient (5.1)

with respect to θ of the log-likelihood for one training pattern v(0) is then approximated

by

CDk(θ,v
(0)) = −

∑

h

p(h|v(0))
∂E(v(0),h)

∂θ
+
∑

h

p(h|v(k))
∂E(v(k),h)

∂θ
. (3.2)

In the following, we restrict our considerations to RBMs with binary units for which

Ep(hi|v)[hi] = sig
(

ci +
∑m
j=1 wijvj

)

with sig(x) = (1 + exp(−x))−1.

The expectation Ep(v(k)|v(0))

[
CDk(θ,v

(0))
]
is denoted by CD∗

k(θ,v
(0)). Further, we

denote the average of CDk(θ,v
(0)) over a training set by CDk(θ) and its expectation

by CD
∗
k(θ). The expectations are considered for theoretical reasons. They lead to

deterministic updates, but are computable only for small models.

Training RBMs using CD need not lead to a maximum likelihood estimate of the

model parameters. Examples of energy functions and Markov chains for which CD1

learning does not converge are given by MacKay (2001). Yuille (2005) specifies condi-

tions under which CD learning is guaranteed to converge to the maximum likelihood

solution, which need not hold for RBM training in general. Experiments comparing

the quality of small RBMs trained based on CD∗
k and true likelihood maximization

are presented in the analysis by Carreira-Perpiñán and Hinton (2005) and Bengio and

Delalleau (2009).

Refined learning algorithms. More recently, refined algorithms also based on ap-

proximating the log-likelihood via Gibbs sampling have been proposed (Tieleman, 2008;



54 Chapter 3

Tieleman and Hinton, 2009). In Persistent Contrastive Divergence (PCD, Tieleman,

2008) the sample v(k) in the CD approximation (5.2) is sampled from a Markov chain

defined by the RBM parameters that is independent of v(0). This corresponds to

standard CD learning without reinitializing the visible units of the Markov chain with

the current training sample. It is assumed that the chain stays close to the station-

ary distribution if the learning rate is sufficiently small and thus the model changes

only slightly between parameter updates (Younes, 1991; Tieleman, 2008). The PCD

algorithm was further refined leading to a variant called Fast Persistent Contrastive

Divergence (FPCD, Tieleman and Hinton, 2009). A set of additional parameters is

introduced, which are only used for Gibbs sampling. The new parameters are referred

to as fast parameters and should lead to higher mixing rates. When calculating the

conditional distributions for Gibbs sampling, the regular parameters are replaced by

the sum of the regular and the fast parameters. The update rule for the fast pa-

rameters is equal to that of the regular parameters, but with an independent, large

learning rate and a large weight-decay parameter. Weight decay can also be used for

the regular parameters, but it was suggested that regularizing just the fast weights

is sufficient (Tieleman and Hinton, 2009). For details about (F)PCD we refer to the

original publications (Tieleman, 2008; Tieleman and Hinton, 2009).

Limitations of the proposed learning algorithms. Bengio and Delalleau (2009)

show that CDk is an approximation of the true log-likelihood gradient by finding an

expansion of the gradient that considers the k-th sample in the Gibbs chain and showing

that CDk is equal to a truncation of this expansion. Furthermore, they prove that

the residual term (i.e., the bias of CD) converges to zero as k goes to infinity, and

show empirically (by comparing the log-likelihood gradient and the expectation CD∗
k

in small RBMs) that the quality of CDk as an approximation of the log-likelihood

gradient decreases as the norm of the parameters increases. Anyhow, the RBMs are

still able to model the considered simple target distributions. Additionally, they find

that the bias of CDk also increases with increasing number of visible units.

Fischer and Igel (2009) show that CD can even lead to a steady decrease of the

log-likelihood during learning. This is confirmed by Desjardins et al. (2010b) also for

PCD and FPCD. Desjardins et al. (2010b) as well as Salakhutdinov (2009) further

show that using algorithms based on tempered Markov chain Monte Carlo techniques

yields better training results than Gibbs sampling.



Empirical analysis of the divergence of Gibbs sampling based learning algorithms 55

3.3 Experiments

In our experiments, we study the evolution of the log-likelihood during gradient-based

training of RBMs using CDk, PCD, or FPCD. We first briefly describe our benchmark

problems and then give details of the experimental setup.

Benchmark problems. We consider two artificial benchmark problems taken from

the literature (Hinton and Sejnowski, 1986; MacKay, 2002). The Labeled Shifter En-

semble is a 19 dimensional data set containing 768 samples. The samples are generated

in the following way: The states of the first 8 visible units are set uniformly at random.

The states of the following 8 units are cyclically shifted copies of the first 8. The shift

can be zero, one unit to the left, or one to the right and is indicated by the last three

units. The log-likelihood is 768 log 1
768 ≈ −5102.43 if the distribution of the data set is

modeled perfectly.

Further, we consider a smaller variant of the Bars-and-Stripes problem described

by MacKay (2002) with 16 instead of 25 visible units. Each pattern corresponds to

a square of 4 × 4 units (if not stated otherwise) and is generated by first randomly

choosing an orientation, vertical or horizontal with equal probability, and then picking

the state for all units of every row or column uniformly at random. Since each of the

two completely uniform patterns can be generated in two ways, the lower bound of the

log-likelihood is −108.13.

Experimental setup. The RBMs were initialized with weights drawn uniformly

from [−0.5, 0.5] and zero biases. The number of hidden units was chosen to be equal

to, twice, or half the number of the visible units.

The models were trained on both benchmark problems using gradient ascent on

CDk with k ∈ {1, 2, 4, 10, 100}, PCD, or FPCD. In the experiments presented here,

we only discuss batch learning, but it was verified for CD that online learning leads

to similar results. The batch update rule was augmented with optional weight-decay,

that is, for CDk we have

θ(g+1) = θ(g) + ηCDk(θ
(g))−λθ(g) . (3.3)

We tested different learning rates η and values of the weight-decay parameter λ (which

is set to zero if not stated otherwise). Using a momentum term did not improve the

results in our experiments (not shown). For the fast parameters in FPCD the learning

rate was set to 0.1 and the weight-decay-parameter was set to λfast =
19
20 as suggested

by Tieleman and Hinton (2009).

In order to analyze stochastic effects of the Gibbs sampling, we also did experiments

using the computationally expensive expectation CD
∗
1(θ

(g)) of the CD update on a



56 Chapter 3

further reduced Bars-and-Stripes problem with 9 visible units.

To save computation time, the exact likelihood was calculated only every 10 iter-

ations of the learning algorithm. We additionally computed the mean reconstruction

error, which has been proposed as an early stopping criterion for CD training (Bengio

et al., 2007; Taylor et al., 2007) and is typically used to train autoassociators (Bengio

et al., 2007; Rumelhart et al., 1986a). The reconstruction error for one training exam-

ple v is given by − logP
(
v
∣
∣E [H|v]

)
. All experiments were repeated 25 times and the

medians of the results are presented if not stated otherwise.

Results. The evolution of the median log-likelihood for CD1 with different learn-

ing rates is shown in Figure 3.1. After an initial increase, the log-likelihood steadily

decreases and the model gets worse. This happens systematically in every trial as in-

dicated by the quartiles. The higher the learning rate (i.e., the faster the learning) the

more pronounced the divergence.

The decrease of the log-likelihood was also observed if the expectation CD
∗
1 of

the 1-step sample was used instead of a real sample. This shows that the observed

effects are not caused by sampling noise. Because of computational complexity, we

performed only three single trials with different learning rates on a smaller variant of

the Bars-and-Stripes problem (3 × 3 pixel) in the CD
∗
1 experiments, see right plot in

Figure 3.2.

Without weight decay, the norm (we looked at both ∞- and 2-norm) of the RBM

parameters steadily increased (this is no surprise and therefore the results are not

shown).

Comparing the course of the log-likelihood with the corresponding evolution of the

reconstruction error, also shown in Figure 3.1, reveals that the reconstruction error

constantly decreased in our experiments. Thus, an increase of the reconstruction error

could not be used as a criterion for early-stopping.

As shown in the left plot of Figure 3.2, using a decaying learning rate η(g) (with

decay schedule η(g) = c1
c2+g

, where c1, c2 ∈ R
+) can prevent divergence. However, if

the learning rate decays too fast (c2 is small), learning will become too slow and if η(g)

decays too slowly, the divergence is still observed.

The plots in Figure 3.3 show the dependence on the number of sampling steps k.

As expected, the larger k the less severe the divergence. However, in our experiments

we observed a clear decrease of the likelihood even for k = 10. For k = 100, there was

only a slight final decrease of the likelihood in the Shifter task and a negligible decrease

in the Bars-and-Stripes benchmark.

The effect of L2-norm weight-decay with different weight-decay parameters λ is

shown in Figure 3.4. The results indicate that the choice of the hyperparameter λ is



Empirical analysis of the divergence of Gibbs sampling based learning algorithms 57

0 10000 20000 30000 40000 50000 60000

−
12

00
0

−
10

00
0

−
80

00
−

60
00

iterations

lo
g
-l
ik

e
li
h
o
o
d

η=0.1

η=0.3

η=0.5

0 10000 20000 30000 40000 50000 60000

−
35

0
−

30
0

−
25

0
−

20
0

−
15

0

iterations

lo
g
-l
ik

e
li
h
o
o
d

η=0.01

η=0.05

η=0.1

0 10000 20000 30000 40000 50000 60000

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

iterations

r
e
c
o
n
s
t
r
u
c
t
io

n
e
r
r
o
r

η=0.1

η=0.3

η=0.5

0 10000 20000 30000 40000 50000 60000

0.
01

0.
05

0.
50

5.
00

iterations

r
e
c
o
n
s
t
r
u
c
t
io

n
e
r
r
o
r

η=0.01

η=0.05

η=0.1

Figure 3.1: Top: Evolution of log-likelihood for CD1 using steepest-descent with

different learning rates. Shown are the medians over 25 trials for the Shifter (left)

and Bars-and-Stripes (right) problem, error bars indicate quartiles. Bottom: Corre-

sponding reconstruction error.

0 10000 20000 30000 40000 50000 60000

−
35

0
−

30
0

−
25

0
−

20
0

iterations

lo
g
-l
ik

e
li
h
o
o
d

50
100+g

1000
2000+g

10
20+g

0 10000 20000 30000 40000 50000 60000

−
10

0
−

90
−

80
−

70
−

60
−

50

iterations

lo
g
-l
ik

e
li
h
o
o
d

η = 0.5

η = 0.7

η = 0.9

Figure 3.2: Left: Log-likelihood for CD1 with different adaptive learning rates for

Bars-and-Stripes. Right: Log-likelihood for CD∗
1 for the smaller Bars-and-Stripes

problem with 3 × 3 units. In contrast to all other plots, here only single trials and

not medians are shown.

crucial. If it was chosen correctly, the divergence problem was solved. If λ was too

large, the RBMs did not model the target distribution accurately. If the weight-decay

parameter was too small, it could not prevent divergence.



58 Chapter 3

0 10000 20000 30000 40000 50000 60000

−
12

00
0

−
10

00
0

−
80

00
−

60
00

iterations

lo
g
-l
ik

e
li
h
o
o
d

k=1

k=2

k=4

k=10

k=100

0 10000 20000 30000 40000 50000 60000

−
30

0
−

25
0

−
20

0
−

15
0

iterations

lo
g
-l
ik

e
li
h
o
o
d

k=1

k=2

k=4

k=10

k=100

Figure 3.3: Log-likelihood for CDk with different choices of k. The learning rates

were η = 0.5 and η = 0.1 for the Shifter (left) and Bars-and-Stripes (right) problem.

0 10000 20000 30000 40000 50000 60000

−
95

00
−

85
00

−
75

00
−

65
00

iterations

lo
g
-l
ik

e
li
h
o
o
d

λ=0.005

λ=5 · 10−5

λ=5 · 10−4

0 10000 20000 30000 40000 50000 60000

−
30

0
−

25
0

−
20

0

iterations

lo
g
-l
ik

e
li
h
o
o
d

λ=0.05

λ=5 · 10−5

λ=0.0005

Figure 3.4: Evolution of the log-likelihood for CD1 and weight-decay with different

weight-decay parameters λ and learning rates as in Figure 3.3 for the Shifter (left)

and Bars-and-Stripes (right) problem.

The influence of the number of hidden units is demonstrated in Figure 3.5. The

more hidden units the more expressive power the RBM has (Le Roux and Bengio,

2008). Thus, the more hidden units the “easier” the problem for the RBM. Therefore,

the results in Figure 3.5 suggest that the easier the problem the lower the risk of

divergence.

The learning curves for PCD and FPCD were very similar to each other. We

observed the same divergence effects (e.g., see Figure 3.6) that could be tamed by

weight-decay (weight-decay results are not shown).

3.4 Discussion

We have shown on benchmark problems from the literature that vanilla gradient-based

optimization of RBMs via k-step CD, PCD, and FPCD can lead to a systematic de-

crease of the likelihood after an initial increase. The reason for this is that an increase



Empirical analysis of the divergence of Gibbs sampling based learning algorithms 59

0 10000 20000 30000 40000 50000 60000

−
12

00
0

−
10

00
0

−
80

00
−

60
00

iterations

lo
g
-l
ik

e
li
h
o
o
d

n=19

n=10

n=38

0 10000 20000 30000 40000 50000 60000

−
30

0
−

25
0

−
20

0
−

15
0

iterations

lo
g
-l
ik

e
li
h
o
o
d

n=8

n=16

n=32

Figure 3.5: Log-likelihood for CD1 applied to RBMs with different numbers of

hidden variables n for the Shifter (left) and Bars-and-Stripes (right) problem.

0 10000 20000 30000 40000 50000 60000

−
10

00
0

−
90

00
−

80
00

−
70

00
−

60
00

iterations

lo
g
-l
ik

e
li
h
o
o
d

η=0.3

η=0.5

0 10000 20000 30000 40000 50000 60000

−
10

00
−

80
0

−
60

0
−

40
0

−
20

0

iterations

lo
g
-l
ik

e
li
h
o
o
d

η=0.01

η=0.05

η=0.1

Figure 3.6: Evolution of log-likelihood for PCD (Shifter, left plot) and FPCD (Bars-

and-Stripes, right plot) depending on learning rate η.

of the model parameters increases the difference between the CD update and a gradient

step on the log-likelihood. The weight increase steadily slows down the mixing rate

of the Gibbs chain associated with the CD approximation (the fact that Gibbs chains

in general converge faster if the start distribution is close to the target distribution

does not compensate for this). With increasing weights the mixing rate goes down

and makes sampling in the Gibbs chain more and more deterministic, thus inducing a

strong bias. If (for some components) this bias further increases the respective weights

and decreases the likelihood, CD learning diverges. However, is this really a problem in

practice? One may argue that there are several well-known and simple ways to address

this problem, namely (i) early stopping of the learning process (Bengio et al., 2007;

Taylor et al., 2007), (ii) regularization using weight-decay (Hinton, 2002; Hinton and

Salakhutdinov, 2006; Hinton et al., 2006), and (iii) increasing k dynamically when the

weights increase (Bengio and Delalleau, 2009).

Early stopping requires some reliable indicator that tells us when to stop and that

can be computed efficiently. However, monitoring the true likelihood periodically is

only possible for small problems, and the reconstruction error as discussed by Bengio



60 Chapter 3

et al. (2007) and Taylor et al. (2007) may gradually decrease in spite of decreasing like-

lihood as, for example, shown in our experiments. An adaptive learning rate can have

a similar effect as early-stopping. A decaying learning rate η(g) with an appropriate

schedule can prevent divergence. However, choosing the right schedule is crucial and

difficult. If the learning rate decays too fast, learning will become too slow and we will

not reach sufficiently good solutions in time. If η(g) decays too slowly, the learning rate

adaptation has little effect and divergence is still observed.

Weight decay offers a solution – if the regularization parameter is chosen correctly.

If chosen too large, the model may not represent the target density accurately enough.

If chosen too small, the decay term does not prevent divergence.

As suggested by Bengio and Delalleau (2009), increasing k can be a good strategy

to find models with higher likelihood and it can also prevent divergence. However,

divergence occurs even for values of k too large to be computationally tractable for

large models. Thus, a dynamic schedule that enlarges k as the weights increase is

needed (Bengio and Delalleau, 2009). Finding such a schedule is an open problem.

It seems that the more difficult the problem (i.e., the more difficult it is for the

RBM to represent the target density) the more pronounced the divergence effect. The

low-dimensional problems investigated by Bengio and Delalleau (2009) are all rather

easy to learn for the considered RBMs and therefore the divergence is not apparent

in that study. The dependence on difficulty makes the observed phenomenon relevant

for DBNs. In these multi-layer architectures, simple models such as RBMs are used in

each layer and the complexity of the target distribution is reached by stacking these

simple models. The lower layer(s) cannot (or should not) represent the target density

alone – and thus RBMs in DBNs face distributions that are difficult to learn.

3.5 Conclusion

Optimization based on k-step Contrastive Divergence (CD) or (Fast) Persistent CD

is a promising approach to train undirected graphical models. It has proven to be

successful in challenging applications and has contributed significantly to the current

revival of Restricted Boltzmann Machines (RBMs) and deep architectures. The CD is

a biased estimate of the desired update direction. This bias is reduced with increasing

k and gets worse with increasing norm of the model parameters (i.e., slower mixing

rates of the involved Markov chain). While it is common knowledge that CD learning

may only approximate the maximum likelihood solution, we showed that the bias can

lead to divergence of the learning process in the sense that the model systematically

and drastically gets worse if k is not large. Thus, for training algorithms relying on

Gibbs sampling based stochastic approximations of the log-likelihood gradient, there is



Empirical analysis of the divergence of Gibbs sampling based learning algorithms 61

a need for robust mechanisms that control the weight growth in CD and related learning

algorithms, for example, reliable heuristics for choosing the weight decay parameters

or suitable criteria for early-stopping. New learning methods for RBMs using Markov

chain Monte Carlo algorithms based on tempered transitions are promising (Salakhut-

dinov, 2009; Desjardins et al., 2010b), but their learning and scaling behavior needs to

be further explored.





Chapter 4

Training RBMs based on the signs

of the CD approximation of the

log-likelihood derivatives

This chapter is based on the manuscript “Training RBMs based on the signs of the CD

approximation of the log-likelihood derivatives” by A. Fischer and C. Igel published in

M. Verleysen, ed.: 19th European Symposium on Artificial Neural Networks (ESANN),

pp. 495-500, Belgium: d-side publications, 2011.

Abstract

Contrastive Divergence (CD) learning is frequently applied to Restricted Boltzmann

Machines (RBMs), the building blocks of deep believe networks. It relies on biased

approximations of the log-likelihood gradient. This bias can deteriorate the learning

process. It was claimed that the signs of most components of the CD update are

equal to the corresponding signs of the log-likelihood gradient. This suggests using

optimization techniques only depending on the signs. Resilient backpropagation is

such a method and we combine it with CD learning. However, it does not prevent

divergence caused by the approximation bias.



64 Chapter 4

4.1 Introduction

The rising field of deep learning led to a revival of Restricted Boltzmann Machines

(RBMs, Smolensky, 1986) as typical building blocks of Deep Belief Networks (DBNs,

e.g., see Bengio, 2009). Standard training of DBNs requires sequential training of RBMs

in a layer wise fashion. Thus, effective and robust methods for RBM learning are a

prerequisite for DBN training. Preforming maximum likelihood learning by vanilla

steepest ascent is not possible in RBMs because the log-likelihood gradient involves

averages which are exponential in the size of the smaller RBM layer and is thus not

tractable. Therefore, Contrastive Divergence (CD, Hinton, 2002) learning has become

the standard learning algorithm.

The k-step CD update is based on steepest ascent on a biased estimate of the

log-likelihood gradient gained by k steps of Gibbs sampling. The bias of the approxi-

mation depends on the mixing rate of the Markov chain, and mixing slows down with

increasing absolute value of the model parameters (Hinton, 2002; Carreira-Perpiñán

and Hinton, 2005; Bengio and Delalleau, 2009; Fischer and Igel, 2011a). Hence, the

bias increases with increasing parameter magnitude during RBM training. Recently,

it has been shown that this can lead to divergence of the log-likelihood (Fischer and

Igel, 2009; Desjardins et al., 2010b; Fischer and Igel, 2010a). Nevertheless, by com-

paring the log-likelihood gradient and the expectation of the CD-k update in small

RBMs (where both are tractable), Bengio and Delalleau (2009) found that the fraction

of parameter updates for which the log-likelihood derivatives and the corresponding

CD-k components have different signs is small. Thus, optimization algorithms which

consider only the signs of the partial derivatives could lead to better learning results.

The speed of steepest ascent CD learning crucially depends on the learning rate (see

for example the empirical results from Fischer and Igel (2010a)). For large-scale prob-

lems, optimization algorithms are needed that increase the likelihood in few iterations

without extensive hyperparameter tuning. As the likelihood is in general intractable,

the choice of the gradient-based optimization algorithm is limited to methods that do

not need the absolute objective function value.

Resilient backpropagation (RProp, Riedmiller, 1994; Igel and Hüsken, 2003) is

a powerful learning algorithm frequently used for neural network training. It au-

tonomously adapts the step sizes for the parameter updates during learning. The

algorithm depends only on the signs of the partial derivatives of the objective func-

tion and not on their absolute values. The standard variant does also not require the

value of the objective function. Thus, RProp appears to be the ideal learning algo-

rithm for training RBMs based on approximations of the log-likelihood gradient. It

could suffer less from approximation errors, because it just requires the signs, and can

adapt the learning rate automatically. Therefore, the combination of RProp and CD



Training RBMs based on the signs of the CD approximation 65

is empirically investigated in this paper. After briefly describing RBMs, CD-leaning,

and RProp, we describe our experiments, discuss the results, and finally draw our

conclusions.

4.2 RBMs and CD learning

An RBM is a bipartite undirected graphical model. The joint distribution of

the m visible and n hidden (latent) variables under the model is p(v,h) =

e−E(v,h)/
∑

v,h e
−E(v,h). The energy E is given by E(v,h) = −hTWv − vTb − hTc

with parameters θ = (W , b, c), W ∈ R
n×m, b ∈ R

m, c ∈ R
n.

The basic idea of the k-step Contrastive Divergence (CD-k) algorithm (Hinton,

2002) is to run a Gibbs chain for only k steps starting from a training example v(0)

producing the sample v(k). Each step t consists of sampling h(t) from p(h|v(t)) and

sampling v(t+1) from p(v|h(t)) subsequently. The gradient with respect to θ of the

log-likelihood for v(0) is then approximated by

CDk(θ,v
(0)) = −

∑

h

p(h|v(0))
∂E(v(0),h)

∂θ
+
∑

h

p(h|v(k))
∂E(v(k),h)

∂θ
. (4.1)

4.3 Training RBMs with resilient backpropagation

Resilient backpropagation is an iterative algorithm with adaptive individual step sizes

(Riedmiller, 1994). It is frequently used for unconstrained optimization in machine

learning because it is fast and robust with respect to the choice of the internal (hyper-)

parameters, has linear time and space complexity in the number of parameters to be

optimized, and is not very sensitive to numerical problems. The basic version of the

RProp algorithm1 considers only the signs of the partial derivatives of the function to

be optimized and not their values. Because experiments suggest that the CD estimator

has the correct sign most of the time (Bengio and Delalleau, 2009), RProp seems to be

promising for CD learning.

Let the ith component of the mean CD-approximation over the training set be

denoted by [CDk(θ
(g))]i. In each iteration g of RProp, every parameter θ

(g)
i is updated

according to

θ
(g+1)
i = θ

(g)
i + sign

(

[CDk(θ
(g))]i

)

·∆(g)
i . (4.2)

Prior to this update, the step size ∆
(g)
i is adapted based on changes of sign of the

(approximated) partial derivative [CDk(θ
(g))]i in consecutive iterations. If the sign

1Usually we prefer the RProp variant called iRProp+ (Igel and Hüsken, 2003). However, this

method requires the value of the objective function and not just the partial derivatives. Therefore, it

is not well suited for the problem at hand.



66 Chapter 4

changes, which indicates that a local minimum has been overstepped, then the step

size is multiplicatively decreased, otherwise, it is increased. The update rule for the

step size is given by:

∆
(g)
i =







min(η+∆
(g−1)
i ,∆max) if [CDk(θ

(g−1))]i[CDk(θ
(g))]i > 0

max(η−∆
(g−1)
i ,∆min) if [CDk(θ

(g−1))]i[CDk(θ
(g))]i < 0

∆
(g−1)
i otherwise ,

(4.3)

where 0 < η− < 1 < η+ and the step size is bounded by ∆min and ∆max.

4.4 Experiments

We considered four artificial benchmark problems taken from the literature (MacKay,

2002; Bengio and Delalleau, 2009; Fischer and Igel, 2010a). The Labeled Shifter En-

semble is a 19 dimensional data set containing 768 different samples and so the log-

likelihood is 768 log 1
768 ≈ −5102.43 if the distribution of the data set is modeled

perfectly. We consider a variant of the Bars and Stripes Ensemble with 16 units and

32 input pattern yielding a bound of the log-likelihood of −108.13. Furthermore we

considered the Diagd-problem and the 1DBalld-problem with d = 6 dimensions. The

first data set contains 7, the latter 24 unique binary vectors. The bounds for the

log-likelihood are −13.62 and −76.27, respectively.
The RBMs were initialized with weights drawn uniformly from [−0.5, 0.5] and zero

biases. The numbers of hidden units were chosen to be equal to the number of visible

units. The models were trained with RProp based on CD-1 or CD-100 on all four

benchmark problems (batch learning). If not stated otherwise, the hyperparameters

where set to the default values η− = 0.5, η+ = 1.1, ∆min = 0.0 and ∆max = 10100. To

save computation time, the exact likelihood was calculated only every 10 iterations of

the learning algorithm. All experiments were repeated 25 times.

4.5 Results

The left plot of figure 4.1 shows the evolution of the log-likelihood during learning of

the Shifter-problem with RProp based on CD-1. After an increase in the first iterations

the log-likelihood starts to decrease. The development of the likelihood differs a lot

depending on the parameter initialization as can be seen exemplarily in the inset plot

depicting some single trials. When using the CD-100 instead of the CD-1 approximation

of the gradient a stagnation of the log-likelihood on an unsatisfying level during RProp

based learning is observed (see right plot of Figure 4.1). This happens systematically



Training RBMs based on the signs of the CD approximation 67

in every trail independent of the initialization of the parameters as indicated by the

quartiles.

0 5000 10000 15000 20000

−
20

00
0

−
15

00
0

−
10

00
0

0 5000 15000

−
30

00
0

−
15

00
0

iterations

lo
g
-l
ik

e
li
h
o
o
d

0 5000 10000 15000 20000

−
11

00
0

−
90

00
−

70
00

−
50

00

iterations

lo
g
-l
ik

e
li
h
o
o
d

Figure 4.1: The development of the log-likelihood during training RBMs on the

Shifter-problem with RProp. Shown are the medians over 25 trails. Left: RProp

based on CD-1. Five single trails with different parameter initializations are exem-

plarily shown in the inset plot. Right: RProp based on CD-100. Error bars indicate

quartiles, the dashed line indicates the upper bound of the log-likelihood.

During training an RBM on the Bars-and-Stripes-problem the log-likelihood stag-

nates when RProp is based on CD-1 as well as on CD-100. In both settings similar

log-likelihood values are reached which are low compared to the upper bound and to the

maximum values reached when an RBM is trained with steepest ascent (see empirical

analysis by Fischer and Igel (2010a)).

The log-likelihood also stagnates when learning the Diag- and 1DBall-problem.

Here we also observe similar learning curves if the RProp algorithm is based on CD-1

and CD-100. The results are not shown due to the great similarity to the right plot of

Figure 4.1. For further empirical results we refer to the accompanying technical report

(Fischer and Igel, 2010b).

The stagnation of the log-likelihood could indicate a frequently changing sign of

the CD-approximation during the learning process. A frequently changing sign of the

approximation causes the step size for the parameter updates (4.3) to get smaller and

smaller and – if the step size is not bounded – to finally approach zero. Thus it could

be possible to avoid the stagnation by enlarging the minimal possible step size ∆min.

This idea is verified by the following results.

If the minimal step size ∆min is set to a value larger than zero and the maximal

step size ∆max is set to a value smaller than the default value, we can observe big

differences in the evolution of the log-likelihood during RProp based training. As

shown in Figure 4.2, high (relative to the upper bound) log-likelihood values are reached

during learning the Diag- and the 1DBall-problem with RProp based on CD-1 if the



68 Chapter 4

0 50000 100000 150000 200000 250000 300000

−
25

−
20

−
15

iterations

lo
g
-l
ik

e
li
h
o
o
d

0 50000 100000 150000 200000 250000 300000

−
10

0
−

95
−

90
−

85
−

80
−

75

iterations

lo
g
-l
ik

e
li
h
o
o
d

∆min =0.001

∆min =0.0001

Figure 4.2: Log-likelihood during training with RProp with limited step size hyper-

parameters. On the left: Learning of the Diag-problem. The step size is limited by

∆min = 0.0001 and ∆max = 1. On the right: Learning of the 1DBall-problem with

∆max = 1 and ∆min = 0.001 and ∆min = 0.0001 respectively.

hyperparameters are set to ∆min = 0.0001 or ∆min = 0.001, respectively, and ∆max = 1.

A nearly identical evolution of the log-likelihood can be observed (results not shown)

if only the minimal step size value is enlarged and ∆max is set to its default value.

When learning the Bars-and-Stripes-problem with a restriction of the step size pa-

rameters (∆min = 0.0001 and ∆max = 1) the log-likelihood starts to diverge. The

experiments with the Shifter-problem with restricted step size parameters lead to sim-

ilar results as the experiments with the parameters set to the default values.

4.6 Discussion and conclusion

The experiments show that the success of RProp based CD learning depends on the

data distribution to be learned and on the values of the hyperparameters (∆min and

∆max). If the step size is allowed to get arbitrary close to zero (∆min = 0.0), the

training progress stagnated on an unsatisfying level for some target distribution. With

an appropriate ∆min, RProp was able to learn good models depending on the problem.

The reason for the stagnation could be convergence to a suboptimal local maximum.

However, experiments using the expectation of CD-1 (not shown) did not suffer from

the stagnation problem. As we see no reason why learning based on the expectation

of CD-1 should be less prone to getting stuck in undesired local optima than learning

based on the CD approximation, local maxima are not likely to be the reason.

We believe that the reason is the fast reduction of the RProp step size parameters

∆i due to changes in sign of the gradient components induced by stochastic effects and

errors in the CD approximation. Frequent changes of the sign could also be caused

by ill-shaped log-likelihood functions (Igel and Hüsken, 2003). However, if the RBMs

were trained with RProp based on the exact likelihood gradient, good models for all



Training RBMs based on the signs of the CD approximation 69

benchmark problems could be learned in few iterations (results not shown).

If steepest ascent can learn a distribution reliably (e.g., when applied to Diag6

or 1DBall6), this is also possible using RProp, but in our experiments this required

∆min > 0. In these cases, RProp may be preferable because ∆min may be easier to

tune than learning rates in steepest ascent.

When applying RProp to Shifter and Bars-and-Stripes, the log-likelihood diverged

before a good model was learned even if we constrained ∆min and ∆max. That is,

if learning diverges using steepest ascent (as reported by Fischer and Igel (2010a)),

it also diverged using RProp. Thus, albeit it has been reported that the sign of the

components of the CD update direction vector is often right, learning based on these

signs tends to diverge.

In future work, we will evaluate RProp in combination with other approximations

of the log-likelihood gradient (e.g., based on tempered transitions (Desjardins et al.,

2010b)).





Chapter 5

Bounding the bias of contrastive

divergence learning

This chapter is based on the manuscript “Bounding the bias of contrastive divergence

learning” by A. Fischer and C. Igel published in Neural Computation 23, pp. 664-673,

2011.

Abstract

Optimization based on k-step Contrastive Divergence (CD) has become a common way

to train Restricted Boltzmann Machines (RBMs). The k-step CD is a biased estimator

of the log-likelihood gradient relying on Gibbs sampling. We derive a new upper bound

for this bias. Its magnitude depends on k, on the number of variables in the RBM, and

on the maximum change in energy that can be produced by changing a single variable.

The latter reflects the dependence on the absolute values of the RBM parameters. The

magnitude of the bias is also affected by the distance in variation between the modeled

distribution and the starting distribution of the Gibbs chain.



72 Chapter 5

5.1 Training RBMs using contrastive divergence

Restricted Boltzmann Machines (RBMs) are undirected graphical models (Smolensky,

1986; Hinton, 2002). The RBM structure is a bipartite graph consisting of one layer

of observable variables V = (V1, . . . , Vm) and one layer of hidden (latent) variables

H = (H1, . . . , Hn). The modeled distribution is given by p(v,h) = e−E(v,h)/Z where

Z =
∑

v,h e
−E(v,h) and the energy E is given by

E(v,h) = −
n∑

i=1

m∑

j=1

wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi

with real-valued parameters wij , bj , and ci (i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, and wij =
wji) jointly denoted as θ. In the following, we restrict our considerations to RBMs

with binary units for which Ep(hi|v)[hi] = sig
(

ci +
∑m
j=1 wijvj

)

with sig(x) = (1 +

exp(−x))−1.

Differentiating the log-likelihood ℓ(θ|vl) of the model parameters θ given one train-

ing example vl with respect to θ yields

∇θℓ(θ|vl) = −
∑

h

p(h|vl)∇θE(vl,h) +
∑

v

p(v)
∑

h

p(h|v)∇θE(v,h) . (5.1)

Computing the first term on the right side of the equation is straightforward because

it factorizes nicely. The computation of the second term is intractable for regular sized

RBMs because its complexity is exponential in the size of the smallest layer.

Therefore, k-step Contrastive Divergence (CD-k) learning (Hinton, 2002) approx-

imates the second term by a sample obtained by k-steps of Gibbs sampling. Starting

from an example v(0) of the training set, the Gibbs chain is run for only k steps

yielding the sample v(k). Each step t consists of sampling h(t) from p(h|v(t)) and

sampling v(t+1) from p(v|h(t)) subsequently. The gradient (5.1) with respect to θ of

the log-likelihood for one training pattern v(0) is then approximated by

CDk(θ,v
(0)) = −

∑

h

p(h|v(0))∇θE(v(0),h) +
∑

h

p(h|v(k))∇θE(v(k),h) . (5.2)

Bengio and Delalleau (2009) show that CD-k is an approximation of the true log-

likelihood gradient by finding an expansion of the gradient that considers the k-th

sample in the Gibbs chain and showing that CD-k is equal to a truncation of this

expansion. Furthermore, they prove that the left out term converges to zero as k goes

to infinity:

Theorem 5.1 (Bengio and Delalleau, 2009, p. 1608). For a converging Gibbs chain

v(0) ⇒ h(0) ⇒ v(1) ⇒ h(1) . . .



Bounding the bias of contrastive divergence learning 73

starting at data point v(0), the log-likelihood gradient can be written as

∇θ log p(v
(0)) = −

∑

h

p(h|v(0))∇θE(v(0),h)

+ Ep(v(k)|v(0))

[
∑

h

p(h|v(k))∇θE(v(k),h)

]

+ Ep(v(k)|v(0))

[

∇θ log p(v
(k))
]

and the final term converges to zero as k goes to infinity.

In addition, Bengio and Dellalleau deduce a bound for the final term, which we

refer to as the bias of CD-k, relating it to the magnitude of the RBM parameters:

∣
∣
∣
∣
Ep(v(k)|v(0))

[
∂ log p(v(k))

∂θa

]∣
∣
∣
∣
≤ 2m(1− 2m2n sig(−α)m sig(−β)n)k . (5.3)

Here θa denotes a single parameter of the RBM, α = maxj
(∑

i

|wij | + |bj |
)
, β =

maxi
(∑

j

|wij |+ |ci|
)
. But the bound gets loose very fast if the norm of the parameters

increases. Note that the absolute value of

Ep(v(k)|v(0))

[
∂ log p(v(k))

∂θa

]

=
∑

v

p(v(k) = v|v(0))
∂ log p(v)

∂θa

is never larger than one for binary RBMs (this follows from |∂ log p(v)/∂θa| ≤ 1, e.g.,

see Bengio and Delalleau, 2009, p. 1611 above equation 4.3), while the bound given

above grows quickly with α and β and approaches 2m, the number of configurations of

the visible units.

5.2 Bounding the CD approximation error

In this section, we derive a tighter bound for the bias in CD-k based on general results

for the convergence rate of the Gibbs sampler (see Brémaud, 1999). The convergence

rate depends on the distance between the distribution of the initial states µ (the start-

ing distribution of the chain) and the stationary distribution. A measure of distance

between two distributions α and β on a countable set Ω is the total variation distance

defined as

dV (α, β) =
1

2
‖α− β‖1 =

1

2

∑

i∈Ω

|α(i)− β(i)| .

The total variation distance between two distributions is bounded by one. We make

use of the following theorem:

Theorem 5.2. Given a Markov random field X = (X1, ..., Xn) with random variables

taking values in a finite set Ω and a Markov chain (X(k))k≥0 produced by periodic



74 Chapter 5

Gibbs sampling. Let T be the transition matrix, µ the starting distribution, and p the

stationary distribution (i.e., the Gibbs distribution) of the Gibbs chain. It holds

‖µTk − p‖1 ≤
1

2
‖µ− p‖1(1− e−N△)k , (5.4)

where

△ = sup
l∈{1,...,n}

{|E(x)− E(y)| ; x,y ∈ Ωn and ∀i ∈ {1, ..., n} \ {l} : xi = yi}

and E denotes the energy function of the Gibbs distribution.

A proof is given by Brémaud (1999, section 6.2, p. 289).

In the case of an RBM with hidden variables H and the visible variables V fixed

to a pattern v(0), the joint starting distribution is given by

µ(v,h) =







p(h|v(0)) if v = v(0)

0 otherwise .
(5.5)

Now we can state our main result.

Theorem 5.3. Given an RBM (V1, ..., Vm, H1, ..., Hn) and a Markov chain produced

by periodic Gibbs sampling starting from v(0) (v(0) ⇒ h(0) ⇒ v(1) ⇒ h(1) . . . ). Let the

initial states (v(0),h(0)) be distributed according to µ as defined in Eq. (5.5) and let p

be the joint probability distribution of V and H of the RBM (i.e., the stationary distri-

bution of the Markov chain). Then we can bound the error of the CD-k approximation

of the log-likelihood derivative w.r.t some RBM parameter θa (i.e., ∂ℓ(θ|v(0))/∂θa) by

∣
∣
∣
∣
Ep(v(k)|v(0))

[
∂ log p(v(k))

∂θa

]∣
∣
∣
∣
≤ 1

2
‖µ− p‖1

(

1− e−(m+n)∆
)k

≤
(

1− e−(m+n)∆
)k

with

∆ = max

{

max
l∈{1,...,m}

ϑl, max
l∈{1,...,n}

ξl

}

,

where

ϑl = max

{∣
∣
∣
∣
∣

n∑

i=1

I{wil>0}wil + bl

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

n∑

i=1

I{wil<0}wil + bl

∣
∣
∣
∣
∣

}

and
ξl = max

{
∣
∣
∣
∣
∣
∣

m∑

j=1

I{wlj>0}wlj + cl

∣
∣
∣
∣
∣
∣

,

∣
∣
∣
∣
∣
∣

m∑

j=1

I{wlj<0}wlj + cl

∣
∣
∣
∣
∣
∣

}

.

Proof. Bengio and Delalleau (2009) show

Ep(v(k)|v(0))

[
∂ log p(v(k))

∂θa

]

=
∑

v

(

p(v(k) = v|v(0))− p(v)
) ∂ log p(v)

∂θa



Bounding the bias of contrastive divergence learning 75

and use the inequality

∣
∣
∣
∣
Ep(v(k)|v(0))

[
∂ log p(v(k))

∂θa

]∣
∣
∣
∣
≤
∑

v

∣
∣
∣

(

p(v(k) = v|v(0))− p(v)
)∣
∣
∣

∣
∣
∣
∣

∂ log p(v)

∂θa

∣
∣
∣
∣
.

Instead of upper bounding the right hand side of this equation by

max
v

∣
∣
∣

(

p(v(k) = v|v(0))− p(v)
)∣
∣
∣

[

2mmax
v

∂ log p(v)

∂θa

]

as in the proof by Bengio and Delalleau (2009, equation 3.5), we bound it by

∑

v

∣
∣
∣

(

p(v(k) = v|v(0))− p(v)
)∣
∣
∣

∣
∣
∣
∣

∂ log p(v)

∂θa

∣
∣
∣
∣

=
∑

v

∣
∣
∣
∣
∣

∑

h

(

p(k)(v,h)− p(v,h)
)
∣
∣
∣
∣
∣

∣
∣
∣
∣

∂ log p(v)

∂θa

∣
∣
∣
∣

≤
∑

v

∑

h

∣
∣
∣

(

p(k)(v,h)− p(v,h)
)∣
∣
∣

∣
∣
∣
∣

∂ log p(v)

∂θa

∣
∣
∣
∣
≤
∑

v

∑

h

∣
∣
∣

(

p(k)(v,h)− p(v,h)
)∣
∣
∣ .

Here we use the notation p(k)(v,h) = p(v(k) = v,h(k) = h|v(0)) and the fact that in

binary RBMs we have
∣
∣
∣
∂ logP (x)

∂θa

∣
∣
∣ ≤ 1. The RHS is twice the total variation distance

between the distribution of the variables of the RBM after k steps of Gibbs sampling

and the stationary distribution of the chain.

Now we can apply Theorem 5.2 and get

∣
∣
∣
∣
Ep(v(k)|v(0))

[
∂ log p(v(k))

∂θa

]∣
∣
∣
∣
≤
∑

v

∑

h

∣
∣
∣p(k)(v,h)− p(v,h)

∣
∣
∣

≤ 1

2

∑

v

∑

h

|(µ(v,h)− p(v,h))|
(

1− e−(m+n)∆
)k

=
1

2
‖µ− p‖1

(

1− e−(m+n)∆
)k

.

Here ∆ denotes the maximum change in energy that can be produced by changing a sin-

gle variable. We distinguish the two cases whether the maximum change is produced by

a hidden or visible variable and define ∆ = max{∆v,∆h} using ∆v = maxl∈{1,...,m} ϑl

and ∆h = maxl∈{1,...,n} ξl. For the visible units, we have

ϑl = max {|E(v,h)− E(v′,h)|} ,

where we maximize over v′, v, and h under the constraint that ∀j ∈ {1, . . . ,m}, j 6=



76 Chapter 5

l : vj = v′j (i.e., that only one unit changes its state). Thus

ϑl =max

{∣
∣
∣
∣
∣
−

n∑

i=1

m∑

j=1

hiwijvj −
m∑

j=1

vjbj −
n∑

i=1

hici

−
(

−
n∑

i=1

m∑

j=1

hiwijv
′
j −

m∑

j=1

v′jbj −
n∑

i=1

hici

)∣
∣
∣
∣
∣

}

=max

{∣
∣
∣
∣
∣

n∑

i=1

hiwil(v
′
l − vl) + bl(v

′
l − vl)

∣
∣
∣
∣
∣

}

=max

{∣
∣
∣
∣
∣

n∑

i=1

hiwil + bl

∣
∣
∣
∣
∣

}

=max

{∣
∣
∣
∣
∣

n∑

i=1

I{wil>0}wil + bl

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

n∑

i=1

I{wil<0}wil + bl

∣
∣
∣
∣
∣

}

,

where the indicator function I is one if its argument is true and zero otherwise. The

third equality holds because (v′l−vl) is either−1 or 1 and can be pulled out as a common

factor. The absolute value of the resulting sum is maximized if the hi exclusively

“select” either all positive or all negative wil, which leads to the final expression.

Analogously, we compute ξs.

The result for a single initial observed pattern v(0) is appropriate for online learning.

It is straight-forward to extend the theorem to batch learning, in which the gradient

and the CD-k approximation are averages over a set of observed patterns defining an

empirical distribution.

Corollary 5.1. Let p denote the marginal distribution of the visible units of an RBM

and let pe be the empirical distribution defined by a set of samples v1, . . . ,vℓ. Then

an upper bound on the expectation of the error of the CD-k approximation of the log-

likelihood derivative w.r.t some RBM parameter θa is given by

∣
∣
∣
∣
Epe(v(0))

[

Ep(v(k)|v(0))

[
∂ log p(v(k))

∂θa

]]∣
∣
∣
∣
≤ 1

2
‖pe − p‖1

(

1− e−(m+n)∆
)k

with ∆ as defined in Theorem 5.3.

We can use pe instead of the joint starting distribution µ(v,h) = p(h|v)pe(v) on the

RHS of the equation because

∑

v

∑

h

|(µ(v,h)− p(v,h))| =
∑

v

∑

h

p(h|v) |(pe(v)− p(v))| =
∑

v

|(pe(v)− p(v))| .

Our bounds shows that the bias is determined by two antagonistic terms. The

dependence on ‖pe − p‖1 is an important difference between our results and those

derived by Bengio and Delalleau (2009). Since pe is the target distribution for the



Bounding the bias of contrastive divergence learning 77

RBM learning process, the variation distance between pe and p should decrease during

successful RBM learning. At the same time, the magnitudes of the parameters – if

not controlled by weight decay – tend to increase in practice (see, e.g., Bengio and

Delalleau, 2009; Fischer and Igel, 2009; Desjardins et al., 2010b). Thus ∆ increases

and (1− e−(m+n)∆)k approaches one.

5.3 Experimental results

We empirically studied the development of bias and bound during learning of the Diag-

and the 1DBall-dataset described by Bengio and Delalleau (2009, pp. 1613–1614).

Small RBMs with 6 visible and 6 hidden neurons were trained via batch learning based

on the expected value of the CD-1-update. Their parameters were initialized with

weights drawn uniformly from [−0.5, 0.5] and bias parameters set to ci = bj = 0 for all i

and j. Each experiment was repeated 25 times with different initializations. The learn-

ing rates were set to 0.1 and no weight decay was used. The results are shown in Figure

5.3. The bias value plotted is the maximum maxθa
∣
∣Ep(v(1)|v(0))

[
∂ log p(v(1))/∂θa

]∣
∣ over

all parameters.

The results show the tightness of the new bound. Only in the initial phase of

learning, when ‖pe − p‖1 is large, the bound was rather loose (but always non-trivial,

i.e., below one, this is not shown in the left plot). After 50000 iterations the differences

between bound and bias value as defined above are ≈ 0.00138 and ≈ 0.02628 for Diag

and 1DBall, respectively. In the beginning, the bias is small because the models with

weights close to zero mix fast (if the weights were all zero, the RBM would model a

uniform distribution, which is sampled after a single Gibbs sampling step). We refer

to the article by Bengio and Delalleau (2009) for a detailed empirical analysis of CD-

k learning of RBMs applied to the Diag and 1DBall benchmark (e.g., showing the

dependence on k and the dimensionality of the problem).

In comparison the previously described bound given in (5.3) exceeds the value of 1

already for α ≥ 0.003 and β ≥ 0.003 for an RBM with 6 visible and 6 hidden variables

and k = 1 as used in the experiments. Values of this size are reached for α and β either

immediately after initialization of the parameters or after a small number of training

iterations, and the bound grows fast with increasing magnitude of the parameters (e.g.

for values α, β ≥ 1 it is already bigger than 63).

5.4 Discussion and conclusion

We derived a new upper bound for the bias when estimating the log-likelihood gradient

by k-step Contrastive Divergence (CD-k) for training RBMs. It is considerably tighter



78 Chapter 5

0 10000 20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

iterations

bi
as

/b
ou

nd

bound
bias

Diag

0 10000 20000 30000 40000 50000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

iterations

bi
as

/b
ou

nd

bound
bias

1DBall

Figure 5.1: The development of bias and bound during learning of the Diag- (left)

and the 1DBall-dataset (right) described by Bengio and Delalleau (2009). The bias

value plotted is the maximum maxθa

∣

∣

∣
Ep(v(1)|v(0))

[

∂ log p(v(1))/∂θa
]
∣

∣

∣
over all param-

eters. Shown are the medians over 25 trials, error bars indicate quartiles.

than a recently published result. The main reason for that is that it incorporates the

decrease of the bias for decreasing distance between the modeled distribution and the

starting distribution of the Gibbs chain.

Learning based on CD-k has been successfully applied to RBMs (e.g., Hinton,

2002; Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Hinton,

2007a; Bengio and Delalleau, 2009). However, it need not converge to a maximum

likelihood (ML) estimate of the model parameters (conditions for convergence with

probability one are given by Yuille (2005)). Analytical counterexamples are presented

by MacKay (2001). Carreira-Perpiñán and Hinton (2005) show that in general CD

learning does not lead to the ML solution. In their experiments it reaches solutions

close by. However, empirical evidences for misled RBM learning using approximations

of the true log-likelihood gradient are, for example, given by Fischer and Igel (2009;

2010a) as well as Desjardins et al. (2010b). Intuitively, the smaller the bias of the log-

likelihood gradient estimation, the higher the chances to converge to an ML solution

quickly. Still, even small deviations of a few gradient components can deteriorate the

learning process.

Our bound for the bias increases with the maximum possible change in energy that

can be produced by changing a single variable. This indicates the relevance of control-

ling the absolute values of the RBM parameters, for example by using weight-decay

(see the discussion by Fischer and Igel (2010a)). Further, the bound increases with the

number of RBM variables and decreases with increasing k. The latter underpins that



Bounding the bias of contrastive divergence learning 79

larger values of k stabilize CD learning and that increasing k dynamically when the

weights increase may be a good learning strategy (Bengio and Delalleau, 2009).





Chapter 6

A bound for the convergence rate of

parallel tempering for sampling

RBMs

This chapter is based on the manuscript “A bound for the convergence rate of parallel

tempering for sampling restricted Boltzmann machines” by A. Fischer and C. Igel,

submitted.

Abstract

Sampling from Restricted Boltzmann Machines (RBMs) is done by Markov Chain

Monte Carlo (MCMC) methods. The faster the convergence of the Markov chain,

the more efficiently can high quality samples be obtained. This is also important

for robust training of RBMs, which usually relies on sampling. Parallel Tempering

(PT), an MCMC method that maintains several replicas of the original chain at higher

temperatures, has been successfully applied for RBM training. We present the first

analysis of the convergence rate of PT for sampling from binary RBMs. We find an

exponential dependency on the size of the RBM and the sum of the absolute values

of the RBM parameters, similar to bounds on the approximation error for contrastive

divergence learning.



82 Chapter 6

6.1 Introduction

Restricted Boltzmann Machines (RBMs) are probabilistic graphical models correspond-

ing to stochastic neural networks (Smolensky, 1986; Hinton, 2002) (see the article by

Fischer and Igel (2014) for a recent review). They are applied in many machine learn-

ing tasks, notably they serve as building blocks of deep belief networks (Hinton and

Salakhutdinov, 2006). Markov Chain Monte Carlo (MCMC) methods are used to sam-

ple from RBMs, and chains that quickly converge to their stationary distribution are

desirable to efficiently get high quality samples. Adaptation of the RBM model pa-

rameters typically corresponds to gradient-based likelihood maximization given train-

ing data. As computing the exact gradient is usually computationally not tractable,

sampling-based methods are employed to approximate the likelihood gradient. It has

been shown that inaccurate approximations can deteriorate the learning process (e.g.,

Fischer and Igel, 2010a), and for the most popular learning scheme Contrastive Diver-

gence learning (CD, Hinton, 2002) the approximation quality has been analyzed (Ben-

gio and Delalleau, 2009; Fischer and Igel, 2011a). The quality of the approximation

depends, among others, on how quickly the Markov chain approaches the stationary

distribution, that is, on its mixing rate.

To improve RBM learning, Parallel Tempering (PT, Geyer, 1991) has successfully

been used as a sampling method in RBM training (Salakhutdinov, 2009; Desjardins

et al., 2010b; Cho et al., 2010; Fischer and Igel, 2014). Parallel tempering intro-

duces supplementary Gibbs chains that sample from smoothed replicas of the original

distribution—with the goal of improving the mixing rate. However, so far there exist

no published attempts to analyze the mixing rate of PT applied to RBMs. Based on

the work by Woodard et al. (2009b), we provide the first such analysis. After intro-

ducing the basic concepts, section 6.3 states our main result. Section 6.4 summarizes

general theorems and the findings by Woodard et al. (2009b) required for our proof in

section 6.5, which is followed by a discussion.

6.2 Background

In the following, we will give a brief introduction to RBMs and the relation between

the mixing rate and the spectral gap of a Markov chain. Afterwards we will describe

the parallel tempering algorithm and its application to sampling from RBMs.

6.2.1 Restricted Boltzmann machines

Restricted Boltzmann machines are probabilistic undirected graphical models (Markov

random fields). Their structure is a bipartite graph connecting a set of m visible



A bound for the convergence rate of parallel tempering for sampling RBMs 83

random variables V = (V1, V2, . . . , Vm) modeling observations to n hidden (latent)

random variables H = (H1, H2, . . . , Hn) capturing dependencies between the visible

variables. In binary RBMs the state space of one single variable is given by Ω = {0, 1}
and accordingly (V ,H) ∈ {0, 1}m+n. The joint probability distribution of (V ,H) is

given by the Gibbs distribution

π(v,h) =
exp(−E(v,h))

Z
,

with energy

E(v,h) = −
n∑

i=1

m∑

j=1

hiwijvj −
m∑

j=1

bjvj −
n∑

i=1

cihi

and real-valued connection weights wij and bias parameters bj and ci for i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}. The normalization constant Z, also called partition function, is

given by Z =
∑

v,h exp(−E(v,h)).

Training an RBM means adapting its parameters such that the distribution of V

models a distribution underlying some observed data. In practice, this training cor-

responds to performing stochastic gradient descent on the log-likelihood of the weight

and bias parameters given sample (training) data. The gradient of the log-likelihood

given a single training sample ṽ is given by

∂ lnπ(ṽ |θ)
∂θ

= −
∑

h

π(h | ṽ)∂E(ṽ,h)

∂θ
+
∑

v,h

π(v,h)
∂E(v,h)

∂θ
, (6.1)

where θ is the vector collecting all parameters. Since the expectation under the model

distribution in the second term on the right hand side can not be computed efficiently (it

is exponential in min(n,m)), it is approximated by MCMC methods in RBM training

algorithms.

6.2.2 Mixing rates and the spectral gap

A homogeneous Markov chain on a discrete state space Ω can be described by a tran-

sition matrix P = (pi,j)i,j∈Ω, where pi,j is the probability to move from i to j in one

step of the Markov chain. We also refer to this probability as P (i, j), and accordingly

P k(i, j) gives the probability to move from i to j in k steps of the chain.

Markov chain Monte Carlo methods make use of the fact that an ergodic Markov

chain on Ω with transition matrix P and equilibrium distribution π satisfies P k(x, y)→
π(y) as k → ∞ for all x, y ∈ Ω. It is important to study the convergence rates of the

Markov chain in order to find out how large k has to be to ensure that P k(x, y) is

suitably close to π(y). One way to measure the closeness to stationarity is the total

variation distance ‖P k(x, ·)− π‖ = 1
2

∑

y |P k(x, y)− π(y)| for arbitrary starting states

x. Reversibility of the chain implies that the eigenvalues of P are real-valued, and



84 Chapter 6

we sort them by value 1 = λ1 ≥ λ2 ≥ · · · ≥ λr ≥ −1 or by their absolute values

1 = λ|1| ≥ |λ|2|| ≥ · · · ≥ |λ|r|| ≥ 0 with r = |Ω|. The value Gap(P ) = 1 − λ2 is

called the spectral gap of P , and |λ|2|| is often referred to as Second Largest Eigenvalue

Modulus (SLEM).

Many bounds on convergence rates are based on the SLEM. Diaconis and Saloff-

Coste (1998), for example, prove

‖P k(x, ·)− π‖ ≤ 1

2
√

π(x)
λk|2| . (6.2)

If P is positive definite all eigenvalues are non-negative. In this case λ2 = λ|2| and

we can replace λ|2| in (6.2) (and similar bounds) by 1 − Gap(P ). We can make an

arbitrary transition matrix Q positive definite by skipping the move each time with

probability 1
2 , that is, by considering the transition matrix P = 1

2I +
1
2Q. This makes

P in the long run two times slower than Q.

6.2.3 Parallel tempering

Consider a multi modal target density π on a state space Ω from which one would like to

sample via a Markov chain. The transition steps of the Metropolis-Hastings algorithm

move only locally in space so that the resulting Markov chain may move between

the modes of π only infrequently. The parallel tempering (PT) algorithm (Geyer,

1991) tries to overcome this by introducing supplementary Markov chains which are

“flattened” or “smoothed” versions of π. These are the so called tempered densities

πt, t = 0, . . . , N fulfilling πt(z) ∝ π(z)βt for z ∈ Ω with inverse temperatures βt. The

inverse temperatures satisfy 0 ≤ β0 < · · · < βN = 1. Parallel tempering now constructs

a Markov chain on the joint state space ΩPT = ΩN+1 of the tempered distributions.

The chain takes values x = (x[0], . . . ,x[N ]) ∈ ΩPT and converges to the stationary

distribution

πPT(x) =

N∏

t=0

πt(x[t]) .

The PT transition matrix consists out of two components, one for updating the

states of the individual tempered chains and one allowing swaps between states of

adjacent tempered chains. We will denote the corresponding transition matrices by

T and Q, respectively. For the considerations in this paper, we add a probability of
1
2 of staying in the current state each time T or Q is applied to guarantee positive

definiteness and thus positive eigenvalues. We define the PT matrix as P = QTQ. A

transition matrix constructed like this assures reversibility (unlike TQ) and is used in

the analysis by Madras and Zheng (2003) and Woodard et al. (2009b).

The matrices T and Q are defined as follows: T chooses t ∈ {0, . . . , N} uniformly

and updates the state of πt based on some transition matrix Tt, which is reversible with



A bound for the convergence rate of parallel tempering for sampling RBMs 85

respect to πt. This can, for example, be the Metropolis-Hastings or a Gibbs matrix

(Brügge et al., 2013). Thus, the probability of moving from x = (x[0], . . . ,x[N ]) ∈ ΩPT

to y = (y[0], . . . ,y[N ]) ∈ ΩPT under T is given by

T (x,y) =
1

2(N + 1)

N∑

t=0

Tt(x[t],y[t])I{x[−t]}(y[−t]) +
1

2
I{x}(y) ,

where x[−t] = (x[0], . . . ,x[t−1],x[t+1], . . . ,x[N ]) ∈ ΩN denotes the vector of all except

the t-th component and, for any set B, IB(y) = 1 if y ∈ B and IB(y) = 0, otherwise.

The swapping matrix Q proposes to swap state x[t] and x[t+1] by sampling t uni-

formly from {0, . . . , N − 1}. The proposed swap is accepted with the Metropolis prob-

ability

a(x, t) = min

{

1,
πt(x[t+1])πt+1(x[t])

πt(x[t])πt+1(x[t+1])

}

, (6.3)

which guarantees detailed balance. So the transition probability from x =

(x[0], . . . ,x[N ]) to y = (x[0], . . . ,x[t+1],x[t], . . .x[N ]) is given by

Q(x,y) =
1

2N
a(x, t) ,

the probability to stay in x is

Q(x,x) = 1−
N−1∑

t=0

1

2N
a(x, t) ,

and the transition probability between all other states is 0.

By construction both T and Q are reversible with respect to πPT and strictly

positive definite due to their 1
2 holding probability. From the definition of P it follows

that both properties also hold for P . Thus, P has only positive real-valued eigenvalues

and the convergence of the PT chain to the stationary distribution πPT can be bounded

in terms of (6.2) by replacing λ|2| by a lower bound for Gap(P ).

6.2.4 Training RBMs with PT

The PT algorithm is often the sampling procedure of choice for RBM learning

algorithms to approximate the gradient of the log-likelihood given in equation

(6.1)(Desjardins et al., 2010b; Cho et al., 2010). In this setting, the tempered dis-

tributions are defined as

πt(v,h) =
exp(−E(v,h)βt)

Zt

with Zt =
∑

v,h exp(−E(v,h)βt) and β0 is typically set to 0, which we will also assume

in our analysis. The transition matrices Tt for the single tempered chains are set to a

‘randomized’ version of blockwise Gibbs sampling: we choose to update either V or H



86 Chapter 6

with equal probability and then update all neurons in this layer simultaneously. The

random choice of the layer leads to reversibility of Tt.

In this paper, we want to find a bound for the PT sampling as defined above applied

to RBMs. Note that in the PT algorithm most often used in practice the transition

operator differs from the one analyzed in this paper. It consists out of an update step

followed by a swapping step. During the update step, one step of blockwise Gibbs

sampling is performed in all tempered chains in parallel. During the swapping step,

the states at all temperatures may be swapped based on the Metropolis probability

a(t,x) as defined in (6.3), with x = (v,h). The swapping is often organized in two

substeps, where even temperatures are considered in the first and odd temperatures in

the second substep. While this approach seems to work in practice, the corresponding

transition matrix need not be reversible, which makes it difficult to obtain theoretical

results on its mixing behavior.

6.3 Main result

Let π denote the Gibbs distribution of RBMs and πt the corresponding tempered Gibbs

distribution with inverse temperature βt. Since the tempered chains are independent

the joint distribution over all chains is given by πPT((x0, . . . ,xN )) =
∏N
t=0 πt(xt).

Then for the spectral gap of PT sampling for RBMs it holds:

Theorem 6.1. For the PT transition matrix P for an RBM with m visible and n

hidden variables

Gap(P ) ≥ min

{
exp(−2∆)

212+2n(N + 1)4
,

exp(−4∆)

212+n(N + 1)4
, (6.4)

exp(−2∆)

212+2m(N + 1)4
,

exp(−4∆)

212+m(N + 1)4

}

,

with ∆ being the sum over the absolute values of parameters of the RBM:

∆ =
∑

i,j

|wij |+
∑

j

|bj |+
∑

i

|ci| .

The proof is given in section 6.5. By combining this result with equation (6.2), we

arrive at an upper bound on the rate of convergence of the PT chain.

Corollary 6.1. Let P be the PT transition matrix for an RBM with m visible and n

hidden variables and let πPT be the joint distribution over all tempered chains. Then

for any starting point x = (x0, . . . ,xN ) of the Markov chain the distance in variation

to πPT is bounded by

‖P k(x, ·)− πPT ‖ ≤
1

2
√

πPT (x)
(1− g)k (6.5)



A bound for the convergence rate of parallel tempering for sampling RBMs 87

with

g = min

{
exp(−2∆)

212+2n(N + 1)4
,

exp(−4∆)

212+n(N + 1)4
,

exp(−2∆)

212+2m(N + 1)4
,

exp(−4∆)

212+m(N + 1)4

}

and ∆ as defined above.

Theorem 6.1 bounds the gap of the PT product chain. As the original chain (the

chain with inverse temperature βN ) never converges slower than this product chain (see

6.7 for a proof), corollary 6.1 also leads to an upper bound for the convergence rate

of the chain of interest. Bounding the product chain leads to the dependency on the

number N of tempered chains. However, to our knowledge all approaches analyzing

PT suffer from this drawback (e.g., Woodard et al., 2009b; Madras and Zheng, 2003;

Bhatnagar and Randall, 2004).

6.4 Bounding the spectral gap of PT

This section summarizes definitions and results required for the proof of Theorem 6.1.

We state important results for bounding the spectral gap of general Markov chains

and of the general PT algorithm and recall the link between SLEM and Dobrushin’s

coefficient.

6.4.1 Definitions

For any transition matrix P reversible with respect to a distribution π and any subset

A of the state space Ω of P , the restriction of P to A is defined as:

P |A(x,B) = P (x,B) + IB(x)P (x,A
c) (6.6)

for x ∈ A,B ⊂ A. In this way transitions that would leave A are prohibited and the

probabilities to stay in A are increased correspondingly.

Given a partition A = {Aj : j = 1, . . . , J} of a finite Ω such that

π(Aj)=
∑

x∈Aj

π(x) > 0

for all j, the projection matrix of P with respect to A is given by the transition operator

P̄ with

P̄ (i, j) =
1

π(Ai)

∑

x∈Ai

∑

y∈Aj

π(x)P (x, y) (6.7)

for i, j ∈ {1, . . . , J}.



88 Chapter 6

6.4.2 General results

As Woodard et al. (2009b) show based on the results from Caracciolo et al. (1992)

(which were first published in the work of Madras and Randall (2002)) and the results

from Madras and Zheng (2003), one can formulate the following theorem

Theorem 6.2. Let P be a transition matrix reversible with respect to a distribution π

on a state space Ω. Let {Aj : j = 1, . . . , J} be any partition of Ω such that π(Aj) > 0

for all j. Define P|Aj
as in (6.6) and P̄ as in (6.7). If P is nonnegative definite, it

holds

Gap(P ) ≥ 1

2
Gap(P̄ ) min

j=1,...,J
Gap(P|Aj

) .

Combining the theorem for the comparison of the Dirichlet-forms of two Markov

chains given by Diaconis and Saloff-Coste (1993) with Reyleigh’s theorem (e.g.,

Brémaud, 1999, p. 205) we get

Theorem 6.3. Let P and Q be transition matrices on a finite state space Ω, re-

versible with respect to densities πP and πQ respectively. Denote by EP = {(x, y) :

πP (x)P (x, y) > 0} and EQ = {(x, y) : πQ(x)Q(x, y) > 0} the edge sets of the cor-

responding transition graphs. For each pair x 6= y such that (x, y) ∈ EQ fix a path

γx,y = (x = x0, x1, . . . xk = y) of length |γx,y| = k such that (xi, xi+1) ∈ EP for

i ∈ {0, . . . , k − 1} and define

c = max
(z,w)∈EP

{
1

πP (z)P (z, w)

∑

γx,y :(z,w)∈γx,y

|γx,y|πQ(x)Q(x, y)

}

.

Then it holds Gap(Q) ≤ cGap(P ).

The following theorem deals with product chains (Diaconis and Saloff-Coste, 1996,

Lemma 3.2):

Theorem 6.4. For any natural number N and t = 0, . . . , N let Pt be a πt-reversible

transition matrix on a state space Ωt. Let P be the transition matrix on Ω =
∏

t Ωt

given by

P (x,y) =
N∑

t=0

btPt(x[t], y[t])I{x[−t]}(y[−t]) ,x,y ∈ Ω

for some set set of bt > 0 such that
∑

t bt = 1 and where x[t] denotes the t-th entry of

vector x and x[−t] all except the t-th one. A Markov chain with transition matrix P is

called a product chain. It is reversible with respect to π(x) =
∏

t πt(x[t]) and

Gap(P ) = min
t=0,...,N

bkGap(Pt) .

The next theorem gives an upper bound on the SLEM (e.g., see Brémaud, 1999,

p. 237).



A bound for the convergence rate of parallel tempering for sampling RBMs 89

Theorem 6.5. The second largest eigenvalue modulus |λ|2|| of a transition matrix P

can be bounded from above by Dobrushin’s coefficient:

D(P ) =
1

2
max
i,j∈Ω

∑

k∈Ω

|pik − pjk| = 1− min
i,j∈Ω

∑

k∈Ω

min{pik, pjk}

6.4.3 Bounding the spectral gap of PT

Now we consider a PT chain as defined in section 6.2.3 for some density π of interest on

the state space Ω and corresponding tempered chains πt, t = 0, . . . , N , each associated

with an inverse temperature parameter βt, such that 0 ≤ β0 < · · · < βN = 1, and a

transition matrix Tt. Then a bound for the spectral gap of the PT transition matrix

is given by the following theorem by Woodard et al. (2009b):

Theorem 6.6. Given any partition A = {Aj : j = 1, . . . , J} of the state space Ω such

that πt(Aj) > 0 for all j and t then it holds

Gap(P ) ≥ γ(A)J+3δ(A)2

212(N + 1)4J3
Gap(T̄0)min

t,j
Gap(Tt|Aj

) (6.8)

with

γ(A) = min
j

N∏

t=1

min

{

1,
πt−1(Aj)

πt(Aj)

}

,

δ(A) = min
t,j

∑

x∈Aj
min{πt(x), πt+1(x)}

max{πt(Aj), πt+1(Aj)}
.

6.5 Proof of the main result

To apply the results from the previous section to RBMs, a suitable partitioning of the

RBM state space is needed. For a binary RBM with m visible and n hidden neurons

the state space is Ω = {0, 1}n+m. Let A = {Aj : j = 1, . . . , 2n} be the partition of Ω

where each subset Aj contains all states having the same state of the hidden neurons,

i.e., Aj = {(v,h) ∈ Ω|h = hj} if hj denotes the j-th state of the hidden random vector

. Thus, we get 2n subsets A1, . . . , A2n and each Aj contains 2m elements. Using this

idea, we can prove Theorem 6.1 based on the proof of Theorem 6.6. Our proof can be

divided into 6 steps. Steps 1, 2, and 4 are directly taken from Woodard et al. (2009b)

and are accordingly formulated for general PT chains.

The basic ideas behind the steps of the proof can be outlined as follows. The gap

of the PT transition matrix P depends on (a) how well the single tempered chains mix

inside the single subsets A1, ....AJ , (b) how well the chain at the lowest temperature

mixes between the subsets, and (c) the mixing properties between the chains at the

different temperatures. In step 1, Gap(P ) is bounded in terms of the gaps of two

transition matrices, one depending on (a) and the other depending on (b) and (c). The



90 Chapter 6

first one is further bounded in steps 2 and 3 and the second one in 4 and 5. Step 6

puts everything together.

Step 1: Consider the state x = (x0, . . . ,xN ) ∈ ΩN+1 of the PT chain. Let the

signature be the vector s(x) = (σ0, . . . , σN ) with σt = j if xt ∈ Aj for t = 0, . . . , N .

Since the partition of Ω consists out of J subsets Aj and we have N +1 temperatures,

a signature lives in Σ = {1 . . . , J}N+1.

For a fixed σ ∈ Σ let us now define Ωσ = {x ∈ ΩN+1 : s(x) = σ}. Then all

possible σ ∈ Σ induce a partition {Ωσ}σ∈Σ of the PT-state space ΩPT = ΩN+1.

Let Pσ = P|Ωσ
now be the restriction of P to Ωσ as defined in equation (6.6). And

let P̄ denote the projection matrix of P with respect to {Ωσ}σ∈Σ as defined in (6.7).

Now we can apply Theorem 6.2 and get

Gap(P ) ≥ 1

2
Gap(P̄ )min

σ∈Σ
Gap(Pσ) . (6.9)

Step 2: Woodard et al. now proceed by bounding Gap(Pσ) and Gap(P̄ ) separately.

For Gap(Pσ) they show

Gap(Pσ) ≥
1

8(N + 1)
min
t,j

Gap(Tt|Aj
) . (6.10)

Step 3: We will now drive a lower bound for mint,j Gap(Tt|Aj
). The standard tran-

sition matrix Tt used in our (tempered) RBMs corresponds to randomized blockwise

Gibbs sampling as described above. Thus, the transition probability from (v,h) to

(v′,h) is given by

Tt((v,h)), (v
′,h)) =

1

2
πt(v

′|h) ,

and the probability to change the state of the hidden variables is accordingly

Tt((v,h)), (v,h
′)) =

1

2
πt(h

′|v) .

Based on (6.6) for the restriction of Tt to Aj it holds:

Tt|Aj
((v,hj), (v

′,hj)) = Tt((v,hj), (v
′,hj)) + I{(v,hj)}((v

′,hj))Tt((v,hj), A
c
j)

for (v,hj), (v
′,hj) ∈ Aj . Thus, for v 6= v′

Tt|Aj
((v,hj), (v

′,hj)) =
1

2
πt(v

′|hj) .

and the probability to stay in the same state is

Tt|Aj
((v,hj), (v,hj)) =

1

2
πt(v|hj) +

∑

h

1

2
πt(h|v) =

1

2
πt(v|hj) +

1

2
.



A bound for the convergence rate of parallel tempering for sampling RBMs 91

Let us denote the SLEM of Tt|Aj
by λTt

|2| and the second largest eigenvalue by λTt

2 .

Based on Theorem 6.5 it holds

Gap(Tt|Aj) = 1− λTt

2 ≥ 1− λTt

|2| ≥ 1−D(Tt|Aj
) . (6.11)

To upper bound the Drobushin’s coefficient of Tt|Aj
first note that for all v, v′:

∑

v̂

min{Tt|Aj
((v,hj), (v̂,hj)), Tt|Aj

((v′,hj), (v̂,hj))}

=
∑

v̂:v̂ 6=v∧v̂ 6=v′

1

2
πt(v̂|hj) + min

{1

2
πt(v|hj),

1

2
πt(v|hj) +

1

2

}

+min
{1

2
πt(v

′|hj),
1

2
πt(v

′|hj) +
1

2

}

=
∑

v̂′

1

2
πt(v̂|hj) =

1

2
.

Now it is easy to see that D(Tt|Aj
) = 1 − 1

2 = 1
2 and insertion into (6.11) gives

Gap(Tt|Aj
) ≥ 1−D(Tt|Aj

) ≥ 1
2 . Thus, we finally get by insertion into equation (6.10)

Gap(Pσ) ≥
1

16(N + 1)
. (6.12)

Step 4: For bounding Gap(P̄ ) first note that P̄ is reversible with respect to the

probability mass function

π∗(σ) = πPT(Ωσ) =

N∏

t=0

πt(Aσt
) , ∀σ ∈ Σ

and that for any σ, τ ∈ Σ, the probability of moving from Ωσ to Ωτ under P at

stationarity is given by

P̄ (σ, τ ) =
1

πPT(Ωσ)

∑

x∈Ωσ

∑

y∈Ωτ

πpt(x)P (x,y) .

Woodard et al. show that a first bound can be given in terms of a transition

matrix T ∗ constructed as follows: with probability 1
2 perform a transition according

to Q̄, with probability 1
2(N+1) draw σ0 according to the distribution π∗

0(σ0) = π0(Aσ0
)

for σ0 = 1, . . . , J , otherwise hold. The bound is then given by

Gap(P̄ ) ≥ Gap(T ∗)Gap(T̄0)

4
. (6.13)

Step 5: Woodard et al. proceed by further bounding Gap(T ∗) based on Theorem 6.3

by comparing T ∗ to another π∗-reversible transition matrix T ∗∗. The transition matrix

T ∗∗ chooses t uniformly from {0, . . . , N} and then draws σt according to the distribution

π∗
t (σt) = πt(Aσt

).



92 Chapter 6

To ease the notation let us now denote σ[i,j] = (σ0, . . . , σi−1, j, σi+1, . . . , σN ) and

j∗ = argmaxj∈{1,...,J} πN (Aj). For the application of Theorem 6.3 for each edge

(σ,σ[i,j]) in the transition graph of T ∗∗ let us define a path γσ,σ[i,j]
in the transi-

tion graph of T ∗ as follows:

1. change σ0 to j∗;

2. swap j∗ “up” to level i;

3. swap new σi−1 (formerly σi) “down” to level 0;

4. change value at level 0 to j (from former σi);

5. swap j “up” to level i;

6. swap j∗ (now at level i− 1) “down” to level 0;

7. change value at level 0 to σ0 (from j∗).

We derive an upper bound of the constant c of Theorem 6.3 by splitting it into two

terms and bounding each term separately. Here c is the maximum with respect to τ

and ξ (with π∗(τ )T ∗(τ , ξ) > 0) of

1

π∗(τ )T ∗(τ , ξ)

∑

γσ,σ[i,j]
:(τ ,ξ)∈γσ,σ[i,j]

|γx,y|π∗(σ)T ∗∗(σ,σ[i,j]) .

Woodard et al. show that for the above-defined paths

∑

γσ,σ[i,j]
:(τ ,ξ)∈γσ,σ[i,j]

|γσ,σ[i,j]
| ≤ 16(N + 1)2J2 (6.14)

for any edge (τ , ξ) in the graph of T ∗.

Now we upper bound
π∗(σ)T∗∗(σ,σ[i,j])

π∗(τ )T∗(τ ,ξ) by splitting it into π∗(σ)
π∗(τ ) and

T∗∗(σ,σ[i,j])

T∗(τ ,ξ)

and bounding both terms separately. For bounding π∗(σ)
π∗(τ ) first note that any state

in the stages 1 or 2 of the path from σ to σ[i,j] as given above is of the form τ =

(σ1, . . . , σl, j
∗, σl+1, . . . , σN ) for some l ∈ {0, . . . , i}. Therefore,

π∗(σ)

π∗(τ )
=

[
l∏

k=1

πk(Aσk
)

πk−1(Aσk
)

]

π0(Aσ0
)

πl(Aj∗)
. (6.15)

For the Boltzmann distribution of RBMs we have

π0(Aσ0
)

πl(Aj∗)
=
Zl
Z0

∑

v exp(−E(v,hσ1
)β0)

∑

v exp(−E(v,hj∗)βl)
≤ Zl
Z0

2m exp(−minv,hE(v,h)β0)

2m exp(−maxv E(v,hj∗)βl)

and for the first term on the left side of equation (6.15)

l∏

k=1

πk(Aσk
)

πk−1(Aσk
)
=
Z0

Zl

l∏

k=1

∑

v exp(−E(v,hσk
)βk)

∑

v exp(−E(v,hσk
)βk−1)

.



A bound for the convergence rate of parallel tempering for sampling RBMs 93

Now consider that
∑

v exp(−E(v,hσk
)βk)

∑

v exp(−E(v,hσk
)βk−1)

≤ 2m exp(−minv,hE(v,h)βk)

2m exp(−minv,hE(v,h)βk−1)
(6.16)

because we can write
∑

v exp(−E(v,hσk
)βk)

∑

v exp(−E(v,hσk
)βk−1)

=

∑

v exp(−E(v,hσk
)βk +maxv,hE(v,h))

∑

v exp(−E(v,hσk
)βk−1 +maxv,hE(v,h))

,

which makes all arguments of the exponential function in the terms of denominator and

numerator nonnegative. The function Rk+exp(−xβk+y)
Rk−1+exp(−xβk−1+y)

is monotone decreasing in x

for x ≤ y for 1 ≥ βk ≥ βk−1 ≥ 0, and for each value of v we can write x = E(v,hσk
)

and y = maxv,hE(v,h) and fix Rk and Rk−1 to the remaining terms in numerator

and denominator, respectively. Thus, the expression gets maximal if we replace x by

minv,hE(v,h). This can be done for all values of v. So we can write:

π∗(σ)

π∗(τ )
≤ Z0

Zl

[
l∏

k=1

exp(−minv,hE(v,h)βk)

exp(−minv,hE(v,h)βk−1)

]

Zl
Z0

exp(−minv,hE(v,h)β0)

exp(−maxv E(v,hj∗)βl)

=
exp(−minv,hE(v,h)βl)

exp(−minv,hE(v,h)β0)

exp(−minv,hE(v,h)β0)

exp(−maxv E(v,hj∗)βl)

=
exp(−minv,hE(v,h)βl)

exp(−maxv E(v,hj∗)βl)
≤ exp(−minv,hE(v,h))

exp(−maxv E(v,hj∗))
.

Any state τ in stage 3 of the path is of the form

τ = (σ1, . . . , σl, σi, σl+1, . . . , σi−1, j
∗, σi+1, . . . , σN )

for some l ∈ {0, . . . , i− 1}. Thus,

π∗(σ)

π∗(τ )
=

[
l∏

k=1

πk(Aσk
)

πk−1(Aσk
)

]

π0(Aσ0
)

πi(Aj∗)

πi(Aσi
)

πl(Aσi
)
.

In an analogous way as above we get

π∗(σ)

π∗(τ )
≤ exp(−minv,hE(v,h)βl)

exp(−minv,hE(v,h)β0)
×

exp(−minv,hE(v,h)β0)

exp(−maxv E(v,hj∗)βi)

exp(−maxv,hE(v,h)βi)

exp(−maxv,hE(v,h)βl)

=
exp(−minv,hE(v,h)βl)

exp(−maxv,hE(v,h)βl)

exp(−maxv,hE(v,h)βi)

exp(−maxv E(v,hj∗)βi)

≤ exp(−minv,hE(v,h)βN−1)

exp(−maxv,hE(v,h)βN−1)

exp(−maxv,hE(v,h))

exp(−maxv E(v,hj∗))



94 Chapter 6

Any state τ in stage 4 is given by τ = (j, σ1, . . . , σi−1, j
∗, σi+1, . . . , σN ). Therefore,

π∗(σ)

π∗(τ )
=
π0(Aσ0

)

π0(Aj)

πi(Aσi
)

πi(Aj∗)

=

∑

v exp(−E(v,hσ0
)β0)

∑

v exp(−E(v,hj)β0)

∑

v exp(−E(v,hσi
)βi)

∑

v exp(−E(v,hj∗)βi)

β0=0
=

∑

v exp(−E(v,hσi
)βi)

∑

v exp(−E(v,hj∗)βi)
≤ exp(−minv,hE(v,h))

exp(−maxv E(v,hj∗))
.

Any state in stage 5 or 6 can be written as

τ = (σ1, . . . , σl, j, σl+1, . . . , σi−1, j
∗, σi−1, σN )

or

τ = (σ1, . . . , σl, j
∗, σl+1, . . . , σi−1, j, σi−1, σN )

for some l ∈ {0, . . . , i}. Therefore, it looks like any state in stage 3 where we replace

either σi by j or σi by j
∗ and j∗ by j, respectively. And thus for τ in stage 5

π∗(σ)

π∗(τ )
=

[
l∏

k=1

πk(Aσk
)

πk−1(Aσk
)

]

π0(Aσ0
)

πi(Aj∗)

πi(Aσi
)

πl(Aj)

≤ exp(−minv,hE(v,h)βN−1)

exp(−maxv,hE(v,h)βN−1)

exp(−minv,hE(v,h))

exp(−maxv E(v,hj∗))

and for τ in stage 6:

π∗(σ)

π∗(τ )
=

[
l∏

k=1

πk(Aσk
)

πk−1(Aσk
)

]

π0(Aσ0
)

πi(Aj)

πi(Aσi
)

πl(Aj∗)

≤ exp(−minv,hE(v,h)βN−1)

exp(−maxv E(v,hj∗)βN−1)

exp(−minv,hE(v,h))

exp(−maxv,hE(v,h))

And finally any state in stage 7 is given by τ = (σ0, σ1, . . . , σi−1, j, σi+1, . . . , σN ) and

thus
π∗(σ)

π∗(τ )
=
πi(Aσi

)

πi(Aj)
≤ exp(−minv,hE(v,h))

exp(−maxv,hE(v,h))
.

Thus, for any state τ in the path γ[σ,σ[i,j]] we can upper bound π∗(σ)/π∗(τ ) by

exp(−minv,hE(v,h)βN−1)

exp(−maxv,hE(v,h)βN−1)

exp(−minv,hE(v,h))

exp(−maxv,hE(v,h))
(6.17)

and for the states in stages 1, 4 and 7 we get a (tighter) upper bound by

exp(−minv,hE(v,h))

exp(−maxv,hE(v,h))
. (6.18)

Now we will bound the remaining term
T∗∗(σ,σ[i,j])

T∗(τ ,ξ) . First note that

T ∗∗(σ,σ[i,j]) =
1

N + 1
πi(Aj) ≤

1

N + 1

exp(−minv,hE(v,h))

2n exp(−maxv,hE(v,h))
. (6.19)



A bound for the convergence rate of parallel tempering for sampling RBMs 95

Any edge (τ , ξ) on the path γ[σ,σ[i,j]] is either one, where we get ξ from τ = (τ0, . . . , τN )

by replacing τ0 by some other state sampled from the distribution π∗(σ0) = π0(Aσ0
),

which for β0 = 0 is the uniform distribution over {A0, . . . , A2n} (this happens with

overall probability 1
2(N+1)

1
2n under T ∗), or one, which we obtain by swapping two

elements τt and τt+1 according to Q̄ (this happens with probability 1
2 Q̄(τ , ξ) under

T ∗).

In the first case the edge corresponds to stage 1, 4, or 7 of the path and

T ∗∗(σ,σ[i,j])

T ∗(τ , ξ)
=

2(N + 1)πi(Aj)

(N + 1)π0(Am)
=

2πi(Aj)

1/2n
,

with m ∈ {σ0, j, j∗}. Using (6.19) this is bounded from above by

2n+1 exp(−minv,hE(v,h))

2n exp(−maxv,hE(v,h))
.

By joining this result with the upper bound given in equation (6.18) we get

π∗(σ)T ∗∗(σ,σ[i,j])

π∗(τ )T ∗(τ , ξ)
≤ 2 exp(−2minv,hE(v,h))

exp(−2maxv,hE(v,h))
.

In the second case the edge corresponds to stage 2, 3, 5, or 6. Recall that the

probability to propose a certain swap according to Q is 1
2N . The probability at sta-

tionarity of accepting the proposed swap between any two states x[t] = (v,hj) ∈ Aj
and x[t+1] = (v̂,hi) ∈ Ai under Q for any t ∈ {0, . . . , N − 1} and any i, j ∈ {0, . . . , 2n}
is

1

πt(Ai)πt+1(Aj)

∑

x[t]∈Aj

∑

x[t+1]∈Ai

min{πt(x[t])πt+1(x[t+1]), πt+1(x[t])πt(x[t+1])} .

(6.20)

These probabilities exactly describe the entries in Q̄ and thus by bounding equation

(6.20) we get a bound for Q̄(τ , ξ). We have

∑

x[t]∈Aj

∑

x[t+1]∈Ai

min{πt(x[t])πt+1(x[t+1]), πt+1(x[t])πt(x[t+1])}

=
∑

x[t]∈Aj

∑

x[t+1]∈Ai

πt(x[t])πt+1(x[t+1])min
{
1,
πt+1(x[t])πt(x[t+1])

πt(x[t])πt+1(x[t+1])

}

=
1

ZtZt+1

∑

v

∑

v̂

exp(−E(v,hj)βt) exp(−E(v̂,hi)βt+1)

min
{
1,

exp(−E(v,hj)βt+1) exp(−E(v̂,hi)βt)

exp(−E(v,hj)βt) exp(−E(v̂,hi)βt+1)

}



96 Chapter 6

=
1

ZtZt+1

∑

v

∑

v̂

exp(−E(v,hj)βt) exp(−E(v̂,hi)βt+1)

min{1, exp
(
(E(v̂,hi)− E(v,hj))(βt+1 − βt)

)
}

≥ 1

ZtZt+1
exp

(
(min
v,h

E(v,h)−max
v,h

E(v,h))(βt+1 − βt)
)

∑

v

exp(−E(v,hj)βt)
∑

v̂

exp(−E(v̂,hi)βt+1)

and
1

πt(Ai)πt+1(Aj)
=

ZtZt+1

(
∑

v exp(−E(v,hj)βt))(
∑

v̂ exp(−E(v̂,hi)βt+1))

and thus a bound of (6.20) is given by
exp(−maxv,h E(v,h))
exp(−minv,h E(v,h)) and so

Q̄(τ , ξ) ≥ exp(−maxv,hE(v,h))

2N exp(−minv,hE(v,h))
.

From these considerations follows

T ∗∗(σ,σ[i,j])

T ∗(τ , ξ)
≤ 2 exp(−2minv,hE(v,h))

2n exp(−2maxv,hE(v,h))

and with (6.17)

π∗(σ)T ∗∗(σ,σ[i,j])

π∗(τ )T ∗(τ , ξ)
≤ 2 exp(−4minv,hE(v,h))

2n exp(−4maxv,hE(v,h))
.

Putting these results and (6.14) together, an upper bound for the constant c from

Theorem 6.3 is given by

c ≤32(N + 1)222n exp(−2minv,hE(v,h))

exp(−2maxv,hE(v,h))
max

{

1,
exp(−2minv,hE(v,h))

exp(−2maxv,hE(v,h))2n

}

=
32(N + 1)22n exp(−2minv,hE(v,h))

exp(−2maxv,hE(v,h))
max

{

2n,
exp(−2minv,hE(v,h))

exp(−2maxv,hE(v,h))

}

.

Thus, applying Theorem 6.3 and Theorem 6.4, from which follows that Gap(T ∗∗) =

(N + 1)−1 because all component chains of the product chain T ∗∗ have a spectral gap

of 1, we get:

Gap(T ∗) ≥ exp(−2maxv,hE(v,h))

25(N + 1)32n exp(−2minv,hE(v,h))
×

min

{
1

2n
,
exp(−2maxv,hE(v,h))

exp(−2minv,hE(v,h))

}

. (6.21)

Step 6: Insertion of (6.21) into (6.13) leads to

Gap(P̄ ) ≥ Gap(T ∗)Gap(T̄0)

4

≥ exp(−2maxv,hE(v,h))

27(N + 1)32n exp(−2minv,hE(v,h))
×min

{
1

2n
,
exp(−2maxv,hE(v,h))

exp(−2minv,hE(v,h))

}



A bound for the convergence rate of parallel tempering for sampling RBMs 97

using that Gap(T̄0) = 1 because the transition probabilities are equal to the uniform

distribution over the Ai independent of the current state (i.e., all entries in T̄0 equal
1
2n ). Using this and (6.12) in (6.9) leads to

Gap(P ) ≥ 1

2
Gap(P̄ )min

σ∈Σ
Gap(Pσ)

≥ exp(−2maxv,hE(v,h))

212(N + 1)42n exp(−2minv,hE(v,h))
×min

{
1

2n
,
exp(−2maxv,hE(v,h))

exp(−2minv,hE(v,h))

}

= min

{
exp(−2(maxv,hE(v,h)−minv,hE(v,h)))

212(N + 1)422n
,

exp(−4(maxv,hE(v,h)−minv,hE(v,h)))

212(N + 1)42n

}

,

which we further bound using

max
v,h

E(v,h)−min
v,h

E(v,h)) ≤ ∆ ,

with ∆ =
∑

i,j |wij |+
∑

j |bj | +
∑

i |ci| summing the absolute values of parameters of

the RBM. It is possible to repeat the proof while changing the roles of hidden and

visible variables, which finally leads to (6.4).

6.6 Conclusion

We presented a first analysis of the convergence of the Markov chains in Parallel Tem-

pering (PT) for sampling RBMs by deriving—an arguably loose, but non-trivial—

bound on the spectral gap. We find a exponential dependency on the size of the two

layers and the sum of the absolute values of the RBM parameters. The fewer the

number of nodes and/or the smaller the parameters, the faster the convergence. This

intuitive result resembles the bounds on the approximation bias in contrastive diver-

gence learning (Fischer and Igel, 2011a). The observed difficulty to get rid of the

exponential dependencies on the RBM complexity supports our hypothesis that RBM

PT chains are not rapidly mixing. Because our analysis considers the convergence to

the stationary distribution of the product chain consisting of all replicas, we get an—in

this type of analysis inevitable—undesired additional linear dependency on the number

of replicas.



98 Chapter 6

6.7 Appendix

Relation between the convergence rates of the PT product chain

and the original chain

In the following, we proof that bounding the convergence rate of the PT product chain

also bounds the convergence rate of the the original chain (i.e., the chain with inverse

temperature βN = 1 ). Assume that for the product chain holds

1

2

∑

x

|P k(y,x)−
N∏

t=0

πt(x[t])| < ǫ ,

for an arbitrary starting point y. Then we can write

1

2

∑

x[N]

∑

x[−N]

|P k(y,x)−
N∏

t=0

πt(x[t])| < ǫ ,

which implies

ǫ >
1

2

∑

x[N]

∑

x[−N]

∣
∣
∣P k(y,x)−

N∏

t=0

πt(x[t])
∣
∣
∣ ≥ 1

2

∑

x[N]

∣
∣
∣

∑

x[−N]

(P k(y,x)−
N∏

t=0

πt(x[t]))
∣
∣
∣ .

Thus, ǫ also upper bounds the variation distance for the original chain at temperature

1:

1

2

∑

x[N]

∣
∣
∣

∑

x[−N]

(P k(y,x)−
N∏

t=0

πt(x[t]))
∣
∣
∣ =

1

2

∑

x[N]

∣
∣
∣

∑

x[−N]

P k(y,x)−
∑

x[−N]

N∏

t=0

πt(x[t])
∣
∣
∣

=
1

2

∑

x[N]

∣
∣
∣P kN (y,x[0])−

∑

x[−N]

N∏

t=0

πt(x[t])
∣
∣
∣

=
1

2

∑

x[N]

∣
∣
∣P kN (y,x[0])− πN (x[0])

∑

x[−N]

N−1∏

t=0

πt(x[t])
∣
∣
∣

=
1

2

∑

x[N]

∣
∣
∣P kN (y,x[0])− πN (x[0])

∣
∣
∣ < ǫ



Chapter 7

The flip-the-state transition

operator for RBMs

This chapter is based on the manuscript “The flip-the-state transition operator for

restricted Boltzmann machines” by K. Brügge, A. Fischer, and C. Igel published in

Machine Learning 13, pp. 53-69, 2013.

Abstract

Most learning and sampling algorithms for Restricted Boltzmann Machines (RMBs)

rely on Markov Chain Monte Carlo (MCMC) methods using Gibbs sampling. The

most prominent examples are Contrastive Divergence learning (CD) and its variants as

well as Parallel Tempering (PT). The performance of these methods strongly depends

on the mixing properties of the Gibbs chain. We propose a Metropolis-type MCMC

algorithm relying on a transition operator maximizing the probability of state changes.

It is shown that the operator induces an irreducible, aperiodic, and hence properly

converging Markov chain, also for the typically used periodic update schemes. The

transition operator can replace Gibbs sampling in RBM learning algorithms without

producing computational overhead. It is shown empirically that this leads to faster

mixing and in turn to more accurate learning.



100 Chapter 7

7.1 Introduction

Restricted Boltzmann Machines (RBMs, Smolensky, 1986; Hinton, 2002) are undirected

graphical models describing stochastic neural networks. They have raised much atten-

tion recently as building blocks of deep belief networks (Hinton and Salakhutdinov,

2006). Learning an RBM corresponds to maximizing the likelihood of the parameters

given data. Training large RBMs by steepest ascent on the log-likelihood gradient is

in general computationally intractable, because the gradient involves averages over an

exponential number of terms. Therefore, the computationally demanding part of the

gradient is approximated by Markov Chain Monte Carlo (MCMC, see, e.g., Neal, 1993)

methods usually based on Gibbs sampling (e.g., Hinton, 2002; Tieleman and Hinton,

2009; Desjardins et al., 2010b). The higher the mixing rate of the Markov chain, the

fewer sampling steps are usually required for a proper MCMC approximation. For

RBM learning algorithms it has been shown that the bias of the approximation in-

creases with increasing absolute values of the model parameters (Bengio and Delalleau,

2009; Fischer and Igel, 2011a) and that this can indeed lead to severe distortions of

the learning process (Fischer and Igel, 2010a). Thus, increasing the mixing rate of the

Markov chains in RBM training is highly desirable.

In this paper, we propose to employ a Metropolis-type transition operator for

RBMs that maximizes the probability of state changes in the framework of periodic

sampling and can lead to a faster mixing Markov chain. This operator is related to the

Metropolized Gibbs sampler introduced by Liu (1996) and the flip-the-spin operator

with Metropolis acceptance rule used in Ising models (see related methods in section

7.3) and is, thus, referred to as flip-the-state operator. In contrast to these methods,

our main theoretical result is that the proposed operator is also guaranteed to lead to

an ergodic and thus properly converging Markov chain when using a periodic updating

scheme (i.e., a deterministic scanning policy). It can replace Gibbs sampling in existing

RBM learning algorithms without introducing computational overhead.

After a brief overview over RBM training and Gibbs sampling in section 7.2, section

7.3 introduces the flip-the-state transition operator and shows that the induced Markov

chain converges to the RBM distribution. In section 7.4 we empirically analyze the

mixing behavior of the proposed operator compared to Gibbs sampling by looking

at the Second Largest Eigenvector Modulus (SLEM), the autocorrelation time, and

the frequency of class changes in sample sequences. While the SLEM describes the

speed of convergence to the equilibrium distribution, the autocorrelation time concerns

the variance of an estimate when averaging over several successive samples of the

Markov chain. The class changes quantify mixing between modes in our test problems.

Furthermore, the effects of the proposed sampling procedure on learning in RBMs is

studied. We discuss the results and conclude in Sections 7.5 and 7.6.



The flip-the-state transition operator for RBMs 101

7.2 Background

An RBM is an undirected graphical model with a bipartite structure (Smolensky, 1986;

Hinton, 2002) consisting of one layer of m visible variables V = (V1, . . . , Vm) and one

layer of n hidden variables H = (H1, . . . , Hn) taking values (v,h) ∈ Ω := {0, 1}m+n.

The modeled joint distribution is p(v,h) = e−E(v,h)/
∑

v,h e
−E(v,h) with energy E

given by E(v,h) = −
n∑

i=1

m∑

j=1

wijhivj−
m∑

j=1

bjvj−
n∑

i=1

cihi with weights wij and biases bj

and ci for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, jointly denoted as θ. By v−i and h−i we

denote the vectors of the states of all visible and hidden variables, respectively, except

the ith one.

Typical RBM training algorithms perform steepest ascent on approximations

of the log-likelihood gradient. One of the most popular is Contrastive Diver-

gence (CD, Hinton, 2002), which approximates the gradient of the log-likelihood by

−∑
h

p(h|v(0))∂E(v(0),h)
∂θ +

∑

h

p(h|v(k))∂E(v(k),h)
∂θ , where v(k) is a sample gained after k

steps of Gibbs sampling starting from a training example v(0).

Several variants of CD have been proposed. For example, in Persistent Contrastive

Divergence (PCD, Tieleman, 2008) and its refinement Fast PCD (Tieleman and Hinton,

2009) the Gibbs chain is not initialized by a training example but maintains its current

value between approximation steps. Parallel Tempering (PT, also known as replica

exchange Monte Carlo sampling) has also been applied to RBMs (Cho et al., 2010;

Desjardins et al., 2010b; Salakhutdinov, 2009). It introduces supplementary Gibbs

chains that sample from more and more smoothed variants of the true probability

distribution and allows samples to swap between chains. This leads to faster mixing,

but introduces computational overhead.

In general, a homogeneous Markov chain on a finite state space Ω with N elements

can be described by an N × N transition probability matrix A = (ax,y)x,y∈Ω, where

ax,y is the probability that the Markov chain being in state x changes its state to y in

the next time step. We denote the one step transition probability ax,y by A(x,y), the

n-step transition probability (the corresponding entry of the matrix An) by An(x,y).

The transition matrices are also referred to as transition operators. We write p for the

N -dimensional probability vector corresponding to some distribution p over Ω.

When performing periodic Gibbs sampling in RBMs, we visit all hidden and all

visible variables alternately in a block-wise fashion and update them according to their

conditional probability given the state of the other layer (i.e., p(hi|v), i = 1, ..., n

and p(vj |h), j = 1, ...,m, respectively). Thus, the Gibbs transition operator G can

be decomposed into two operators Gh and Gv (with G = GhGv) changing only the

state of the hidden layer or the visible layer, respectively. The two operators can be

further decomposed into a set of basic transition operators Gk, k = 1, . . . , (n+m), each



102 Chapter 7

0 1p(Vi = 0|h) p(Vi = 1|h)

p(Vi = 1|h)

p(Vi = 0|h)

(a) Gibbs sampling

0 1 1− p(Vi=0|h)
p(Vi=1|h)

1

p(Vi=0|h)
p(Vi=1|h)

(b) flip-the-state operator

Figure 7.1: Transition diagrams for a single variable Vi (a) updated by Gibbs sam-

pling (b) updated by the flip-the-state transition operator (here p(Vi = 0|h) < p(Vi =

1|h)).

updating just a single variable based on the conditional probabilities. An example of

such a transition of a single variable based on these probabilities is depicted in the

transition diagram in Figure 7.1(a).

7.3 The flip-the-state transition operator

In order to increase the mixing rate of the Markov chain, it seems desirable to change

the basic transition operator of the Gibbs sampler in such a way that each single

variable tends to change its state rather than sticking to the same state. This can be

done by making the sample probability of a single neuron dependent on its current

state. Transferring this idea to the transition graph shown in Figure 7.1, this means

that we wish to decrease the probabilities associated to the self-loops and increase the

transition probabilities between different states as much as possible. Of course, we

have to ensure that the resulting Markov chain remains ergodic and still has the RBM

distribution p as equilibrium distribution.

The transition probabilities are maximized by scaling the probability for a single

variable to change from the less probable state to the more probable state to one (mak-

ing this transition deterministic) while increasing the transition in the reverse direction

accordingly with the same factor. In the – in practice not relevant but for theoretical

considerations important – case of two states with the exact same conditional prob-

ability, we use the transition probabilities of Gibbs sampling to avoid a non-ergodic

Markov chain.

These considerations can be formalized by first defining a variable v∗i that indicates

what the most probable state of the random variable Vi is or if both states are equally



The flip-the-state transition operator for RBMs 103

 !"  # " # !"

"
$"

"
$%

"
$&

"
$'

"
$(

!
$"

 !"#$%&'()*( )*+,-*+./(*#&+',)&
(

-
)
*+
,
-
*+
.
/
01
2
/
)
*+
.
/
0,
-
32
4

Figure 7.2: Activation function for Gibbs sampling (black) and for transitions based

on T , when the current state is 0 (red, dashed) or 1 (blue, dotted).

probable:

v∗i =







1 , if p(Vi = 1|h) > p(Vi = 0|h)
0 , if p(Vi = 1|h) < p(Vi = 0|h)
−1 , if p(Vi = 1|h) = p(Vi = 0|h)

(7.1)

Now we define the flip-the-state transition operator T as follows:

Definition 7.1. For i = 1, . . . ,m, let the basic transition operator T i for the visible

unit Vi be defined through its transition probabilities: Ti((v,h), (v
′,h′)) = 0 if (v,h)

and (v′,h′) differ in another variable than Vi and as

Ti
(
(v,h), (v′,h′)

)
=







p(v′i|h)
p(vi|h)

, if v∗i = vi 6= v′i

1− p(v′i|h)
p(vi|h)

, if v∗i = vi = v′i

1 , if vi 6= v′i = v∗i

0 , if vi = v′i 6= v∗i
1
2 , if v∗i = −1

(7.2)

otherwise. The transition matrix containing the transition probabilities of the visible

layer is given by T v =
∏

i T i. The transition matrix for the hidden layer T h is defined

analogously, and the flip-the-state transition operator is given by T = T hT v.

7.3.1 Activation function & computational complexity

An RBM corresponds to a stochastic, recurrent neural network with activation function

σ(x) = 1/(1 + e−x). Similarly, the transition probabilities defined in (7.2) can be



104 Chapter 7

interpreted as resulting from an activation function depending not only on the weighted

input to a neuron and its bias but also on the neuron’s current state Vj (or analogously

Hi):

σ′(x) =







min{ex, 1} if Vj = 0

max{1− e−x, 0} if Vj = 1
(7.3)

Corresponding graphs are shown in Figure 7.2.

The differences in computational complexity between the activation functions σ and

σ′ can be neglected. The transition operator described here requires a switch based

on the current state of the neuron on the one hand, but saves the computationally

expensive call to the random generator in deterministic transitions on the other hand.

Furthermore, in the asymptotic case, the running time of a sampling step is dominated

by the matrix multiplications, while the number of activation function evaluations in

one step increases only linearly with the number of neurons.

If the absolute value of the sum of the weighted inputs and the bias is large (i.e.,

extreme high conditional probability for one of the two states), the transition proba-

bilities between states under Gibbs sampling are already almost deterministic. Thus,

the difference between G and T decreases in this case. This is illustrated in Figure 7.2.

7.3.2 Related work

Both G and T are (local) Metropolis algorithms (Neal, 1993). A Metropolis algorithm

proposes states with a proposal distribution and accepts them in a way which ensures

detailed balance. In this view, Gibbs sampling corresponds to using the proposal distri-

bution “flip current state” and the Boltzmann acceptance probability p(x′)
p(x)+p(x′) , where

x and x′ denote the current and the proposed state, respectively. This proposal dis-

tribution has also been used with the Metropolis acceptance probability min
(

1, p(x
′)

p(x)

)

for sampling from Ising models. The differences between the two acceptance functions

are discussed, for example, by Neal (1993). He comes to the conclusion that “the is-

sues still remain unclear, though it appears that common opinion favours using the

Metropolis acceptance function in most circumstances” (p. 69).

The work by Peskun (1973) and Liu (1996) shows that the Metropolis acceptance

function is optimal with respect to the asymptotic variance of the Monte Carlo estimate

of the quantity of interest. This result only holds if the variables to be updated are

picked randomly in each step of the (local) algorithm. Thus, they are not applicable in

the typical RBM training scenario, where block-wise sampling in a predefined order is

used. In this scenario, it can indeed happen that the flip-the-state proposal combined

with the Metropolis acceptance function leads to non-ergodic chains as shown by the

counter-examples given by Neal (1993, p. 69).



The flip-the-state transition operator for RBMs 105

The transition operator T also uses the Metropolis acceptance probability, but the

proposal distribution differs from the one used in Ising models in one detail, namely

that it selects a state at random if the conditional probabilities of both states are

equal. This is important from a theoretical point of view, because it ensures ergodicity

as proven in the next section. This is the reason why our method does not suffer from

the problems mentioned above.

Furthermore, Breuleux et al. (2011) discuss a similar idea to the one underlying

our transition operator as a theoretic framework for understanding fast mixing, where

one increases the probability to change states by defining a new transition matrix A′

based on an existing transition matrix A by A′ = (A − λI)(1 − λ)−1, where λ ≤
minx∈ΩA(x,x) and I is the identity matrix. Our method corresponds to applying this

kind of transformation, not to the whole transition matrix, but rather to the transition

probabilities of a single binary variable (i.e., the base transition operator). This makes

the method not only computationally feasible in practice, but even more effective,

because it allows us to redistribute more probability mass (because the redistribution

is not limited by minx∈ΩA(x,x)), so that more than one entry of the new transition

matrix is 0.

7.3.3 Properties of the transition operator

To prove that a Markov chain based on the suggested transition operator T converges

to the probability distribution p defined by the RBM, it has to be shown that p is

invariant with respect to T and that the Markov chain is irreducible and aperiodic.

As stated above, the described transition operator belongs to the class of local

Metropolis algorithms. This implies that detailed balance holds for all the base transi-

tion operators (see, e.g., Neal, 1993). If p is invariant w.r.t the basic transition operators

it is also invariant w.r.t. the concatenated transition matrix T .

However, there is no general proof of ergodicity of Metropolis algorithms if neither

the proposal distribution nor the acceptance distribution are strictly positive and the

base transitions are applied deterministically in a fixed order. Therefore irreducibility

and aperiodicity still remain to be proven (see, e.g., Neal, 1993, p. 56).

To show irreducibility, we need some definitions and a lemma first. For a fixed

hidden state h let us define vmax(h) as the visible state that maximizes the probability

of the whole state,

vmax(h) := argmax
v

p(v,h) , (7.4)

and analogously

hmax(v) := argmax
h

p(v,h) . (7.5)



106 Chapter 7

We assume that argmax is unique and that ties are broken by taking the greater state

according to some arbitrary predefined strict total order ≺.
Furthermore, let M be the set of states, for which the probability can not be

increased by changing either only the hidden or only the visible states:

M =
{(

v,h
)
∈ Ω

∣
∣
(
v,h

)
=
(
vmax(h),h

)
=
(
v,hmax(v)

)}
(7.6)

Note, that M is not the empty set, since it contains at least the most probable state

argmax(v,h) p(v,h). Now we have:

Lemma 7.1. From every state (v,h) ∈ Ω one can reach
(
vmax(h

)
,h
)
by applying the

visible transition operator T v once and
(
v,hmax(v)

)
in one step of T h. It is possible

to reach every state (v,h) ∈ Ω in one step of T v from
(
vmax(h),h

)
and in one step of

T h from
(
v,hmax(v)

)
.

Proof. From the definition of vmax(h) and the independence of the conditional proba-

bilities of the visible variables given the state of the hidden layer it follows:

p
(
vmax(h)|h

)
= max
v1,...,vn

∏

i

p(vi|h) . (7.7)

Thus, in vmax(h) every single visible variable is in the state with the higher conditional

probability (i.e., in v∗i ) or both states are equally probable (in which case v∗i = −1). By
looking at the definition of the base transitions (7.2) it becomes clear that this means

that Ti
(
(v,h), (vmax(h)i,v−i,h)

)
> 0 and Ti

(
(vmax(h),h), (vi,vmax(h)−i,h)

)
> 0. So

we get for all (v,h) ∈ Ω:

Tv
(
(v,h), (vmax(h),h)

)
=
∏

i

Ti
(
(v,h), (vmax(h)i,v−i,h)

)
> 0 (7.8)

Tv
(
(vmax(h),h), (v,h)

)
=
∏

i

Ti
(
(vmax(h),h), (vi,vmax(h)−i,h)

)
> 0 (7.9)

This holds equivalently for the hidden transition operator T h and (v,hmax(v)). For

all (v,h) ∈ Ω:

Th
(
(v,h), (v,hmax(v))

)
=
∏

i

Ti
(
(v,h), (v, hmax(v)i,h−i)

)
> 0 (7.10)

Th
(
(v,hmax(v)), (v,h)

)
=
∏

i

Ti
(
(v,hmax(v)), (v, hi,hmax(v)−i)

)
> 0 (7.11)

Now we prove the irreducibility:

Theorem 7.1. The Markov chain induced by T is irreducible:

∀(v,h), (v′,h′) ∈ Ω : ∃n > 0 : Tn
(
(v,h), (v′,h′)

)
> 0 (7.12)



The flip-the-state transition operator for RBMs 107

Proof. The proof is divided into three steps showing:

(i) from every state (v,h) ∈ Ω one can reach an element of M in a fi-

nite number of transitions, i.e., ∀(v,h) ∈ Ω ∃(v∗,h∗) ∈ M and n ∈
N, with Tn

(
(v,h), (v∗,h∗)

)
> 0,

(ii) for every state (v,h) ∈ Ω there exists a state (v∗,h∗) ∈ M from which it is

possible to reach (v,h) ∈ Ω in a finite number of transitions, i.e., ∀(v,h) ∈
Ω ∃(v∗,h∗) ∈M and n ∈ N with Tn

(
(v∗,h∗), (v,h)

)
> 0, and

(iii) any transition between two arbitrary elements in M is possible, i.e., ∀(v∗,h∗),

(v∗∗,h∗∗) ∈M : T
(
(v∗,h∗), (v∗∗,h∗∗)

)
> 0.

Step (i): Let us define a sequence
(
(vk,hk)

)

k∈N
with v0 := v, h0 := h and hk :=

hmax(vk−1) and vk := vmax(hk) for k > 0. From the definition of vmax and hmax it

follows that (vk−1,hk−1) 6= (vk,hk) unless (vk−1,hk−1) ∈M and that no state in Ω \
M is visited twice. The latter follows from the fact that in the sequence two successive

states (vk,hk) and (vk+1,hk+1) from Ω \ M have either increasing probabilities or

(vk,hk) ≺ (vk+1,hk+1). Since Ω is a finite set, such a sequence must reach a state

(vn,hn) = (vn+i,hn+i) ∈M, i ∈ N after a finite number of steps n.

Finally, this sequence can be produced by T since from eq. (7.8) and eq. (7.10) it

follows that ∀k > 0:

T
(
(vk−1,hk−1), (vk,hk)

)
=

Th
(
(vk−1,hk−1), (vk−1,hk)

)
· Tv
(
(vk−1,hk), (vk,hk)

)
> 0 (7.13)

Hence, one can get from (vk−1,hk−1) to (vk,hk) in one step of the transition operator

T .

Step (ii) We now consider a similar sequence
(
(vk,hk)

)

k∈N
with v0 := v , h0 := h

and vk := vmax(hk−1) and hk := hmax(vk), for k > 0. Again, there exists n ∈ N, so

that (vn,hn) = (vn+i,hn+i) ∈ M, i ∈ N. From equations (7.9) and (7.11) it follows

that ∀k > 0:

T
(
(vk,hk), (vk−1,hk−1)

)
=

Th
(
(vk,hk), (vk,hk−1)

)
· Tv
(
(vk,hk−1), (vk−1,hk−1)

)
> 0 (7.14)

That is, one can get from (vk+1,hk+1) to (vk,hk) in one step of the transition operator

T and follow the sequence backwards from (vn,hn) ∈M to (v,h).



108 Chapter 7

Step (iii) From equations (7.8)–(7.11) it follows directly that a transition between

two arbitrary points inM is always possible.

Showing the aperiodicity is straight-forward:

Theorem 7.2. The Markov chain induced by T is aperiodic.

Proof. For every state (v∗,h∗) in the nonempty setM it holds that

T
(
(v∗,h∗), (v∗,h∗)

)
> 0 , (7.15)

so the state is aperiodic. This means that the whole Markov chain is aperiodic, since

it is irreducible (see, e.g., Brémaud, 1999).

Theorems 7.1 and 7.2 show that the Markov chain induced by the operator T

has p as its equilibrium distribution, i.e., the Markov chain is ergodic with stationary

distribution p.

7.4 Experiments

First, we experimentally compare the mixing behavior of the flip-the-state method

with Gibbs sampling by analyzing T and G for random RBMs. Then, we study the

effects of replacing G by T in different RBM learning algorithms applied to benchmark

problems. After that, the operators are used to sample sequences from trained RBMs.

The autocorrelation times and the number of class changes reflecting mode changes are

compared. Training and sampling the RBMs was implemented using the open-source

machine learning library Shark (Igel et al., 2008).

7.4.1 Analysis of the convergence rate

The convergence speed of an ergodic, homogeneous Markov chain with finite state

space is governed by the second largest eigenvector modulus (SLEM). This is a di-

rect consequence of the Perron-Frobenius theorem. Note that the SLEM computation

considers absolute values, in contrast to the statements by Liu (1996) referring to the

signed eigenvalues. We calculated the SLEM for transition matrices of Gibbs sampling

and the new transition operator for small, randomly generated RBMs by solving the

eigenvector equation of the resulting transition matrices G and T . To handle the com-

putational complexity we had to restrict our considerations to RBMs with only 2, 3,

and 4 visible and hidden neurons, respectively. The weights of these RBMs were drawn

randomly and uniformly from [−c; c], with c ∈ {1, . . . , 10}, and bias parameters were

set to zero. For each value of c we generated 100 RBMs and compared the SLEMs of

G and T .



The flip-the-state transition operator for RBMs 109

7.4.2 Log-likelihood evolution during training

We study the evolution of the exact log-likelihood, which is tractable if either the

number of the hidden or the visible units is chosen to be small enough, during gradient-

based training of RBMs using CD, PCD, or PT based on samples produced by Gibbs

sampling and the flip-the-state transition operator.

We used three benchmark problems taken from the literature. Desjardins et al.

(2010b) consider a parametrized artificial problem, referred to as Artificial Modes in

the following, for studying mixing properties. The inputs are 4 × 4 binary images.

The observations are distributed around four equally likely basic modes, from which

samples are generated by flipping pixels. The probability of flipping a pixel is given by

the parameter pmut, controlling the “effective distance between each mode” (Desjardins

et al., 2010b). In our experiments, pmut was either 0.01 or 0.1. Furthermore, we used

a 4× 4 pixel version of Bars and Stripes (MacKay, 2002) and finally the MNIST data

set of handwritten digits.

In the small toy problems (Artificial Modes and Bars and Stripes) the number of

hidden units was set to be the same as the number of visible units, i.e., n = 16. For

MNIST the number of hidden units was set to 10. The RBMs were initialized with

weights and biases drawn uniformly from a Gaussian distribution with 0 mean and

standard deviation 0.01.

The models were trained on all benchmark problems using gradient ascent on the

gradient approximation of either CD or PCD with k sampling steps (which we refer

to as CDk or PCDk) or PT. Note that CD learning with k = 1 does not seem to be

a reasonable scenario for applying the new operator. The performance of PT depends

on the number t of tempered chains and on the number of sampling steps k carried out

in each tempered chain before swapping samples between chains. We call PT with t

temperatures and k sampling steps t-PTk. The inverse temperatures were distributed

uniformly between 0 and 1. Samples for each learning method where either obtained

by G or T .

We performed mini-batch learning with a batch size of 100 training examples in

the case of MNIST and Artificial Modes and batch learning for Bars and Stripes. The

number of samples used for the gradient approximation was set to be equal to the

number of training examples in a (mini) batch. We tested different learning rates

η ∈ {0.01, 0.05, 0.1} and used neither weight decay nor a momentum parameter. All

experiments were run for a length of 20000 update steps and repeated 25 times. We

calculated the log-likelihood every 100th step of training. In the following, all reported

log-likelihood values are averaged over the training examples.



110 Chapter 7

7.4.3 Autocorrelation analysis

To measure the mixing properties of the operators on larger RBMs, we performed an

autocorrelation analysis.

We estimated the autocorrelation function

R(∆t) =
cov(E(V k,Hk)E(V k+∆t,Hk+∆t))

var(E(V k,Hk))
. (7.16)

The random variables V k and Hk are the state of the visible and hidden variables after

running the chain for k steps. The chain is assumed to be stationary, which induces

E[E(V k,Hk)] = E[E(V k+∆t,Hk+∆t)] and var(E(V k,Hk)) = var(E(V k+∆t,Hk+∆t)).

The autocorrelation function is always defined with respect to a specific function on

the state space. Here the energy function E is a natural choice.

The autocorrelation time is linked to the asymptotic variance of an estimator based

on averaging over consecutive samples from a Markov chain. It is defined as

τ =

∞∑

∆t=−∞

R(∆t) . (7.17)

An estimator based on lτ consecutive samples from a Markov chain has the same

variance as an estimator based on l independent samples (see, e.g., Neal, 1993). In this

sense τ consecutive samples are equivalent to one independent sample.

For the autocorrelation experiments we trained 25 RBMs on each of the previously

mentioned benchmark problems with 20-PT10. In addition to the RBMs with 10 hidden

units we trained 24 RBMs with 500 hidden neurons on MNIST for 2000 parameter

updates. To estimate the autocorrelations we sampled these RBMs for one million

steps using G and T , respectively. We followed the recommendations by Thompson

(2010) and, in addition to calculating and plotting the autocorrelations directly, fitted

AR-models to the times series to estimate the autocorrelation time using the software

package SamplerCompare (Thompson, 2011).

7.4.4 Frequency of class changes

To access the ability of the two operators to mix between different modes, we observed

the class changes in sample sequences, similar to the experiments by Bengio et al.

(2013). We trained 25 RBMs with CD-5 on Artificial Modes with pmut = 0.01 and

pmut = 0.1. After training, we sampled from the RBMs using either T orG as transition

operator and analyzed how often subsequent samples belong to different classes. We

considered four classes. Each class was defined by one of the four basic modes used

to generate the dataset. A sample belongs to the same class as the mode to which it

has the smallest Hamming distance. Ambiguous samples which could not be assigned



The flip-the-state transition operator for RBMs 111

to a single class, because they were equally close to at least two of the modes, were

discarded. In one experimental setting, all trained RBMs were initialized 1000 times

with samples drawn randomly from the training distribution (representing the starting

distribution of CD learning), and the number of sampling steps before the first class

change was measured. In a second setting, for each RBM one chain was started with

all visible units set to one and run for 10000 steps. Afterwards, the number of class

changes was counted.

7.5 Results and discussion

7.5.1 Analysis of the convergence rate

The upper plot in Figure 7.3 shows the fraction of RBMs (out of 100) for which the

corresponding transition operator T has a smaller SLEM than the Gibbs operator G

(and therefore T promises a faster mixing Markov chain than G) in dependence on the

value of c, which upper bounds the weights. If all the weights are equal to zero, Gibbs

sampling is always better, but the higher the weights get the more often T has a better

mixing rate. This effect is the more pronounced the more neurons the RBM has, which

suggests that the results of our analysis can be transfered to real world RBMs.

In the hypothetical case that all variables are independent (corresponding to an

RBM where all weights are zero), Gibbs sampling is optimal and converges in a single

step. With the flip-the-state operator, however, the probability of a neuron to be in a

certain state would oscillate and converge exponentially by a factor of
1−p(v∗i )
p(v∗i )

(i.e., the

SLEM of the base transition matrix in this case) to the equilibrium distribution. As the

variables get more and more dependent, the behavior of Gibbs sampling is no longer

optimal and the Gibbs chain converges more slowly than the Markov chain induced by

T . Figure 7.3 directly supports our claim that in this relevant scenario changing states

more frequently by the flip-the-state method can improve mixing.

7.5.2 Log-likelihood evolution during training

To summarize all trials of one experiment into a single value we calculated the maximum

log-likelihood value reached during each run and finally calculated the median over all

runs. The resulting maximum log-likelihood values for different experimental settings

for learning the Bars and Stripes and the MNIST data set with CD and PT are shown

in Table 7.1. Similar results were found for PCD and for experiments on Artificial

Modes, see appendix. For most experimental settings, the RBMs reaches statistically

significant higher likelihood values during training with the new transition operator

(Wilcoxon signed-rank test, p < 0.05).



112 Chapter 7

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

magnitude of weights

fr
a

c
ti
o

n
 o

f 
c
a

s
e

s
 w

h
e

re
 t

h
e

 S
L

E
M

 i
s
 s

m
a

lle
r 

c
o

m
p

a
re

d
 t

o
 G

ib
b

s
 s

a
m

p
lin

g

0 5000 10000 15000 20000

−
1

0
−

8
−

6
−

4

iterations

a
v
e

ra
g

e
 l
o

g
−

lik
e

lih
o

o
d

0 5000 10000 15000 20000

−
0

.1
0

.1

Figure 7.3: The upper figure compares the mixing rates of G and T for 2×2 RBMs

(black), 3× 3 RBMs (red, dashed) and 4× 4 RBMs (blue, dotted). The lower figure

depicts the learning curves for CD5 on Bars and Stripes with learning rate 0.05 using

G (black) or T (red, dashed). The inset shows the difference between the two and is

positive if the red curve is higher. The dashed horizontal line indicates the maximum

possible value of the average log-likelihood.



The flip-the-state transition operator for RBMs 113

0 20 40 60 80 100

0
.4

0
.6

0
.8

1
.0

∆t

a
u

to
c
o

rr
e

la
ti
o

n

Figure 7.4: Autocorrelation function R(∆t) for RBMs with 500 hidden neurons

trained on MNIST based on 24 trials, sampled 106 steps each. The dotted line

corresponds to T and the solid one to G.

If we examine the evolution of likelihood values over time (as shown, e.g., in the

lower plot of Figure 7.3) more closely, we see that the proposed transition operator

is better in the end of training, but Gibbs sampling is actually slightly better in the

beginning when weights are close to their small initialization. Learning curves as in

Figure 7.3 also show that if divergence occurs with Gibbs sampling (Fischer and Igel,

2010a), it will be slowed down, but not completely avoided with the new transition

operator.

It is not surprising that Gibbs sampling mixes better at the beginning of the train-

ing, because the variables are almost independent when the weights are still close to

their initial values near zero. Still, the results confirm that the proposed transition

operator mixes better in the difficult phase of RBM training and that the faster mixing

helps reaching better learning results.

The results suggest that it may be reasonable to mix the two operators. Either,

one could start with G and switch to T as the weights grow larger, or one can softly

blend between the basic operators and consider T α
i = αT i + (1− α)Gi, α ∈ [0, 1].



114 Chapter 7

Table 7.1: Median maximum log-likelihood values on Bars and Stripes (top) and

MNIST (bottom). Significant differences are marked with a star.

Bars and Stripes

Algorithm η Gibbs T

CD5 0.01 -4.070406 -3.986813*

CD5 0.05 -3.832875 -3.727781*

CD5 0.1 -3.838406 -3.732438*

CD10 0.01 -3.963563 -3.930687*

CD10 0.05 -3.640219 -3.57625*

CD10 0.1 -3.635781 -3.589219*

5-PT1 0.01 -4.011406 -4.0095

5-PT1 0.05 -3.675312 -3.636125*

5-PT1 0.1 -3.8255 -3.77825

5-PT5 0.01 -3.928125 -3.918781

5-PT5 0.05 -3.515719 -3.500844*

5-PT5 0.1 -3.565281 -3.540625*

20-PT1 0.01 -3.974219 -3.977562

20-PT1 0.05 -3.548969 -3.524406*

20-PT1 0.1 -3.577812 -3.549812*

20-PT5 0.01 -3.917969 -3.923781

20-PT5 0.05 -3.470094 -3.466188*

20-PT5 0.1 -3.478844 -3.472594*

MNIST

Algorithm η Gibbs T

CD5 0.01 -178.716 -177.958*

CD5 0.05 -179.345 -178.873

CD5 0.1 -179.007 -178.446*

CD10 0.01 -176.495 -175.638*

CD10 0.05 -176.844 -176.476

CD10 0.1 -177.925 -176.586

10-PT2 0.01 -182.283 -180.272*

10-PT2 0.05 -182.303 -181.379*

10-PT2 0.1 -181.727 -180.164

10-PT5 0.01 -178.71 -178.215*

10-PT5 0.05 -179.625 -178.708*

10-PT5 0.1 -179.051 -178.504*



The flip-the-state transition operator for RBMs 115

Table 7.2: Mean autocorrelation times τG and τT for single Markov chains using

the Gibbs sampler and the flip-the-state operator. The last column shows the gain

defined as 1− τT
τG

.

Gibbs T gain

τG τT in %

Bars and Stripes 22.46 20.06 10.67

Artificial Modes, pmut = 0.1 3.16 2.19 30.73

Artificial Modes, pmut = 0.01 6.00 5.94 1.06

MNIST, n = 10 488.26 445.84 8.69

MNIST, n = 500 522.39 432.12 17.28

7.5.3 Autocorrelation analysis

The autocorrelation analysis revealed that sampling using the flip-the-state operator

leads to shorter autocorrelation times in the considered benchmark problems, see Ta-

ble 7.2 and Figure 7.4. For example, an RBM trained on MNIST with 500 hidden

neurons needed on average to be sampled for 17.28% fewer steps to achieve the same

variance of the estimate if T is used instead of G – without overhead in computation

time or implementation complexity. The results with n = 500 demonstrate that our

previous findings carry over to larger RBMs.

7.5.4 Frequency of class changes

The numbers of class changes observed in sequences of 10000 samples starting from

the visible nodes set to one produced by G and T are given in Table 7.3.

Table 7.3: Frequencies of class changes for the Gibbs sampler and the flip-the-state

operator in sequences of 10000 samples (medians and quantiles over samples from 25

RBMs).

25% quantile median 75% quantile

Artificial Modes, pmut = 0.1, G 615 637 655

Artificial Modes, pmut = 0.1, T 919 944 958

Artificial Modes, pmut = 0.01, G 134 148 162

Artificial Modes, pmut = 0.01, T 175 186 199

Table 7.4 shows the number of samples before the first class change when initial-

izing the Markov chain with samples randomly drawn from the training distribution.

Markov chains based on T led to more and faster class changes than chains using Gibbs

sampling. As the modes in the training set get more distinct (comparing pmut = 0.1



116 Chapter 7

to pmut = 0.01) class changes get less frequent and more sampling steps are needed to

yield a class change. Nevertheless, T is superior to G even in this setting.

Table 7.4: Number of samples before the first class change when starting a Markov

chain with samples from the training distribution (medians and quantiles over samples

from 25 RBMs).

.
25% quantile median 75% quantile

Artificial Modes, pmut = 0.1, G 6 13 25

Artificial Modes, pmut = 0.1, T 3 7 14

Artificial Modes, pmut = 0.01, G 16 41 96

Artificial Modes, pmut = 0.01, T 10 27 63

7.6 Conclusion

We proposed the flip-the-state transition operator for MCMC-based training of RBMs

and proved that it induces a converging Markov chain. Large weights lead to slow

mixing Gibbs chains that can severely harm RBM training. In this scenario, the

proposed flip-the-state method increases the mixing rate compared to Gibbs sampling.

The way of sampling is generally applicable in the sense that it can be employed in every

learning method for binary RBMs relying on Gibbs sampling, for example contrastive

divergence learning and its variants as well as Parallel Tempering. As empirically

shown, the better mixing indeed leads to better learning results in practice. As the

flip-the-state sampling does not introduce computational overhead, we see no reason

to stick to standard Gibbs sampling.



The flip-the-state transition operator for RBMs 117

7.7 Appendix

Log-likelihood values for different problems, algorithms, and ex-

perimental settings

Table 7.5: Median maximum log-likelihood values for different experimental settings

for learning Bars and Stripes (left) and MNIST (right). Significant differences are

marked with a star.

Bars and Stripes

Algorithm η Gibbs T

PCD1 0.01 -4.944813* -5.131875

PCD1 0.05 -4.917219 -4.754625*

PCD1 0.1 -5.285469 -5.176563*

PCD5 0.01 -4.067437 -4.000844*

PCD5 0.05 -4.050906 -3.915938*

PCD5 0.1 -4.209375 -4.124625*

PCD10 0.01 -3.972812 -3.945219*

PCD10 0.05 -3.8425 -3.769938*

PCD10 0.1 -4.02 -3.917937*

MNIST

Algorithm η Gibbs T

PCD1 0.01 -185.536 -185.378*

PCD1 0.05 -181.382 -180.905

PCD1 0.1 -179.572 -180.502

PCD5 0.01 -179.061 -177.939*

PCD5 0.05 -178.195 -177.675

PCD5 0.1 -176.897 -175.946

PCD10 0.01 -175.799 -174.919*

PCD10 0.05 -176.301 -175.446*

PCD10 0.1 -176.208 -174.94



118 Chapter 7

Table 7.6: Median maximum log-likelihood values for different experimental settings

for learning Artificial Modes. The left table shows the results for datasets generated

with a probability pmut of permuting each pixel of 0.1, the right table for pmut = 0.01.

Significant differences are marked with a star.

Artificial Modes, pmut = 0.1

Algorithm η Gibbs T

CD5 0.01 -6.79103 -6.78603*

CD5 0.05 -6.80241 -6.79473*

CD10 0.01 -6.78564 -6.7833*

CD10 0.05 -6.79646 -6.79682*

PCD5 0.01 -6.79176 -6.78537*

PCD5 0.05 -6.80292 -6.79679*

PCD10 0.01 -6.78512 -6.78329*

PCD10 0.05 -6.79575 -6.79372*

10-PT2 0.01 -6.78282 -6.78325

10-PT2 0.05 -6.79839 -6.79575

10-PT5 0.01 -6.78206 -6.78213

10-PT5 0.05 -6.7929 -6.79351

10-PT10 0.01 -6.7827 -6.78203

10-PT10 0.05 -6.79101 -6.79196

Artificial Modes, pmut = 0.01

Algorithm η Gibbs T

CD5 0.01 -4.01644 -3.64562*

CD5 0.05 -4.00452 -3.68796*

CD10 0.01 -3.48928 -3.23056*

CD10 0.05 -3.51262 -3.27728*

PCD5 0.01 -3.9956 -3.6295*

PCD5 0.05 -3.94864 -3.61392*

PCD10 0.01 -3.46321 -3.21007*

PCD10 0.05 -3.37534 -3.11163*

10-PT2 0.01 -2.40041 -2.40195

10-PT2 0.05 -2.40682 -2.40798

10-PT5 0.01 -2.39929 -2.3992

10-PT5 0.05 -2.40648 -2.40072*

10-PT10 0.01 -2.39973 -2.40012

10-PT10 0.05 -2.40188 -2.40078



Chapter 8

How to center binary RBMs

This chapter is based on the manuscript “How to center binary restricted Boltzmann

machines” by J. Melchior, A. Fischer, and L. Wiskott, submitted.

Abstract

This work analyzes centered binary Restricted Boltzmann Machines (RBMs), where

centering is done by subtracting offset values from visible and hidden variables. We

show analytically that (i) centering can be reformulated as a different update rule for

normal binary RBMs, (ii) the expected performance of centered binary RBMs is invari-

ant under simultaneous flip of data and offsets, for any offset value in the range of zero

to one, and (iii) using the enhanced gradient is equivalent to setting the offset values to

the average over model and data mean. Due to the structural similarity this results also

generalize to deep Boltzmann machines. Furthermore, numerical simulations suggest

that (i) optimal generative performance is achieved by subtracting mean values from

visible as well as hidden variables, (ii) centered RBMs reach significantly higher log-

likelihood values than normal binary RBMs, (iii) the enhanced gradient suffers from

divergence more often than other centering variants, (iv) learning is stabilized if an

exponentially moving average over the batch means is used for the offset values instead

of the current batch mean, which also prevents the enhanced gradient from diverging,

and (v) centering leads to an update direction that is closer to the natural gradient.



120 Chapter 8

8.1 Introduction

In the last decade Restricted Boltzmann Machines (RBMs) got into the focus of atten-

tion because they can be considered as building blocks of deep neural networks (Hinton

et al., 2006; Bengio, 2009). RBM training methods are usually based on gradient ascent

on the Log-Likelihood (LL) of the model parameters given the training data. Since the

gradient is intractable, it is often approximated using Gibbs sampling only for a few

steps (Hinton et al., 2006; Tieleman, 2008; Tieleman and Hinton, 2009).

Two major problems have been reported when training RBMs. Firstly, the bias of

the gradient approximation introduced by using only a few steps of Gibbs sampling may

lead to a divergence of the LL during training (Fischer and Igel, 2010a; Schulz et al.,

2010). To overcome the divergence problem, Desjardins et al. (2010b) have proposed

to use parallel tempering, which is an advanced sampling method that leads to a faster

mixing Markov chain and thus to a better approximation of the LL gradient.

Secondly, the learning process is not invariant to the data representation. For ex-

ample training an RBM on the MNIST data set leads to a better model than training

it on 1-MNIST (the data set generated by flipping each bit in MNIST ). This is due

to missing invariance properties of the gradient with respect to these flip transforma-

tions and not due to the model’s capacity, since an RBM trained on MNIST can be

transformed in such a way that it models 1-MNIST with the same LL. Recently, two

approaches have been introduced that address the invariance problem. The enhanced

gradient (Cho et al., 2011, 2013b) has been designed as an invariant alternative to the

true LL gradient of binary RBMs and has been derived by calculating a weighted av-

erage over the gradients one gets by applying any possible bit flip combination on the

data set. Empirical results suggest that the enhanced gradient leads to more distinct

features and thus to better classification results based on the learned hidden represen-

tation of the data. Furthermore, in combination with an adaptive learning rate the

enhanced gradient leads to more stable training in the sense that good LL values are

reached independently of the initial learning rate. Tang and Sutskever (2011), on the

other hand have shown empirically that subtracting the data mean from the visible

variables leads to a model that can reach similar LL values on the MNIST and the

1-MNIST data set and comparable results to those of the enhanced gradient.1 Re-

moving the mean from all variables is generally known as the “centering trick” which

was originally proposed for feed forward neural networks (LeCun et al., 1998b). It

has recently also been applied to the visible and hidden variables of Deep Boltzmann

Machines (DBMs, Montavon and Müller, 2012) where it has been shown to lead to an

initially better conditioned optimization problem. Furthermore, the learned features

1Note, that changing the model such that the mean of the visible variables is removed is not

equivalent to removing the mean of the data.



How to center binary RBMs 121

have shown better discriminative properties and centering has improved the generative

properties of locally connected DBMs. A related approach applicable to multi-layer

perceptrons where the activation functions of the neurons are transformed to have zero

mean and zero slope on average was proposed by Raiko et al. (2012). The authors

could show that the gradient under this transformation became closer to the natural

gradient, which is desirable since the natural gradient follows the direction of steepest

ascent in the manifold of probability distributions. Furthermore, the natural gradient

is independent of the concrete parameterization of the distributions and is thus clearly

the update direction of choice (Amari, 1998). However, it is intractable already for

rather small RBMs. Schwehn (2010) and Ollivier et al. (2013) trained binary RBMs

and Desjardins et al. (2013) binary DBMs using approximations of the natural gradient

obtained by Markov chain Monte Carlo methods. Despite the theoretical arguments

for using the natural gradient, the authors concluded that the computational overhead

is extreme and it is rather questionable that the natural gradient is efficient for training

RBMs or DBMs.

In this work we give a unified view on centering that is applying the centering trick

of binary RBMs. We begin with a brief overview over binary RBMs, the standard

learning algorithms, the natural gradient of the LL of RBMs, and the basic ideas

used to construct the enhanced gradient in Section 8.2. In Section 8.3 we discuss the

theoretical properties of centered RBMs, show that centering can be reformulated as

a different update rule for normal binary RBMs and that the enhanced gradient is

a particular form of centering. Section 8.4 discusses how the parameters of centered

and normal binary RBMs should be initialized. Our experimental setup is described

in Section 8.5 before we empirically analyze the performance of centered RBMs with

different initializations, offset parameters, sampling methods, and learning rates and

compare the centered gradient with the natural gradient in Section 8.6. Our work is

concluded in Section 8.7.

8.2 Restricted Boltzmann machines

An RBM (Smolensky, 1986) is a bipartite undirected graphical model with a set of

m visible variables V = (V1, ..., Vm) and n hidden variables H = (H1, ..., Hn) taking

values v = (v1, ..., vm) and h = (h1, ..., hn), respectively. Since an RBM is a Markov

random field, its joint probability distribution is given by a Gibbs distribution

p (v,h) =
1

Z
e−E(v,h) ,



122 Chapter 8

with partition function Z and energy E(v,h). For binary RBMs, v ∈ {0, 1}m , h ∈
{0, 1}n, and the energy, which defines the bipartite structure, is given by

E (v,h) = −vTb− cTh− vTWh ,

where the weight matrix W, the visible bias vector b and the hidden bias vector c are

the parameters of the model, jointly denoted by θ. The partition function which sums

over all possible visible and hidden states is given by

Z =
∑

v

∑

h

e−E(v,h) .

RBM training is usually based on gradient ascent using approximations of the LL

gradient

∇θ =
∂ 〈log (p(v|θ))〉d

∂θ
= −

〈
∂E(v,h)

∂θ

〉

d

+

〈
∂E(v,h)

∂θ

〉

m

,

where 〈·〉m is the expectation under p(h,v) and 〈·〉d is the expectation under

p(h|v)pe(v) with empirical distribution pe. We use the notation ∇θ for the deriva-

tive of the LL with respect to θ in order to be consistent with the notation used by

Cho et al. (2011). For binary RBMs the gradient becomes

∇W = 〈vhT 〉d − 〈vhT 〉m ,

∇b = 〈v〉d − 〈v〉m ,

∇c = 〈h〉d − 〈h〉m .

Common RBM training methods approximate 〈·〉m by samples gained by different

Markov chain Monte Carlo methods. Sampling k (usually k = 1) steps from a Gibbs

chain initialized with a data sample yields the Contrastive Divergence (CD, Hinton

et al., 2006) algorithm. In stochastic maximum likelihood (Younes, 1991), in the con-

text of RBMs also known as Persistent Contrastive Divergence (PCD, Tieleman, 2008),

the chain is not reinitialized with a data sample after parameter updates. This has been

reported to lead to better gradient approximations if the learning rate is chosen suffi-

ciently small. Fast Persistent Contrastive Divergence (FPCD, Tieleman and Hinton,

2009) tries to further speed up learning by introducing an additional set of parameters,

which is only used for Gibbs sampling during learning. The advanced sampling method

Parallel Tempering (PT) introduces additional tempered Gibbs chains corresponding

to smoothed versions of p(v,h). The energy of these distributions is multiplied by
1
T , where T is referred to as temperature. The higher the temperature of a chain is,

the “smoother” the corresponding distribution and the faster the chain mixes. Sam-

ples may swap between chains with a probability given by the Metropolis Hastings

ratio, which leads to better mixing of the original chain (where T = 1). We use PTc



How to center binary RBMs 123

to denote the RBM training algorithm that uses parallel tempering with c tempered

chains as a sampling method. Usually only one step of Gibbs sampling is performed

in each tempered chain before allowing samples to swap, and a deterministic even odd

algorithm (Lingenheil et al., 2009) is used as a swapping schedule. PTc increases the

mixing rate and has been reported to achieve better gradient approximations than

CD and (F)PCD (Desjardins et al., 2010b) with the drawback of having a higher

computational cost.

See the introductory paper of Fischer and Igel (2014) for a recent review of RBMs

and their training algorithms.

8.2.1 Enhanced gradient

Cho et al. (2011) proposed a different way to update parameters during training of

binary RBMs, which is invariant to the data representation.

When transforming the state (v,h) of a binary RBM by flipping some of its

variables (that is ṽi = 1 − vi and h̃j = 1 − hj for some i, j), yielding a new state

(ṽ, h̃), one can transform the parameters θ of the RBM to θ̃ such that E(v,h|θ) =

E(ṽ, h̃|θ̃) + const and thus p(v,h|θ) = p(ṽ, h̃|θ̃) holds. However, if we update the

parameters of the transformed model based on the corresponding LL gradient to

θ̃
′
= θ̃ + η∇θ̃ and apply the inverse parameter transformation to θ̃

′
, the result will

differ from θ′ = θ + η∇θ. The described procedure of transforming, updating, and

transforming back can be regarded as a different way to update θ.

Following this line of thought there exist 2n+m different parameter updates corre-

sponding to the 2n+m possible binary flips of (v,h). Cho et al. (2011) proposed the

enhanced gradient as a weighted sum of these 2n+m parameter updates, which for their

choice of weighting is given by

∇eW = 〈(v − 〈v〉d)(h− 〈h〉d)T 〉d − 〈(v − 〈v〉m)(h− 〈h〉m)T 〉m ,

∇eb = 〈v〉d − 〈v〉m −∇eW
1

2
(〈h〉d + 〈h〉m) ,

∇ec = 〈h〉d − 〈h〉m −∇eWT 1

2
(〈v〉d + 〈v〉m) .

It has been shown that the enhanced gradient is invariant to arbitrary bit flips of

the variables and therefore invariant under the data representation, which has been

demonstrated on the MNIST and 1-MNIST data set. Furthermore, the authors re-

ported more stable training under various settings in terms of the LL estimate and

classification accuracy.



124 Chapter 8

8.2.2 Natural gradient

Following the direction of steepest ascent in the Euclidean parameter space (as given

by the standard gradient) does not necessarily correspond to the direction of steep-

est ascent in the manifold of probability distributions {p(v|θ),θ ∈ Θ}, which we

are actually interested in. To account for the local geometry of the manifold, the

Euclidean metric should be replaced by the Fisher information metric defined by

||θ||I(θ) =
√∑

θkIkl (θ) θl, where I(θ) is the Fisher information matrix (Amari, 1998).

The kl-th entry of the Fisher information matrix for a parameterized distribution p(v|θ)
is given by

Ikl (θ) =

〈(
∂ log (p(v|θ))

∂θk

)(
∂ log (p(v|θ))

∂θl

)〉

m

,

where 〈·〉m denotes the expectation under p(v|θ). The gradient associated with the

Fisher metric is called the natural gradient and is given by

∇nθ = I (θ)
−1∇θ .

The natural gradient points in the direction δθ archiving the largest change of the ob-

jective function (here the LL) for an infinitesimal small distance δθ between p(v|θ) and
p(v|θ + δθ) in terms of the Kullback-Leibler divergence (Amari, 1998). This makes

the natural gradient independent of the parameterization including the invariance to

flips of the data as a special case. Thus, the natural gradient is clearly the update

direction of choice.

For binary RBMs the entries of the Fisher information matrix (Amari et al., 1992;

Desjardins et al., 2013; Ollivier et al., 2013) are given by

Iwij ,wuv
(θ) = I ,wuv,wij

(θ) = 〈vihjvuhv〉m − 〈vuhv〉m〈vuhv〉m
= Covm (vihj , vuhv) ,

Iwij ,bu (θ) = Ibu,wij
(θ) = Covm (vihj , vu) ,

Iwij ,cv (θ) = Icv,wij
(θ) = Covm (vihj , hv) ,

Ibi,bu (θ) = Ibu,bi (θ) = Covm (vi, vu) ,

Icj ,cv (θ) = Icv,cj (θ) = Covm (hj , hv) .

Since these expressions involve expectations under the model distribution they are

not tractable in general, but can be approximated using MCMC methods (Ollivier

et al., 2013; Desjardins et al., 2013). Furthermore, a diagonal approximation of the

Fisher information matrix could be used. However, the approximation of the natural

gradient is still computationally very expensive so that the practical usability remains

questionable (Desjardins et al., 2013).



How to center binary RBMs 125

8.3 Centered restricted Boltzmann machines

Inspired by the centering trick proposed by LeCun et al. (1998b), Tang and Sutskever

(2011) have addressed the flip-invariance problem by changing the energy of the RBM

in a way that the mean of the input data is removed. Montavon and Müller (2012)

have extended the idea of centering to the visible and hidden variables of DBMs and

have shown that centering improves the conditioning of the underlying optimization

problem, leading to models with better discriminative properties for DBMs in general

and better generative properties in the case of locally connected DBMs.

Following their line of thought, the energy for a centered binary RBM where the

visible and hidden variables are shifted by the offset parameters µ = (µ0, . . . , µm) and

λ = (λ0, . . . , λn), respectively, can be formulated as

E (v,h) = − (v − µ)
T
b− cT (h− λ)− (v − µ)

T
W (h− λ) . (8.1)

By setting both offsets to zero one retains the normal binary RBM. Setting µ = 〈v〉d
and λ = 0 leads to the model introduced by Tang and Sutskever (2011), and by setting

µ = 〈v〉d and λ = 〈h〉d we get a shallow variant of the centered DBM analyzed by

Montavon and Müller (2012).

The conditional probabilities for a variable taking the value one are given by

p (Vi = 1|h) = σ(wi∗ (h− λ) + bi) , (8.2)

p (Hj = 1|v) = σ((v − µ)
T
w∗j + cj) , (8.3)

where σ (·) is the sigmoid function, wi∗ represents the ith row, and w∗j the jth column

of the weight matrix W.

The LL gradient now takes the form

∇W = 〈(v − µ)(h− λ)T 〉d − 〈(v − µ)(h− λ)T 〉m , (8.4)

∇b = 〈v − µ〉d − 〈v − µ〉m = 〈v〉d − 〈v〉m , (8.5)

∇c = 〈h− λ〉d − 〈h− λ〉m = 〈h〉d − 〈h〉m . (8.6)

∇b and ∇c are independent of the choice of µ and λ and thus centering only affects

∇W. It can be shown (see the appendix in Section 8.8) that the gradient of a centered

RBM is invariant to flip transformations if a flip of vi to 1− vi implies a change of µi

to 1 − µi, and a flip of hj to 1 − hj implies a change of λj to 1 − λj . This obviously

holds for µi = 0.5 and λj = 0.5 but also for any expectation value over vi and hj under

any distribution. Note, that the invariance property also generalizes to DBMs.

If we set µ and λ to the expectation values of the variables, these values may

depend on the RBM parameters (think for example about 〈h〉d) and thus they might

change during training. Consequently, a learning algorithm for centered RBM needs



126 Chapter 8

to update the offset values to match the expectations under the distribution that has

changed with a parameter update. When updating the offsets one needs to transform

the RBM parameters such that the modeled probability distribution stays the same.

An RBM with offsets µ and λ can be transformed to an RBM with offsets µ′ and λ′

by

W′ = W , (8.7)

b′ = b+W
(
λ′ − λ

)
, (8.8)

c′ = c+WT (µ′ − µ) , (8.9)

such that E(v,h|θ,µ,λ) = E(v,h|θ′,µ′,λ′)+const, is guaranteed. Obviously, this can

be used to transform a centered RBM to a normal RBM and vice versa, highlighting

that centered and normal RBMs are just different parametrizations of the same model

class.

If the intractable model mean is used for the offsets, they have to be approximated

by samples. Furthermore, when λ is chosen to be 〈h〉d or 〈h〉m or when µ is chosen

to be 〈v〉m one could either approximate the mean values using the sampled states

or the corresponding conditional probabilities. But due to the Rao-Blackwell theo-

rem an estimation based on the probabilities has lower variance and therefore is the

approximation of choice.

Algorithm 8.1 shows pseudo code for training a centered binary RBM, where we

use 〈·〉 to denote the average over samples from the current batch. Thus, for example

we write 〈vd〉 for the average value of data samples vd in the current batch, which is

used as an approximation for the expectation of v under the data distribution, that

is 〈v〉d. Similarly, 〈hd〉 approximates 〈h〉d using the hidden samples hd in the current

batch.

Note that in Algorithm 8.1 the update of the offsets is performed before the gra-

dient is calculated. This is in contrast to the algorithm for centered DBMs proposed

by Montavon and Müller (2012), where the update of the offsets and the reparam-

eterization follows after the gradient update (that is, the estimates of the offsets in

one learning iteration are based on samples gained from the model of the previous

iteration). However, the proposed DBM algorithm smooths the offset estimations by

an exponentially moving average over the sample means from many iterations, so that

the choice of the sample set used for the offset estimation should be less relevant. In

Algorithm 8.1 an exponentially moving average is obtained if the sliding factor ν is set

to 0 < ν < 1 and prevented if ν = 1. The effects of using an exponentially moving

average are empirically analyzed in Section 8.6.2.



How to center binary RBMs 127

Algorithm 8.1: Training centered RBMs

1 Initialize W /* i.e. W← N (0, 0.01)N×M */

2 Initialize µ,λ /* i.e. µ← 〈data〉,λ← 0.5 */

3 Initialize b, c /* i.e. b← σ−1(µ), c← σ−1(λ) */

4 Initialize η, νµ, νλ /* i.e. η, νµ, νλ ∈ {0.001, ..., 0.1} */

5 repeat

6 foreach batch in data do

7 foreach sample vd in batch do

8 Calculate hd = p(Hj = 1|vd) /* Eq. (8.3) */

9 Sample vm fromRBM /* Eqs. (8.2), (8.3) */

10 Calculate hm = p(Hj = 1|vm) /* Eq. (8.3) */

11 Store vm,hd,hm

12 Estimate µnew /* i.e. µnew ← 〈vd〉 */

13 Estimate λnew /* i.e. λnew ← 〈hd〉 */

/* Transform parameters with respect to the new offsets */

14 b← b+ νλW (λnew − λ) /* Eq. (8.8) */

15 c← c+ νµW
T (µnew − µ) /* Eq. (8.9) */

/* Update offsets using exp. moving averages with sliding

factors νµ and νλ */

16 µ← (1− νµ)µ+ νµµnew

17 λ← (1− νλ)λ+ νλλnew

/* Update parameters using gradient ascent with learning

rate η */

18 ∇W← 〈(vd − µ)(hd − λ)T 〉 − 〈(vm − µ)(hm − λ)T 〉 /* Eq. (8.4) */

19 ∇b← 〈vd〉 − 〈vm〉 /* Eq. (8.5) */

20 ∇c← 〈hd〉 − 〈hm〉 /* Eq. (8.6) */

21 W←W + η∇W
22 b← b+ η∇b
23 c← c+ η∇c

24 until stopping criteria is met

/* Transform network to a normal binary RBM if desired */

25 b← b−Wλ /* Eq. (8.8) */

26 c← c−WTµ /* Eq. (8.9) */

27 µ← 0

28 λ← 0



128 Chapter 8

8.3.1 Centered Gradient

We now use the centering trick to derive a centered parameter update, which can replace

the gradient during the training of normal binary RBMs. Similar to the derivation of

the enhanced gradient we can transform a normal binary to a centered RBM, perform a

gradient update, and transform the RBM back (see the appendix in Section 8.8 for the

derivation). This yields the following parameter updates, which we refer to as centered

gradient

∇cW = 〈(v − µ)(h− λ)T 〉d − 〈(v − µ)(h− λ)T 〉m , (8.10)

∇cb = 〈v〉d − 〈v〉m −∇cWλ , (8.11)

∇cc = 〈h〉d − 〈h〉m −∇cWTµ . (8.12)

Notice that by setting µ = 1
2 (〈v〉d + 〈v〉m) and λ = 1

2 (〈h〉d + 〈h〉m) the centered

gradient becomes equal to the enhanced gradient. Thus, it becomes clear that the

enhanced gradient is a special case of centering. This can also be concluded from the

derivation of the enhanced gradient for Gaussian visible variables by Cho et al. (2013a).

The enhanced gradient has been designed such, that the weight updates become

the difference of the covariances between one visible and one hidden variable under the

data and the model distribution. Interestingly, one gets the same weight update for

two other choices of offset parameters: either µ = 〈v〉d and λ = 〈h〉m or µ = 〈v〉m
and λ = 〈h〉d. However, these offsets result in different update rules for the bias

parameters.

Algorithm 8.2 shows pseudo code for training a normal binary RBM using the

centered gradient, which is equivalent to training a centered binary RBM using Algo-

rithm 8.1. Both algorithms can easily be extended to DBMs and Boltzmann machines

with other types of units.

8.4 Initialization of the model parameters

It is a common way to initialize the weight matrix to small random values to break the

symmetry. The bias parameters are often initialized to zero. However, there exists a

more reasonable initialization for the bias parameters.

Hinton (2012) proposed to initialize the visible bias parameter bi to ln(pi/(1−pi)),
where pi is the proportion of the data points in which unit i is on (that is pi = 〈vi〉d).
He states that if this is not done, the hidden units are used to activate the ith visible

unit with a probability of approximately pi in the early stage of training.

We argue that this initialization is in fact reasonable since it corresponds to the

Maximum Likelihood Estimate (MLE) of the visible bias given the data for an RBM

with zero weight matrix, given by



How to center binary RBMs 129

Algorithm 8.2: Training RBMs using the centered gradient

1 Initialize W /* i.e. W← N (0, 0.01)N×M */

2 Initialize µ,λ /* i.e. µ← 〈data〉,λ← 0.5 */

3 Initialize b, c /* i.e. b← σ−1(µ), c← σ−1(λ) */

4 Initialize η, νµ, νλ /* i.e. η, νµ, νλ ∈ {0.001, ..., 0.1} */

5 repeat

6 foreach batch in data do

7 foreach ample vd in batch do

8 Calculate hd = p(Hj = 1|vd) /* Eq. (8.3) */

9 Sample vm fromRBM /* Eqs. (8.2), (8.3) */

10 Calculate hm = p(Hj = 1|vm) /* Eq. (8.3) */

11 Store vm,hd,hm

12 Estimate µnew /* i.e. µnew ← 〈vd〉 */

13 Estimate λnew /* i.e. λnew ← 〈hd〉 */

/* Update offsets using exp. moving averages with sliding

factors νµ and νλ */

14 µ← (1− νµ)µ+ νµµnew

15 λ← (1− νλ)λ+ νλλnew

/* Update parameters using the centered gradient with

learning rate η */

16 ∇cW← 〈(vd −µ)(hd −λ)T 〉 − 〈(vm −µ)(hm −λ)T 〉 /* Eq. (8.10) */

17 ∇cb← 〈vd〉 − 〈vm〉 − ∇cWλ /* Eq. (8.11) */

18 ∇cc← 〈hd〉 − 〈hm〉 − ∇cWTµ /* Eq. (8.12) */

19 W←W + η∇cW
20 b← b+ η∇cb
21 c← c+ η∇cc

22 until stopping criteria is met



130 Chapter 8

b∗ = ln

( 〈v〉d
1− 〈v〉d

)

= − ln

(
1

〈v〉d
− 1

)

= σ−1(〈v〉d) , (8.13)

where σ−1 is the inverse sigmoid function. Notice that the MLE of the visible bias

for an RBM with zero weights is the same whether the RBM is centered or not. The

conditional probability of the visible variables (8.2) of an RBM with this initialization

is then given by p (v = 1|h) = σ(σ−1(〈v〉d)) = 〈v〉d, where p (v = 1|h) denotes the

vector containing the elements p (vi = 1|h), i = 1, . . . ,m. Thus the mean of the data

is initially modeled only by the bias values and the weights are free to model higher

order statistics in the beginning of training. For the unknown hidden variables it is

reasonable to assume an initial mean of 0.5 so that the MLE of the hidden bias for

an RBM with zero weights is given by c∗ = σ−1(0.5) = 0.0. These considerations still

hold approximately if the weights are not zero but initialized to small random values.

Montavon and Müller (2012) suggested to initialize the bias parameters to the

inverse sigmoid of the initial offset parameters. They argue that this initialization

leads to a good starting point, because it guarantees that the Boltzmann machine is

initially centered. Actually, if the initial offsets are set to µi = 〈vi〉d and λj = 0.5 the

initialization suggested by Montavon and Müller (2012) is equal to the initialization to

the MLEs as follows from equation (8.13).

8.5 Methods

As shown in the previous section the algorithms described by Montavon and Müller

(2012), Tang and Sutskever (2011), and Cho et al. (2011) can all be viewed as different

ways of applying the centering trick. They differ in the choice of the offset parameters

and in the way of approximating them, either based on the samples gained from the

model in the previous learning step or from the current one, using an exponentially

moving average or not. The question arises, how RBMs should be centered to achieve

the best performance in terms of the LL. In the following we analyze the different ways

of centering empirically and try to derive a deeper understanding of why centering is

beneficial.

For simplicity we introduce the following shorthand notation. We use d to denote

the data mean 〈·〉d, m for the model mean 〈·〉m, a for the average of the means 1
2 〈·〉d+

1
2 〈·〉m, and 0 if the offsets is set to zero. We indicate the choice of µ in the first and the

choice of λ in the second place, for example dm translates to µ = 〈v〉d and λ = 〈h〉m.

We add a superscribed b or a to denote whether the reparameterization is performed

before or after the gradient update. If a sliding factor smaller than one and thus an

exponentially moving average is used a subscript s is added. Thus, we indicate the

variant of Montavon and Müller (2012) by ddas , the one of Cho et al. (2011) by aab, the



How to center binary RBMs 131

data normalization of Tang and Sutskever (2011) by d0, and the normal binary RBM

simply by 00.

We begin our analysis with RBMs, where one layer is small enough to guarantee

that the exact LL is still tractable. In a first set of experiments we analyze the four

algorithms described above in terms of the evolution of the LL during training. In

a second set of experiments we analyze the effect of the initialization described in

Section 8.4. We proceed with a comparison of the effects of estimating offset values

and reparameterizing the parameters before or after the gradient update. Afterwards

we analyze the effects of using an exponentially moving average to approximate the

offset values in the different algorithms and of choosing other offset values. To verify

whether the results scale to more realistic problem sizes we compare the algorithms

on MNIST using 500 hidden units. Finally, we compare the normal and the centered

gradient with the natural gradient.

8.5.1 Benchmark problems

For our analysis we consider three different benchmark problems.

The Bars & Stripes (MacKay, 2002) problem consists of quadratic patterns of size

D × D that can be generated as follows. First, a vertical or horizontal orientation

is chosen randomly with equal probability. Then the state of all pixels of every row

or column is chosen uniformly at random. This leads to N = 2D+1 patterns where

the completely uniform patterns occur twice as often as the others. The data set is

symmetric in terms of the amount of zeros and ones and thus the flipped and unflipped

problems are equivalent. An upper bound of the LL is given by (N − 4) ln
(

1
N

)
+

4 ln
(

2
N

)
. For our experiments we used D = 3 or D = 2 (only in Section 8.6.7) leading

to an upper bound of −41.59 and −13.86, respectively.
The Shifting Bar data set is an artificial benchmark problem we have designed

to be asymmetric in terms of the amount of zeros and ones in the data. For an input

dimensionality N , a bar of length 0 < B < N has to be chosen, where B
N expresses the

percentage of ones in the data set. A position 0 ≤ p < N is chosen uniformly at random

and the states of the following B pixels are set to one, where a wrap around is used if

p+B ≥ N . The states of the remaining pixels are set to zero. This leads to N different

patterns with equal probability and an upper bound of the LL of N ln
(

1
N

)
. For our

experiments we used N = 9, B = 1 and its flipped version Flipped Shifting Bar ,

which we get for N = 9, B = 8, both having an upper LL bound of −19.78.
The MNIST (LeCun et al., 1998b) database of handwritten digits has become

a standard benchmark problem for RBMs. It consists of 60, 000 training and 10, 000

testing examples of gray value handwritten digits of size 28 × 28. After binarization

(with a threshold of 0.5) the data set contains 13.3% ones, similar to the Shifting Bar



132 Chapter 8

problem, which for our choice of N and B contains 11.1% ones. We refer to the data

set where each bit of MNIST is flipped (that is each one is replaced by a zero and vice

versa) as 1-MNIST . To our knowledge, the best reported performance in terms of

the average LL per sample of an RBM with 500 hidden units on MNIST test data is

-84 (Salakhutdinov, 2008; Salakhutdinov and Murray, 2008; Tang and Sutskever, 2011;

Cho et al., 2013b).

8.5.2 Experimental setup

The RBMs weight matrices were initialized with random values sampled from a Gaus-

sian with zero mean and a standard deviation of 0.01. If not stated otherwise the visible

and hidden biases, and offsets were initialized as described in Section 8.4. We used CD

and PCD with k steps of Gibbs sampling (CD-k, PCD-k) and PTc for training, where

the c temperatures were distributed uniformly form 0 to 1. All experiments where

repeated 25 times. We used 4 hidden units when modeling Bars & Stripes and Shifting

Bar. For these data sets batch training was performed for 50, 000 gradient updates,

where the LL was evaluated every 50th gradient update. We used either 16 or 500

hidden units together with mini-batch training with a batch size of 100 when modeling

MNIST. In the case of 16 hidden units the model was trained for 100 epochs, each

consisting of 600 gradient updates and the exact LL was evaluated after each epoch.

In the case of 500 hidden units the model was trained for 200 epochs, each consisting of

600 gradient updates and the LL was estimated every 10th epoch using Annealed Im-

portance Sampling (AIS), where we used the same setup as described by Salakhutdinov

and Murray (2008).

8.6 Results

All tables given in this section show the average maximum LL and the corresponding

standard deviation reached during training with different learning algorithms over the

25 trials. In some cases the final average LL reached at the end of training is given in

parenthesis to indicate a potential divergence of the LL. For reasons of readability, the

average LL was divided by the number of training samples in the case of MNIST. In

order to check if the result of the best method within one row differs significantly from

the others we performed pairwise signed Wilcoxon rank-sum tests (with p = 0.05). The

best results are highlighted in bold. This can be more than one value if the significance

test between these values was negative.



H
o
w

to
cen

ter
b
in
a
ry

R
B
M
s

133

Algorithm-η aab ddas d0 00

Bars & Stripes

CD-1-0.1 -60.85 ±1.91 (-69.1) -60.41 ±2.08 (-68.8) -60.88 ±3.95 (-70.9) -65.05 ±3.60 (-78.1)

CD-1-0.05 -60.37 ±1.87 (-65.0) -60.25 ±2.13 (-64.2) -60.74 ±3.57 (-65.1) -64.99 ±3.63 (-71.2)

CD-1-0.01 -61.00 ±1.54 (-61.1) -61.22 ±1.49 (-61.3) -63.28 ±3.01 (-63.3) -68.41 ±2.91 (-68.6)

PCD-1-0.1 -55.65 ±0.86 (-360.6) -54.75 ±1.46 (-91.2) -56.65 ±3.88 (-97.3) -57.27 ±4.69 (-84.3)

PCD-1-0.05 -54.29 ±1.25 (-167.4) -53.60 ±1.48 (-67.2) -56.50 ±5.26 (-72.5) -58.16 ±5.50 (-70.6)

PCD-1-0.01 -54.26 ±0.79 (-55.3) -56.68 ±0.73 (-56.8) -60.83 ±3.76 (-61.0) -64.52 ±2.94 (-64.6)

PT10-0.1 -52.55 ±3.43 (-202.5) -51.13 ±0.85 (-52.1) -55.37 ±5.44 (-56.7) -53.99 ±3.73 (-55.3)

PT10-0.05 -51.84 ±0.98 (-70.7) -51.87 ±1.05 (-52.3) -56.11 ±5.79 (-56.6) -56.06 ±4.50 (-56.8)

PT10-0.01 -53.36 ±1.26 (-53.8) -56.73 ±0.77 (-56.8) -61.24 ±4.58 (-61.3) -64.70 ±3.53 (-64.7)

MNIST

CD-1-0.1 -152.6 ±0.89 (-158.5) -150.9 ±1.53 (-154.6) -151.3 ±1.77 (-154.8) -165.9 ±1.90 (-168.4)

CD-1-0.05 -152.5 ±1.14 (-156.1) -151.2 ±1.89 (-154.3) -151.6 ±1.90 (-154.6) -167.7 ±1.66 (-169.0)

CD-1-0.01 -153.0 ±1.10 (-153.2) -152.4 ±1.81 (-152.8) -153.5 ±2.30 (-154.0) -171.3 ±1.49 (-172.4)

PCD-1-0.1 -147.5 ±1.09 (-177.6) -140.9 ±0.61 (-145.2) -142.9 ±0.74 (-147.2) -160.7 ±4.87 (-169.4)

PCD-1-0.05 -145.3 ±0.61 (-162.4) -140.0 ±0.45 (-142.8) -141.1 ±0.65 (-143.6) -173.4 ±4.42 (-178.1)

PCD-1-0.01 -143.0 ±0.29 (-144.7) -140.7 ±0.42 (-141.4) -141.7 ±0.49 (-142.5) -198.0 ±4.78 (-198.4)

PT10-0.01 -247.1 ±12.52 (-643.4) -141.5 ±0.54 (-143.6) -144.0 ±0.61 (-147.6) -148.8 ±1.15 (-153.6)

Table 8.1: Average maximum LL on (top) the Bars & Stripes data set and (bottom) the MNIST data set using different sampling methods

and learning rates η.



134
C
h
a
p
ter

8

Algorithm-η aab ddas d0 00

Shifting Bar

CD-1-0.2 -20.52 ±1.09 (-21.9) -20.32 ±0.74 (-20.6) -21.72 ±1.21 (-22.5) -21.89 ±1.42 (-22.6)

CD-1-0.1 -20.97 ±1.14 (-21.5) -20.79 ±0.86 (-20.9) -21.19 ±0.82 (-21.4) -21.40 ±0.88 (-21.6)

CD-1-0.05 -21.11 ±0.78 (-21.2) -22.72 ±0.67 (-22.7) -26.89 ±0.29 (-26.9) -26.11 ±0.40 (-26.1)

PCD-1-0.2 -21.71 ±0.81 (-237.2) -21.02 ±0.52 (-32.4) -21.62 ±0.66 (-31.9) -21.86 ±0.75 (-31.7)

PCD-1-0.1 -21.10 ±0.59 (-87.4) -20.92 ±0.73 (-23.3) -21.74 ±0.76 (-23.7) -21.52 ±0.89 (-23.3)

PCD-1-0.05 -20.96 ±0.70 (-26.0) -22.48 ±0.60 (-22.6) -26.83 ±0.36 (-26.8) -26.04 ±0.48 (-26.1)

PT10-0.2 -20.87 ±0.86 (-31.9) -20.38 ±0.77 (-20.9) -21.14 ±1.15 (-21.6) -21.82 ±1.22 (-22.3)

PT10-0.1 -20.57 ±0.60 (-21.5) -20.51 ±0.58 (-20.7) -21.22 ±0.91 (-21.4) -21.06 ±0.92 (-21.2)

PT10-0.05 -20.69 ±0.89 (-20.8) -22.39 ±0.68 (-22.4) -26.94 ±0.30 (-27.0) -26.17 ±0.38 (-26.2)

Flipped Shifting Bar

CD-1-0.2 -20.39 ±0.86 (-21.3) -20.42 ±0.80 (-20.8) -21.55 ±1.33 (-22.3) -27.98 ±0.26 (-28.2)

CD-1-0.1 -20.57 ±0.83 (-20.9) -20.85 ±0.82 (-21.0) -21.04 ±0.75 (-21.2) -28.28 ±0.00 (-28.4)

CD-1-0.05 -21.11 ±0.77 (-21.2) -22.63 ±0.66 (-22.6) -26.85 ±0.34 (-26.9) -28.28 ±0.00 (-28.3)

PCD-1-0.2 -21.56 ±0.57 (-310.8) -20.97 ±0.65 (-32.3) -21.89 ±0.86 (-32.6) -28.01 ±0.26 (-28.3)

PCD-1-0.1 -21.17 ±0.60 (-88.3) -20.72 ±0.50 (-23.1) -21.28 ±0.71 (-23.2) -28.28 ±0.00 (-28.4)

PCD-1-0.05 -21.01 ±0.77 (-25.6) -22.30 ±0.64 (-22.4) -26.90 ±0.34 (-26.9) -28.28 ±0.00 (-28.3)

PT10-0.2 -20.60 ±0.66 (-33.2) -20.25 ±0.55 (-20.7) -20.79 ±0.87 (-21.4) -28.01 ±0.27 (-28.2)

PT10-0.1 -20.78 ±0.82 (-21.6) -20.68 ±0.69 (-20.8) -21.11 ±0.67 (-21.3) -28.28 ±0.00 (-28.4)

PT10-0.05 -20.90 ±0.85 (-21.1) -22.39 ±0.65 (-22.4) -26.87 ±0.35 (-26.9) -28.28 ±0.00 (-28.3)

Table 8.2: Average maximum LL on (top) the Shifting Bar data set and (bottom) the Flipped Shifting Bar data set using different sampling

methods and learning rates.



How to center binary RBMs 135

0 10000 20000 30000 40000 50000

gradient update

−100

−90

−80

−70

−60

−50

lo
g

-l
ik

e
lih

o
o

d

aa
b
s

dd
b
s

d0

00

0 10000 20000 30000 40000 50000

gradient update

−100

−90

−80

−70

−60

−50

aa
b
s

dd
b
s

d0

00

Figure 8.1: Average LL during training on the Bars & Stripes data set for the

standard centering methods. (left) When CD-1 is used for sampling and the learning

rate is η = 0.05 and (right) when PT10 is used for sampling and η = 0.05.

8.6.1 Comparison of the standard methods

The comparison of the learning performance of the previously described algorithms ddas ,

aab, d0, and 00 (using their originally proposed initializations) shows that training a

centered RBM leads to significantly higher LL values than training a normal binary

RBM (see Table 8.1 for the results for Bars & Stripes and MNIST and Table 8.2 for the

results for Shifting Bar and Flipped Shifting Bar). Figure 8.1 illustrates on the Bars &

Stripes data set that centering both the visible and the hidden variables (ddas and aab)

compared to centering only the visible variables (d0 ) accelerates the learning and leads

to a higher LL when using PT. The same holds for PCD as can be seen from Table 8.1.

Thus centered RBMs can form more accurate models of the data distribution than

normal RBMs. This is in contrast to the observations made for DBMs by Montavon

and Müller (2012), which found a better generative performance of centering only in

the case of locally connected DBMs.

It can also be seen from Figure 8.1 that all methods show divergence in combi-

nation with CD (as described before by Fischer and Igel (2010a) for normal RBMs),

which can be prevented for ddas , d0, and 00 when using PT. This can be explained by

the fact that PT leads to faster mixing Markov chains and thus less biased gradient

approximations. The aa algorithm however suffers from severe divergence of the LL

when PT is used, which is even worse than with CD. This divergence problem arises for

all learning rates as indicated by the LL values reached at the end of training (given

in parentheses) in Table 8.1 and Table 8.2. The divergence occurs the earlier and

faster the bigger the learning rate, while for the other algorithms we never observed



136 Chapter 8

0 10000 20000 30000 40000 50000

gradient update

−100

−90

−80

−70

−60

−50

lo
g

-l
ik

e
lih

o
o

d

aa
b
s

dd
b
s

d0

00

0 10000 20000 30000 40000 50000

gradient update

−100

−90

−80

−70

−60

−50

aa
b
s
(exact means)

Figure 8.2: Average LL during training on the Bars & Stripes data set for the stan-

dard centering methods. (left) When the exact gradient is used, with approximated

offsets and (right) when PT10 is used for estimating the gradient while the mean

values for the offsets are calculated exactly. In both cases a learning rate of η = 0.05

was used.

divergence in combination with PT even for very big learning rates and long training

time.

These observations raise the question whether the divergence problem of the en-

hanced gradient is induced by setting the offsets to 0.5(〈v〉d+〈v〉m) and 0.5(〈h〉d+〈h〉m)

or by bad sampling based estimates of the gradient and the offsets. We therefore trained

centered RBMs with 4 visible and 4 hidden units on the 2x2 Bars & Stripes data set

using either the exact gradient where only the offsets 〈v〉m and 〈h〉m were approxi-

mated by samples or using PT estimates of the gradient while 〈v〉m and 〈h〉m were

calculated exactly.

The results are shown in Figure 8.2. If the true model expectations are used

for the offsets instead of the sample approximations no divergence for aa is observed

when used with PT. Interestingly, the divergence is also prevented if one calculates the

exact gradient while still approximating the offsets by samples. Thus, the divergence

behavior is induced by the combination of the bad approximations of the offsets and

the gradient.

Additionally, the left plot in Figure 8.2 illustrates that centered RBMs outperform

normal binary RBMs also if the exact gradient is used. This emphasizes that the worse

performance of normal binary RBMs is caused by the properties of its gradient rather

than by the gradient approximation.

The results in Table 8.2 demonstrate the flip invariance of the centered RBMs on



How to center binary RBMs 137

Algorithm-η 00 init zero 00 init σ−1

CD-1-0.2 -27.98 ±0.26 (-28.2) -21.49 ±1.34 (-22.5)

CD-1-0.1 -28.28 ±0.00 (-28.4) -21.09 ±0.97 (-21.6)

CD-1-0.05 -28.28 ±0.00 (-28.3) -24.87 ±0.47 (-24.9)

PCD-1-0.2 -28.01 ±0.26 (-28.3) -22.45 ±1.00 (-42.3)

PCD-1-0.1 -28.28 ±0.00 (-28.4) -21.76 ±0.74 (-26.7)

PCD-1-0.05 -28.28 ±0.00 (-28.3) -24.83 ±0.55 (-25.0)

PT10-0.2 -28.01 ±0.27 (-28.2) -21.72 ±1.24 (-23.5)

PT10-0.1 -28.28 ±0.00 (-28.4) -21.14 ±0.85 (-21.8)

PT10-0.05 -28.28 ±0.00 (-28.3) -24.80 ±0.52 (-24.9)

Table 8.3: Average maximum LL for 00 on the Flipped Shifting Bar data set, where

the visible bias is initialized to zero or to the inverse sigmoid of the data mean.

the Shifting Bar data set empirically. While 00 fails to model the flipped version of

the data set correctly ddas , aa
b, d0 have approximately the same performance on the

flipped and unflipped data set.

8.6.2 Initialization

The following set of experiments was done to analyze the effects of the different ini-

tializations of the parameters discussed in Section 8.4. First, we trained normal binary

RBMs (that is 00 ) where the visible bias was initialized to zero or to the inverse sigmoid

of the data mean. In both cases the hidden bias was initialized to zero. Table 8.3 shows

the results for normal binary RBMs trained on the Flipped Shifting Bar data set, where

RBMs with zero initialization failed to learn the distribution accurately. The RBMs

using the inverse sigmoid initialization achieved good performance and therefore seem

to be less sensitive to the “difficult” representation of the data. However, the results

are not as good as the results of the centered RBMs shown in Table 8.2. The same

observations can be made when training RBMs on the MNIST data set (see Table 8.4).

The RBMs with inverse sigmoid initialization achieved significantly better results than

RBMs initialized to zero in the case of PCD and PT, but they are still worse com-

pared to centered RBMs. Furthermore, using the inverse sigmoid initialization allows

to achieve similar performance on the flipped and normal version of the MNIST data

set, while the RBM with zero initialization failed to learn 1-MNIST at all.

Second, we trained models using the centering versions dd, aa, and d0 comparing

the initialization suggested in Section 8.4 against the initialization to zero, where we

observed that the different ways to initialize had little effect on the performance. In

most cases the results show no significant difference in terms of the maximum LL



138 Chapter 8

Algorithm-η 00 init zero 00 init σ−1

CD-1-0.1 -165.91 ±1.90 (-168.4) -167.61 ±1.44 (-168.9)

CD-1-0.05 -167.68 ±1.66 (-169.0) -168.72 ±1.36 (-170.8)

CD-1-0.01 -171.29 ±1.49 (-172.4) -168.29 ±1.54 (-171.1)

PCD-1-0.1 -160.74 ±4.87 (-169.4) -147.56 ±1.17 (-156.3)

PCD-1-0.05 -173.42 ±4.42 (-178.1) -144.20 ±0.97 (-149.7)

PCD-1-0.01 -198.00 ±4.78 (-198.4) -144.06 ±0.47 (-145.0)

PT10-0.01 -148.76 ±1.15 (-153.6) -145.63 ±0.66 (-149.4)

Table 8.4: Average maximum LL 00 on the MNIST data set, where the visible bias

is initialized to zero or to the inverse sigmoid of the data mean.

Algorithm-η ddas init zero ddas init σ−1

CD-1-0.2 -20.34 ±0.74 (-20.6) -20.42 ±0.80 (-20.8)

CD-1-0.1 -20.75 ±0.79 (-20.9) -20.85 ±0.82 (-21.0)

CD-1-0.05 -23.00 ±0.72 (-23.0) -22.63 ±0.66 (-22.6)

PCD-1-0.2 -21.03 ±0.51 (-30.6) -20.97 ±0.65 (-32.3)

PCD-1-0.1 -20.86 ±0.75 (-23.0) -20.72 ±0.50 (-23.1)

PCD-1-0.05 -22.75 ±0.66 (-22.8) -22.30 ±0.64 (-22.4)

PT10-0.2 -20.08 ±0.38 (-20.5) -20.25 ±0.55 (-20.7)

PT10-0.1 -20.56 ±0.69 (-20.7) -20.68 ±0.69 (-20.8)

PT10-0.05 -22.93 ±0.72 (-22.9) -22.39 ±0.65 (-22.4)

Table 8.5: Average maximum LL for ddas on the Flipped Shifting Bar data set, where

the visible bias is initialized to zero or to the inverse sigmoid of the data mean.

reached during training with different initializations or slightly better results were

found when using the inverse sigmoid, which can be explained by the better starting

point yielded by this initialization. See Table 8.5 for the results for ddas on the Bars

& Stripes data set as an example. We used the inverse sigmoid initialization in the

following experiments.

8.6.3 Reparameterization

To investigate the effects of performing the reparameterization before or after the gra-

dient update in the training of centered RBMs (that is, the difference of the algorithm

suggested here and the algorithm suggested by Montavon and Müller (2012)), we an-

alyzed the learning behavior of ddbs and ddas on all data sets. The results for RBMs

trained on the Bars & Stripes data set are given in Table 8.6 (top). No significant



How to center binary RBMs 139

Algorithm-η ddbs ddas

Bars & Stripes

CD-1-0.1 -60.34 ±2.18 -60.41 ±2.08

CD-1-0.05 -60.19 ±1.98 -60.25 ±2.13

CD-1-0.01 -61.23 ±1.49 -61.22 ±1.49

PCD-1-0.1 -54.86 ±1.52 -54.75 ±1.46

PCD-1-0.05 -53.71 ±1.45 -53.60 ±1.48

PCD-1-0.01 -56.68 ±0.74 -56.68 ±0.73

PT10-0.1 -51.25 ±1.09 -51.13 ±0.85

PT10-0.05 -52.06 ±1.38 -51.87 ±1.05

PT10-0.01 -56.72 ±0.77 -56.73 ±0.77

MNIST

CD-1-0.1 -150.60 ±1.55 -150.87 ±1.53

CD-1-0.05 -150.98 ±1.90 -151.21 ±1.89

CD-1-0.01 -152.23 ±1.75 -152.39 ±1.81

PCD-1-0.1 -141.11 ±0.53 -140.89 ±0.61

PCD-1-0.05 -139.95 ±0.47 -140.02 ±0.45

PCD-1-0.01 -140.67 ±0.46 -140.68 ±0.42

PT10-0.01 -141.56 ±0.52 -141.46 ±0.54

Table 8.6: Average maximum LL on (top) the Bars & Stripes data set and (bottom)

the MNIST data set, using the reparameterization before (ddbs) and after (ddas) the

gradient update.

difference between the performance of the two centering versions can be observed. The

same result was obtained for the Shifting Bar and Flipped Shifting Bar data set. The

results for the MNIST data set are shown in Table 8.6 (bottom). Here, no difference

could be observed for PCD and PT, but ddbs performs slightly better than ddas in the

case of CD. Therefore, we reparameterize the RBMs before the gradient update in the

remainder of this work.

8.6.4 Usage of an exponentially moving average

We have analyzed the impact of using an exponentially moving average with a sliding

factor of 0.01 for the estimation of the offset parameters. Figure 8.3 (left) illustrates

on the Bars & Stripes data set that the learning curves of the different models become

almost equivalent when using an exponentially moving average. The maximum LL

values reached are the same whether an exponentially moving average is used or not,



140 Chapter 8

which can also be seen by comparing the results in Table 8.1 and Table 8.2 with those

in Table 8.7.

Interestingly, when training an RBM using PT based on the enhanced gradient,

an exponentially moving average prevents the observed divergence of the LL. As an

example see the learning curves for the Bars & Stripes data set in Figure 8.3 (left)

in comparison to learning curves for training without exponentially moving average in

Figure 8.1 (right). The results can be explained by the more robust approximations of

the offsets induced by the smoothing effect of the exponentially moving average. This

is coherent with the findings described in Section 8.6.2 where we have observed that

the divergence is prevented when using the true expectations.

In the previous experiments dd was used with an exponentially moving average as

suggested for this centering variant by Montavon and Müller (2012). Note however,

that in batch learning when 〈v〉d is used as visible offset this value stays constant such

that an exponentially moving average has no effect. More generally, if the training

data and thus 〈v〉d is known in advance the visible offset should be fixed to this value

independent of whether batch, mini-batch or online learning is used. However, the use

of an exponentially moving average for approximating 〈v〉d is reasonable if the training
data is not known in advance, as well as for the approximation of the mean 〈h〉d of the

hidden representation.

In our experiments, dd does not suffer from the divergence problem when PT is used

for sampling, even without exponentially moving average, as can be seen in Fig-

ure 8.3 (right) for example. We did not even observe the divergence without a moving

average in the case of mini-batch learning. Thus, dd seems to be generally more stable

than the other centering variants.

8.6.5 Other choices for the offsets

As discussed in Section 8.3, any offset value between 0 and 1 guarantees the flip in-

variance property as long as it flips simultaneously with the data. An intuitive and

constant choice is to set the offsets to 0.5, which has also been proposed by Ollivier et al.

(2013) to yield a symmetric variant of the energy of RBMs. This leads to comparable

LL values on flipped and unflipped data sets. However, if the data set is unbalanced in

the amount of zeros and ones like MNIST, the performances is always worse compared

to that of a normal RBM on the version of the data set having less ones than zeros.

Therefore, fixing the offset values to 0.5 cannot be considered as an alternative for

centering using expectation values over the data or model distribution.

In Section 8.3 we mentioned the existence of alternative offset parameters which

lead to the same updates for the weights as the enhanced gradient. Setting µ = 〈v〉d
and λ = 〈h〉m seems reasonable since the data mean is usually known in advance.



How to center binary RBMs 141

Algorithm-η aab
s ddbs dmb

s

Bars & Stripes

CD-1-0.1 -60.09 ±2.02 (-69.6) -60.34 ±2.18 (-69.9) -60.35 ±1.99 (-68.8)

CD-1-0.05 -60.31 ±2.10 (-64.2) -60.19 ±1.98 (-63.6) -60.25 ±2.13 (-64.2)

CD-1-0.01 -61.22 ±1.50 (-61.3) -61.23 ±1.49 (-61.3) -61.23 ±1.49 (-61.3)

PCD-1-0.1 -54.78 ±1.63 (-211.7) -54.86 ±1.52 (-101.0) -54.92 ±1.49 (-177.3)

PCD-1-0.05 -53.81 ±1.58 (-89.9) -53.71 ±1.45 (-67.7) -53.88 ±1.54 (-83.3)

PCD-1-0.01 -56.48 ±0.74 (-56.7) -56.68 ±0.74 (-56.9) -56.47 ±0.74 (-56.6)

PT10-0.1 -51.20 ±1.11 (-52.4) -51.25 ±1.09 (-52.3) -51.10 ±1.02 (-52.5)

PT10-0.05 -51.99 ±1.39 (-52.6) -52.06 ±1.38 (-52.6) -51.82 ±1.05 (-52.4)

PT10-0.01 -56.65 ±0.77 (-56.7) -56.72 ±0.77 (-56.7) -56.67 ±0.77 (-56.7)

Flipped

Shifting Bar

CD-1-0.2 -20.36 ±0.74 (-20.7) -20.32 ±0.69 (-20.6) -20.32 ±0.70 (-20.6)

CD-1-0.1 -20.80 ±0.76 (-20.9) -20.86 ±0.81 (-21.0) -20.69 ±0.76 (-20.8)

CD-1-0.05 -22.58 ±0.64 (-22.6) -22.64 ±0.69 (-22.7) -22.94 ±0.73 (-23.0)

PCD-1-0.2 -21.00 ±0.65 (-41.5) -20.96 ±0.49 (-31.0) -21.00 ±0.68 (-38.3)

PCD-1-0.1 -20.75 ±0.53 (-23.4) -20.76 ±0.53 (-22.8) -20.88 ±0.70 (-23.2)

PCD-1-0.05 -22.28 ±0.68 (-22.3) -22.29 ±0.64 (-22.3) -22.68 ±0.65 (-22.7)

PT10-0.2 -20.14 ±0.45 (-20.7) -20.31 ±0.61 (-20.7) -20.07 ±0.38 (-20.5)

PT10-0.1 -20.42 ±0.51 (-20.7) -20.46 ±0.56 (-20.6) -20.60 ±0.72 (-20.8)

PT10-0.05 -22.36 ±0.64 (-22.4) -22.39 ±0.69 (-22.4) -22.86 ±0.70 (-22.9)

MNIST

CD-1-0.1 -150.61 ±1.52 (-153.8) -150.60 ±1.55 (-153.9) -150.50 ±1.48 (-153.6)

CD-1-0.05 -151.11 ±1.55 (-153.2) -150.98 ±1.90 (-153.8) -150.80 ±1.92 (-153.5)

CD-1-0.01 -152.83 ±2.42 (-153.3) -152.23 ±1.75 (-152.6) -152.17 ±1.72 (-152.5)

PCD-1-0.1 -141.10 ±0.64 (-145.4) -141.11 ±0.53 (-145.7) -140.99 ±0.56 (-144.8)

PCD-1-0.05 -140.01 ±0.58 (-142.9) -139.95 ±0.47 (-142.6) -139.94 ±0.46 (-142.7)

PCD-1-0.01 -140.85 ±0.47 (-141.6) -140.67 ±0.46 (-141.4) -140.72 ±0.39 (-141.5)

PT10-0.01 -142.32 ±0.47 (-145.7) -141.56 ±0.52 (-143.3) -142.18 ±0.45 (-146.0)

Table 8.7: Average maximum LL on (top) Bars & Stripes, (middel) Flipped Shifting

Bar, and (bottom) MNIST when using an exponentially moving average with an

sliding factor of 0.01.



142 Chapter 8

0 10000 20000 30000 40000 50000

gradient update

−100

−90

−80

−70

−60

−50

lo
g

-l
ik

e
lih

o
o

d

aa
b
s

dd
b
s

dm
b
s

0 10000 20000 30000 40000 50000

gradient update

−100

−90

−80

−70

−60

−50

dd
b
s

dm
b
s

Figure 8.3: Average LL during training on Bars & Stripes with the different cen-

tering variants, using PT10, and a learning rate of η = 0.05. (left) When an expo-

nentially moving average with sliding factor of 0.01 was used (where the curves are

almost equivalent) and (right) when no exponentially moving average was used.

Following the same notation as above, we refer to centering with this choice of offsets

as dm. We trained RBMs with dmb
s using a sliding factor of 0.01. The results are

shown in Table 8.7 and suggest that there is no significant difference between dmb
s,

aabs, and ddbs. However, without an exponentially moving average dmb has the same

divergence problems during training with PTc as aa
b, as shown in Figure 8.3 (right).

We further tried variants like mm, md, 0d, m0 etc. but did not find better perfor-

mance than that of dd for any of these choices. The variants that subtract an offset

from both the visible and the hidden variables always outperformed the variants that

subtract an offset only from one type of variables. When the model expectation was

used without a exponentially moving average either for µ or λ, or for both offsets we

always observed the divergence problem.

8.6.6 Experiments with big RBMs

In the previous experiments we trained small models in order to be able to run many

experiments and to evaluate the LL exactly. We now want to show that the results

observed for the toy problems and for MNIST with RBMs with 16 hidden units carry

over to more realistic settings. We therefore trained RBMs with 500 hidden units with

00, d0, ddbs, or aa
b
s on MNIST using the training setup described in Section 8.5.2.

Figure 8.4 shows the average LL over 25 trials for PCD-1 and PT20 for the different

centering versions, where the LL was estimated every 10th epoch using AIS. Both

variants ddbs and aa
b
s reach significantly higher LL values than 00 and d0. The standard



How to center binary RBMs 143

0 20000 40000 60000 80000 100000 120000

gradient update

−140

−130

−120

−110

−100

−90

−80

−70

lo
g

-l
ik

e
lih

o
o

d

aa
b
s

dd
b
s

d0

00

0 20000 40000 60000 80000 100000 120000

gradient update

−140

−130

−120

−110

−100

−90

−80

−70

aa
b
s

dd
b
s

d0

00

Figure 8.4: Average LL during training on MNIST with the different centering

variants with 500 hidden units, using a learning rate of η = 0.01, and a sliding factor

of 0.01. (left) When using PCD1 and (right) when using PT20 for sampling. The

error bars indicate the standard deviation of the LL over the 25 trials.

deviation over the 25 trials indicated by the error bars is smaller for ddbs and aa
b
s than

for 00 and d0, especially when PT20 is used for sampling. Furthermore, 00 and d0

show divergence already after 30.000 gradient updates when PCD-1 is used, while no

divergence can be observed for ddbs and aabs after 120.000 gradient updates.

To our knowledge, the best reported performance of an RBM with 500 hidden units

trained carefully on MNIST was an average LL per sample of -84 (Salakhutdinov, 2008;

Salakhutdinov and Murray, 2008; Tang and Sutskever, 2011; Cho et al., 2013b).2 In

our experience, choosing the correct training setup and using additional modifications

of the update rule like a momentum term, weight decay, and an annealing learning

rate is essential to reach this LL value with normal binary RBMs. However, in order

to get an unbiased comparison of the different centering versions, we did not use any

additional modification of the update rule. This explains why 00 reaches only a lower

LL per sample in our experiments. d0 however, reaches a value of -84 when PT is used

for sampling, and ddbs and aa
b
s reach even higher values around -80 with PCD-1 and -75

with PT20. Consistent with the results on small models, the results for bigger RBMS

reflect the superiority of ddbs and aa
b
s over d0 and 00. This supports our statement that

centering visible and hidden units in RBMs is important for yielding good models.

One explanation why centering works has been provided by Montavon and Müller

2Note, that the binarization of MNIST is often done by treating the gray values (normalized to

values in [0, 1]) as probabilities and sampling the binary values accordingly. Furthermore, RBMs may

also be trained on the gray values directly. This makes the likelihood values reported for MNIST

experiments difficult to compare across studies.



144 Chapter 8

0 50 100 150 200

gradient update

0

1

2

3

4

5

6

7

a
ve

ra
g

e
n

o
rm

o
f

th
e

w
e

ig
h

t
m

a
tr

ix
c
o

lu
m

s

aa
b
s

dd
b
s

d0

00

0 50 100 150 200

gradient update

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

a
ve

ra
g

e
n

o
rm

o
f
th

e
w

e
ig

h
t
m

a
tr

ix
ro

w
s

aa
b
s

dd
b
s

d0

00

0 50 100 150 200

gradient update

60

80

100

120

140

160

180

a
ve

ra
g

e
n

o
rm

o
f
th

e
v
is

ib
le

b
ia

s

aa
b
s

dd
b
s

d0

00

0 50 100 150 200

gradient update

0

20

40

60

80

100

120

a
ve

ra
g

e
n

o
rm

o
f
th

e
h

id
d

e
n

b
ia

s

aa
b
s

dd
b
s

d0

00

Figure 8.5: Evolution of the average Euclidean norm of the parameters of the RBMs

with 500 hidden units trained on MNIST, for (top, left) the weight matrix columns,

(top, right) the weight matrix rows, (bottom, left) the visible bias, (bottom, right)

and for the hidden bias.

(2012), who found that centering leads to an initially better conditioned optimization

problem. Furthermore, Cho et al. (2011) has shown that when the enhanced gradient

is used the update directions for the weights are less correlated than when the standard

gradient is used, which allows one to learn more meaningful features.

From our analysis in Section 8.3 we know that centered RBMs and normal RBMs

belong to the same model class and therefore the reason why centered RBMs outper-

form normal RBMs can indeed only be due to the optimization procedure. Further-

more, one has to keep in mind that in centered RBMs the variables mean values are

explicitly stored in the corresponding offset parameters, or if the centered gradient is

used for training normal RBMs the mean values are transferred to the corresponding

bias parameters. This allows the weights to model second and higher order statistics



How to center binary RBMs 145

right from the start, which is in contrast to normal binary RBMs where weights usually

capture parts of the mean values. To support this statement empirically, we calculated

the average weight and bias norms during training of the RBMs with 500 hidden units

on MNIST using the standard and the centered gradient. The results are shown in

Figure 8.5, where it can be seen that the row and column norms of the weight matrix

for ddbs, aa
b
s, and d0 are consistently smaller than for 00. At the same time the bias

values for ddbs, aa
b
s, and d0 are much bigger than for 00, indicating that the weight

vectors of 00 model information that could potentially be modeled by the bias values.

Interestingly, the curves for all parameters of ddbs and aabs show the same logarithmic

shape, while for d0, 00 the visible bias norm does not change significantly. It seems

that the bias values did not adapt properly during training. Comparing, d0 with ddbs

and aabs, the weight norms are slightly bigger and the visible bias is much smaller for

d0, indicating that it is not sufficient to center only the visible variables and that visible

and hidden bias influence each other. The dependence of the hidden mean and visible

bias can also be seen from equation (8.8) where the transformation of the visible bias

depends on the offset of the hidden variables.

8.6.7 Comparision to the natural gradient

The results of the previous section indicate that one explanation for the better perfor-

mance of the centered gradient compared to the standard gradient is the decoupling of

the bias and weight parameters. As described in Section 8.2.2 the natural gradient is

independent of the parameterization of the distribution. Thus, it is also independent of

which parameters store the mean information and should not suffer from the described

bias-weight coupling problem. That is why we expect the direction of the centered

gradient to be closer to the direction of the natural gradient than the direction of the

standard gradient.

To verify this hypothesis empirically, we trained small RBMs with 4 visible and

4 hidden units using the exact natural gradient on the 2x2 Bars & Stripes data set.

After each gradient update the different exact gradients were calculated and the angle

between the centered and the natural gradient as well as the angle between the standard

and the natural gradient were evaluated. The results are shown in Figure 8.6 where the

top left plot shows the evolution of the average LL when the exact natural gradient is

used for training with different learning rates. The right plot shows the average angles

between the different gradients during training when the natural gradient is used for

training with a learning rate of 0.1. The angle between centered and natural gradient

is consistently much smaller than the angle between standard and natural gradient.

Comparable result can also be observed for the Shifting & Bars data set and when the

standard, or centered gradient is used for training.



146 Chapter 8

Notice, how fast the natural gradient reaches a value very close to the theoretical

LL upper bound of −13.86 even for a learning rate of 0.1. This verifies empirically the

theoretical statement that the natural gradient is clearly the update direction of choice,

which should be used if it is tractable. To further emphasize how quick the natural

gradient converges, we compared the average LL evolution of the standard, centered

and natural gradient, as shown in Figure 8.6 (bottom). Although much slower than

the natural gradient, the centered gradient reaches the theoretical upper bound of the

LL. The standard gradient seems to saturate on a much smaller value, showing again

the inferiority of the standard gradient even if it is calculated exactly and not only

approximated.

The results support our assumption that the centered gradient is closer to the

natural gradient and is therefore preferable over the standard gradient.

8.7 Conclusion

This work discusses centered binary RBMs, where centering corresponds to subtracting

offset parameters from visible and hidden variables. Our theoretical analysis yielded

the following results

1. Centered RBMs and normal RBMs are different parameterizations of the same

model class.

2. Training a centered RBM can be reformulated to training a normal binary RBM

with a new parameter update, which we refer to as centered gradient.

3. From this new formulation follows that the enhanced gradient is just a particular

form of centering. That is, the centered gradient becomes equivalent to the

enhanced gradient by setting the visible and hidden offsets to the average over

model and data mean of the corresponding variable.

4. The LL gradient of centered RBMs is invariant under simultaneous flip of vari-

ables and offsets, for any offset value in the range of zero to one. This leads

to a desired invariance to changes of the data representation of the generative

performance of the model.

Due to the structural similarity these results also extend to DBMs.

Our empirical analysis yielded the following results

5. Centered RBMs reach significantly higher LL values than normal binary RBMs.

As an example, centered RBMs with 500 hidden units achieved an average test

LL of -76 on MNIST compared to a reported value of -84 for carefully trained



How to center binary RBMs 147

0 50 100 150 200

gradient update

−22

−20

−18

−16

−14

lo
g

-l
ik

e
lih

o
o

d

natural gradient, η = 1.0

natural gradient, η = 0.5

natural gradient, η = 0.1

0 50 100 150 200

gradient update

0

10

20

30

40

50

60

70

80

90

a
v
e

ra
g

e
a

n
g

le
to

th
e

n
a

tu
ra

l
g
ra

d
ie

n
t

standard gradient, η = 0.1

centered gradient (ddb), η = 0.1

0 10000 20000 30000 40000 50000

gradient update

−22

−20

−18

−16

−14

lo
g

-l
ik

e
lih

o
o

d

natural gradient, η = 0.1

standard gradient, η = 0.1

centered gradient (ddb), η = 0.1

Figure 8.6: Comparison of the centered gradient, standard gradient, and natural

gradient for RBMs with 4 visible and 4 hidden units trained on Bars & Stripes 2x2.

(top, left) The average LL evolution over 25 trials when the natural gradient is used

for training with different learning rates, (top, right) the average angle over 25 trials

between the natural and standard gradient as well as natural and centered gradient

when a learning rate of 0.1 is used, and (bottom) average LL evolution over 25 trials

when either the natural gradient, standard gradient or centered gradient is used for

training.

normal binary RBMs (Salakhutdinov, 2008; Salakhutdinov and Murray, 2008;

Tang and Sutskever, 2011; Cho et al., 2013b).

6. Initializing the bias parameters such that the RBM is initially centered can al-

ready improve the performance of a normal binary RBM. However, this initializa-

tion leads to a performance still worse compared to the performance of a centered

RBM and thus it is not an alternative to centering.

7. Optimal performance of centered RBMs is achieved when both, visible and hidden



148 Chapter 8

variables are centered and the offsets are set to their expectations under the data

or model distribution.

8. Using the expectation under the model distribution (as for the enhanced gradient

for example) can lead to a severe divergence of the LL when PTc is used for

sampling.

9. This can be prevented when an exponentially moving average for the approxima-

tions of the offset values is used.

10. Training centered RBMs leads to smaller weight norms and larger bias norms

compared to normal binary RBMs. This supports the hypothesis that when

using the standard gradient the mean value is modeled by both weights and

biases, while when using the centered gradient the mean values are explicitly

modeled by the bias parameters.

11. The direction of the centered gradient is closer to the natural gradient than that

of the standard gradient.

All results clearly support the superiority of centered RBMs.

Thus, our work shows that binary RBMs should always be centered and that the

expectation under the data distribution is a proper choice for visible and hidden offsets.

8.8 Appendix

Proof of invariance for the centered RBM gradient

In the following we show that the gradient of centered RBMs is invariant to flips of the

variables if the corresponding offset parameters flip as well. Since training a centered

RBM is equivalent to training a normal binary RBM using the centered gradient (see

the proof below), the proof also holds for the centered gradient.

We begin by formalizing the invariance property in the following definitions.

Definition 8.1. Let there be an RBM with visible variables V = (V1, . . . , Vm) and

hidden variables H = (H1, . . . , Hn). The variables Vi and Hj are called flipped if they

take the values ṽi = 1− vi and h̃j = 1− hj for any given states vi and hj.

Definition 8.2. Let there be a binary RBM with parameters θ and energy E and

another binary RBM with parameters θ̃ and energy Ẽ where some of the variables are

flipped, such that

E(v,h) = Ẽ(ṽ, h̃) , (8.14)



How to center binary RBMs 149

for all possible states (v,h) and corresponding flipped states (ṽ, h̃), where ṽi = 1− vi,
h̃j = 1 − hj, if Vi and Hj are flipped, and ṽi = vi, h̃j = hj, otherwise. The gradient

∇θ is called flip-invariant or invariant to the flips of the variables if (8.14)

still holds after updating θ and θ̃ to θ+η∇θ and θ̃+η∇θ̃, respectively, for an arbitrary

learning rate η.

We can now state the following theorem.

Theorem 8.1. The gradient of centered RBMs is invariant to flips of arbitrary vari-

ables Vi1 , . . . Vir and Hj1 , . . . Hjs with {i1, . . . , ir} ⊂ {1, . . . ,m} and {j1, . . . , js} ⊂
{1, . . . , n} if the corresponding offset parameters µi1 , . . . µir and λj1 , . . . λjs flip as well,

that is if ṽi = 1− vi implies µ̃i = 1− µi and h̃j = 1− hj implies λ̃j = 1− λj .

Proof. Let there be a centered RBM with parameters θ and energy E and another

centered RBM where some of the variables are flipped with parameters θ̃ and energy

Ẽ, such that E(v,h) = Ẽ(ṽ, h̃) for any (v,h) and corresponding (ṽ, h̃). W.l.o.g. it is

sufficient to show the invariance of the gradient when flipping only one visible variable

Vi, one hidden variable Hj , or both of them, since each derivative with respect to a

single parameter can only be affected by the flips of at most one hidden and one visible

variable, which follows from the bipartite structure of the model.

We start by investigating how the energy changes when the variables are flipped.

For this purpose we rewrite the energy in Equation (8.1) in summation notation given

by

E (v,h)
(8.1)
= −

∑

i

(vi − µi) bi −
∑

j

(hj − λj) cj −
∑

ij

(vi − µi)wij (hj − λj) . (8.15)

To indicate a variable flip we introduce the binary parameter fi that takes the

value 1 if the corresponding variable Vi and the corresponding offset µi are flipped and

0 otherwise. Similarly, fj = 1 if Hj and λj are flipped and fj = 0 otherwise. Now

we use Efi=1∧fj=1 to denote the terms of the energy (8.15) that are affected by a flip

of the variables Vi and Hj . Analogously, Efi=1∧fj=0 and Efi=0∧fj=1 denote the terms

affected by a flip of either Vi or Hj respectively. For flipped values ṽi, h̃j these terms



150 Chapter 8

get

Efi=1∧fj=1 (8.15)
= −(ṽi − µ̃i)bi − (ṽi − µ̃i)

∑

k 6=j

wik(hk − λk)

−(h̃j − λ̃j)cj − (h̃j − λ̃j)
∑

u6=i

wuj(vu − µu)

−(ṽi − µ̃i)wij(h̃j − λ̃j)
= −((1− vi)− (1− µi))bi − ((1− vi)− (1− µi))

∑

k 6=j

wik(hk − λk)

−((1− hj)− (1− λj))cj − ((1− hj)− (1− λj))
∑

u6=i

wuj(vu − µu)

−((1− vi)− (1− µi))wij((1− hj)− (1− λj))
= (vi − µi)bi + (vi − µi)

∑

k 6=j

wik(hk − λk)

(hj − λj)cj + (hj − λj)
∑

u6=i

wuj(vu − µu)

−(vi − µi)wij(hj − λj) ,

and analogously

Efi=1∧fj=0 (8.15)
= − (ṽi − µ̃i) bi − (ṽi − µ̃i)

∑

j

wij (hj − λj)

= (vi − µi) bi + (vi − µi)
∑

j

wij (hj − λj) ,

and

Efi=0∧fj=1 (8.15)
= (hj − λj) cj + (hj − λj)

∑

i

wij (vi − µi) .

From the facts that the terms differ from the corresponding terms in (8.15) only

in the sign and that E(v,h) = Ẽ(ṽ, h̃) holds for any (v,h) and corresponding (ṽ, h̃),

it follows that the parameters θ̃ must be given by

w̃
fi∧fj
ij = (−1)fi+fjwij , (8.16)

b̃
fi∧fj
i = (−1)fibi , (8.17)

c̃
fi∧fj
j = (−1)fj cj , (8.18)

µ̃
fi∧fj
i = µi ,

λ̃
fi∧fj
j = λj .

The LL gradient for the model without flips is given by Equations (8.4) - (8.6). We

now consider the LL gradients for the three possible flipped versions. If Vi and Hj are



How to center binary RBMs 151

flipped the derivatives w.r.t. wij , bi,, and cj are given by

∇w̃fi=1∧fj=1
ij = 〈(1− vi − (1− µi))(1− hj − (1− λj))〉d

−〈(1− vi − (1− µi))(1− hj − (1− λj))〉m
= 〈(−vi + µi)(−hj + λj)〉d − 〈(−vi + µi)(−hj + λj)〉m
= 〈(vi − µi)(hj − λj)〉d − 〈(vi − µi)(hj − λj)〉m
= (−1)1+1∇wij ,

∇b̃fi=1∧fj=1
i = 〈1− vi − (1− µi)〉d − 〈1− vi − (1− µi)〉m

= −〈vi〉d + µi + 〈vi〉m − µi
= (−1)1∇bi ,

∇c̃fi=1∧fj=1
j = 〈1− hj − (1− λj)〉d − 〈1− hj − (1− λj)〉m

= −〈hj〉d + λj + 〈hj〉m − λj
= (−1)1∇cj .

If Vi is flipped they are given by

∇w̃fi=1∧fj=0
ij = 〈(1− vi − (1− µi))(hj − λj)〉d

−〈(1− vi − (1− µi))(hj − λj)〉m
= 〈(−vi + µi)(hj − λj)〉d − 〈(−vi + µi)(hj − λj)〉m
= − (〈(vi − µi)(hj − λj)〉d − 〈(vi − µi)(hj − λj)〉m)

= (−1)1+0∇wij ,
∇b̃fi=1∧fj=0

i = ∇b̃fi=1∧fj=1
i

= (−1)1∇bi ,
∇c̃fi=1∧fj=0

j = ∇c̃fi=0∧fj=0
i

= (−1)0∇cj ,

and due to the symmetry of the model the derivatives if Hj is flipped are given by

∇w̃fi=0∧fj=1
ij = (−1)0+1∇wij ,

∇b̃fi=0∧fj=1
i = (−1)0∇bi ,

∇c̃fi=0∧fj=1
j = (−1)1∇cj .

Comparing the results with Equations (8.16) - (8.18) shows that the gradient underlies

the same sign changes under variable flips as the parameters. Thus, it holds for the

updated parameters that

w̃
fi∧fj
ij + η∇w̃fi∧fjij

(8.16)
= (−1)fi+fj (wij + η∇wij) ,

b̃
fi∧fj
i + η∇b̃fi∧fji

(8.17)
= (−1)fi+fj (bi + η∇bi) ,

c̃
fi∧fj
j + η∇c̃fi∧fjj

(8.18)
= (−1)fi+fj (cj + η∇cj) ,



152 Chapter 8

showing that E(v,h) = Ẽ(ṽ, h̃) is still guaranteed and thus that the gradient of cen-

tered RBMs is flip-invariant according to Definition 8.2.

Theorem 8.1 holds for any value from zero to one for µi and λj , if it is guaran-

teed that the offsets flip simultaneously with the corresponding variables. In practice

one wants the model to perform equivalently on any flipped version of the data set

without knowing which version is presented. This holds if we set the offsets to the

expectation value of the corresponding variables under any distribution, since when

µi =
∑

vi
p (vi) vi, flipping Vi leads to µ̃i =

∑

vi
p (vi) (1− vi) = 1 −∑vi

p (vi) vi =

1− µi and similary for λj , hj .

Due to the structural similarity this proof also holds for DBMs, where we replace

v by the state hl of the variables in the lth hidden layer and h by the state hl+1 of the

variables in the l+1th hidden layer to prove the invariance property for the derivatives

of the parameters connected to layer l and l + 1.

Derivation of the centered gradient

In the following we show that the gradient of centered RBMs can be reformulated as

an alternative update for the parameters of a normal binary RBM, which we name

“centered gradient”.

A normal binary RBM with energy E(v,h) = −vTb − cTh − vTWh can be

transformed into a centered RBM with energy Ẽ(v,h) = − (v − µ)
T
b̃− c̃T (h− λ)−

(v − µ)
T
W̃ (h− λ) by the following parameter transformation

W̃
(8.7)
= W , (8.19)

b̃
(8.8)
= b+Wλ , (8.20)

c̃
(8.9)
= c+WTµ , (8.21)

which guarantees that E(v,h) = Ẽ(v,h) + const for all (v,h) ∈ {0, 1}n+m and thus

that the modeled distribution stays the same.

Updating the parameters of the centered RBM according to Eq. (8.4) – (8.6) with

a learning rate η leads to an updated set of parameters W̃u, b̃u, c̃u given by

W̃u
(8.4)
= W̃ + η(〈(v − µ)(h− λ)T 〉d − 〈(v − µ)(h− λ)T 〉m) , (8.22)

b̃u
(8.5)
= b̃+ η(〈v〉d − 〈v〉m) , (8.23)

c̃u
(8.6)
= c̃+ η(〈h〉d − 〈h〉m) . (8.24)

One can now transform the updated centered RBM back to a normal RBM by apply-

ing the inverse transformation to the updated parameters, which finally leads to the



How to center binary RBMs 153

centered gradient.

Wu
(8.19)
= W̃u

(8.19),(8.22)
= W + η (〈(v − µ)(h− λ)T 〉d)− 〈(v − µ)(h− λ)T 〉m)

︸ ︷︷ ︸

(8.10)
= ∇cW

, (8.25)

bu
(8.20)
= b̃u −Wuλ

(8.23),(8.25)
= b̃+ η(〈v〉d − 〈v〉m)− (W + η∇cW)λ

(8.20)
= b+Wλ+ η(〈v〉d − 〈v〉m)−Wλ− η∇cWλ

= b+ η (〈v〉d − 〈v〉m −∇cWλ)
︸ ︷︷ ︸

(8.11)
= ∇cb

, (8.26)

cu
(8.21)
= c̃u −WT

uµ

(8.24),(8.25)
= c̃+ η(〈h〉d − 〈h〉m)− (W + η∇cW)µ

(8.21)
= c+Wµ+ η(〈h〉d − 〈h〉m)−Wµ− η∇cWµ

= c+ η (〈h〉d − 〈h〉m −∇cWµ)
︸ ︷︷ ︸

(8.12)
= ∇cc

. (8.27)

The braces in Equation (8.25) - (8.27) mark the centered gradient given by Equa-

tions (8.10) - (8.12).





Chapter 9

On Bennett’s acceptance ratio for

estimating the partition function of

RBMs

This chapter is based on the manuscript “On bennett’s acceptance ratio for estimating

the partition function of restricted Boltzmann machines” by O. Krause, A. Fischer and

C. Igel, submitted.

Abstract

The normalization constant of a Restricted Boltzmann Machine (RBM) can be esti-

mated using Annealed Importance Sampling (AIS). Given enough computation time

and intermediate distributions to sample from, the estimate is reliable and has low

variance. Still, AIS requires a large amount of samples and shows large variance when

the bridging distributions are too far apart, which makes AIS impractical for, among

others, monitoring training progress. We therefore explore alternative techniques from

statistical physics for estimating the partition function of RBMs. A unifying frame-

work for deriving these methods including AIS is presented. When applied to RBMs, a

technique known as Bennett’s Acceptance Ratio method, which has been suggested in

the context of RBMs in a previous study, gives superior results and outperforms AIS,

especially when only a small number of bridging chains are employed.



156 Chapter 9

9.1 Introduction

Estimating the normalization constant or partition function of an energy-based prob-

abilistic model (i.e., undirected graphical model or Markov random field) is typically

a challenging task, because analytical integration is not possible and numerical in-

tegration infeasible. This study focuses on Restricted Boltzmann Machines (RBMs,

Smolensky, 1986; Hinton, 2002) as a particular class of Markov random fields. The

normalization constant is required for computing the (logarithmic) likelihood of the

RBM model parameters, which is to be maximized by RBM learning algorithms. This

makes it difficult to assess the performance of trained RBMs, to monitor the training

process, or to perform likelihood ratio tests.

Annealed Importance Sampling (AIS, Neal, 2001) as well as variants of Bennett’s

Acceptance Ratio (BAR, Bennett, 1976) also known as bridge sampling (Meng and

Wong, 1996) are statistical tools for estimating the fraction of the normalization con-

stants of two distributions pref and ptarget. These techniques introduce bridging distri-

butions connecting pref and ptarget. If used to estimate the normalization constant of

ptarget (e.g., represented by an RBM), pref is chosen such that its normalization con-

stant is known. The performance and limitations of AIS for estimating the partition

functions of RBMs are well known (Salakhutdinov and Murray, 2008; Schulz et al.,

2010). In contrast, to our knowledge there is only one study applying BAR in the

context of RBMs: Desjardins et al. (2011) employed BAR in combination with an

importance sampling based estimator using samples from previous learning iterations

and a Kalman filter like inference procedure. They showed that the resulting – rather

complex – estimation procedure can be used to accurately track the partition function

during training while producing only little computational overhead. However, the con-

tributions of the individual parts of the proposed algorithm on the performance have

remained largely unknown.

In the following, we compare AIS to BAR on a theoretical and empirical level.

We introduce a unifying framework from which variants of AIS and BAR can be de-

rived as special instances. Our result is based on a generalization of Crooks’ equality

obtained in statistical physics (Crooks, 2000). We show that estimators for the frac-

tion of the normalisation constant fall into two categories: the ones requiring unbiased

samples from only one distribution, and the others requiring unbiased samples from

both distributions, pref and ptarget. Using the former category, which includes AIS, is

unproblematic because it is usually easy to define pref to be a known distribution from

which unbiased samples can easily be acquired. Getting unbiased samples from both

distributions makes it possible to reduce the variance of the estimator. As a special

case of this category, BAR was shown to be the maximum likelihood estimator (Shirts

et al., 2003). The need for unbiased samples from the target distribution makes using



On Bennett’s acceptance ratio for estimating the partition function of RBMs 157

these estimators challenging, but we will show the benefits in comparison to AIS.

A possible source of unbiased samples from pref as well as ptarget is Parallel Temper-

ing (PT, Desjardins et al., 2010b), which is often used for sampling in RBM training.

Parallel Tempering introduces parallel Markov chains to foster faster mixing, which

leads to increasing sample quality in all chains. One can directly take the samples

from the parallel chains used for RBM training as samples from the bridging distri-

butions of the estimator, which allows for efficient normalization constant estimation

(see, e.g., Desjardins et al., 2011).

The next section introduces RBMs as well as PT. Crooks’ equality is derived in

section three and then used to derive generalized versions of AIS and BAR. Section 4

presents an empirical comparison of a set of estimators of the normalization constant,

which follow from the theoretical analysis. The results are discussed in section 5 and

section 6 gives the conclusions.

9.2 Restricted Boltzmann machines and parallel

tempering

An RBM is an undirected graphical model with a bipartite structure (Smolensky,

1986; Hinton, 2002). The standard binary RBM consists of m visible variables V =

(V1, . . . Vm) taking states v ∈ {0, 1}m and n hidden variables H = (H1, . . . Hn) taking

states h ∈ {0, 1}n. The joint distribution is a Gibbs distribution p(v,h) = 1
Z e

−E(v,h)

with energy E(v,h) = −vTWh − vT b − cTh, where W , b, c are the weight matrix

and the visible and hidden bias vectors, respectively. The normalization constant

Z =
∑

v

∑

h e
−E(v,h) (also referred to as partition function) is typically unknown,

because it is calculated by summing over all possible states of hidden and visible units,

which is exponential in min{n,m}.
It is not possible to sample from the Gibbs distribution of an RBM directly, instead

Markov chain Monte Carlo methods are applied. The most common sampling technique

is block Gibbs sampling, where a Markov chain (X(t))t≥0 with X(t) = (V (t),H(t))

starting from an arbitrary state x(0) = (v(0),h(0)) is generated using the transi-

tion operator T ((v(t),h(t)) → (v(t+1),h(t+1))) = p(v(t+1)|h(t+1))p(h(t+1)|v(t)). With

t → ∞ the distribution of x(t) approaches p(v,h), but getting close to the stationary

distribution usually requires a lot of iterations as the samples produced by block Gibbs

sampling are often strongly correlated. The speed with which the chain approaches

the stationary distribution is called the mixing rate.

The arguably most promising sampling technique used for RBM training so far is

PT (Desjardins et al., 2010b). It introduces supplementary Gibbs chains that sample

form more and more smoothed replicas of the RBM distribution. Given a ordered



158 Chapter 9

set of inverse temperatures 0 < β0 < βi < · · · < βN = 1, PT maintains a set of

N Markov chains with stationary distributions pi(v,h) =
1
Zi
e−βiE(v,h), i = 0, . . . , N ,

where Zi denotes the corresponding partition function. In each step, the algorithm

runs k (usually k = 1) Gibbs sampling steps in each of the N tempered Markov chains

yielding samples (v1,h1), ..., (vN ,hN ). After this, two neighbouring Gibbs chains with

inverse temperatures βi and βi+1 may exchange samples (vi,hi) and (vi+1,hi+1) with

an exchange probability based on the Metropolis ratio

min

(

1,
pi
(
vi+1,hi+1

)
pi+1

(
vi,hi

)

pi
(
vi,hi

)
pi+1

(
vi+1,hi+1

)

)

. (9.1)

After performing this swaps between chains, the (eventually exchanged) sample (v1,h1)

of the chain with inverse temperature βN = 1 is taken as a sample from the model

distribution.

9.3 Optimal estimators of the normalisation con-

stant for a given sampler

This section introduces an unifying framework for estimating normalization constants

of Markov random fields. Then different estimators are derived in the subsections.

Let pref = p0, p1, . . . , pN = ptarget be a set of Gibbs distributions over some

state space Ω with pi : Ω → R, pi(x) = 1
Zi
e−Ei(x) = 1

Zi
p∗i (x). Our goal is to es-

timate ZN/Z0.
1 Let us now consider a random variable X = (X0, XN ,Y ) taking

values x = (x0, xN ,y) in an extended state space Ω∗ = Ω2 × Θ, where Y taking

values in the state space Θ is a placeholder for any set of additional variables an

actual estimation method may require. Assume that we can use the set of Gibbs

distributions p0, p1, . . . , pN to construct a pair of distributions P and P̃ on Ω∗ with

P[x] = P[y, xN |x0]p0(x0) and P̃[x] = P̃[y, x0|xN ]pN (xN ). We will call P the forward

distribution as it creates samples from pN given a sample x0 from p0 and denote P̃
accordingly as the reverse distribution. From now on, we will use square brackets to

distinguish functions involving the extended state space.

It holds
P̃[x]
P[x] =

Z0P̃[y, x0|xN ]p∗N (xN )

ZNP[y, xN |x0]p∗0(x0)
=

Z0

ZN
e−W[x] , (9.2)

where we define W[x] = − ln
P[y,xN |x0]p

∗
0(x0)

P̃[y,x0|xN ]p∗
N
(xN )

.

Consider now any function F on the extended state space Ω∗. We are interested in

relating expectations of F under the forward distribution to expectations of F under

1If we choose p0 such that Z0 is easy to compute (e.g., to be uniform), we also get an estimate of

ZN .



On Bennett’s acceptance ratio for estimating the partition function of RBMs 159

the reverse distribution. To ease the notation, we denote expectations by 〈f〉p =
∫
p(x)f(x) dx. We can use the basic idea of importance sampling and equation (9.2)

to get

P̃[x]F [x] = P[x] P̃[x]P[x]F [x] =
Z0

ZN
P[x]e−W[x]F [x] .

Taking the expectation we arrive at

〈F〉P̃ =
Z0

ZN

〈
Fe−W

〉

P
. (9.3)

This result generalizes Crooks’ equation (Crooks, 2000) to arbitrary sampling distri-

butions.

We are now ready to derive our main result: generalized versions of AIS and Ben-

nett’s acceptance ratio method. By setting F [x] = 1 in equation (9.3) and reordering

terms we get
ZN
Z0

=
〈
e−W

〉

P
, (9.4)

which can be viewed as a generalization of AIS, where the standard formulation of AIS

is obtained by a certain choice of P. Instead of fixing F to a constant, we can try to

find the optimal function leading to the asymptotically best estimator. Bennett (1976)

approached this problem for a set of only two Gibbs distributions by finding the F
that minimizes the variance of the estimator for sufficiently large sample size. Crooks

(2000) transferred the result to more than two Gibbs distributions and Shirts et al.

(2003) showed that the same estimator is found using maximum likelihood principles.

A generalized version of the proof can be found in the appendix in Section 9.6. It

turns out that the maximum likelihood solution C of ln(ZN/Z0) given a set of samples

W1, . . . ,Wr with Wi = W[xi] from the forward distribution and a set of samples

W̃1, . . . , W̃r with W̃j = W[x̃j ] from the reverse distribution can be found by solving

the following equality

r∑

j=1

σ(W̃j + C)−
r∑

i=1

σ(−Wi − C) = 0 , (9.5)

where σ is the logistic function.

Solving (9.5) for different choices of the forward and the reverse distribution can

be seen as a general way to yield BAR-like estimators. As we will see later, a certain

choice of P and P̃ leads to the estimator introduced by Bennett (1976) and generalized

by Crooks (2000) and Shirts et al. (2003).

9.3.1 Methods sampling paths

We consider now forward paths x = (x0, . . . , xN ) on the extended state space Ω∗ =

ΩN+1. Every path is created by a Markov chain which starts by sampling the initial



160 Chapter 9

state x0 from p0 (e.g., the uniform distribution) and proceeds by sampling states xi

using transition operators Ti(xi−1 → xi), i = 1, . . . , N . We then regard the probability

of the path as the probability of x under the forward distribution

P[x] = p0(x0)

N∏

i=1

Ti(xi−1 → xi) . (9.6)

We can now change the point of view on the dynamics and consider the reverse

path formed by sampling xN from pN and sampling the distributions backwards

using the reversed operators T̃i(xi → xi−1). This leads to the reverse distribution

P̃[x] = pN (xN )
∏N
i=1 T̃i(xi → xi−1).

Let us now assume that for the sampling operators Ti and T̃i holds

pi(xi−1)Ti(xi−1 → xi) = pi(xi)T̃i(xi → xi−1) .

This is the exact same requirement as induced by tempered transitions (Salakhutdinov,

2009) and AIS (Neal, 2001). Especially it holds with Ti = T̃i if Ti fulfills detailed

balance. It also holds if Ti = Q1 . . . Qk, each transition operator Qj , j = 1, . . . , k,

fulfills detailed balance, and T̃i = Qk . . . Q1. This includes block Gibbs sampling as

used for RBMs (Salakhutdinov, 2009).

Given this construction, W[x] simplifies to

W[x] = − ln
pN (xN )

∏N
i=1

pi(xi−1)
pi(xi)

Ti(xi−1 → xi)

p0(x0)
∏N
i=1 Ti(xi−1 → xi)

=

N−1∑

i=0

[Ei+1(xi)− Ei(xi)] . (9.7)

Inserting these and the definition of P given in (9.6) into (9.4), we arrive at AIS

as proposed by Neal (2001). If we instead insert them into equation (9.5) we arrive

at Bennett’s acceptance ratio method applied to whole paths as proposed by Crooks

(2000).

9.3.2 Methods sampling independent paths

So far we assumed that our transition operator generates dependent samples. If we

drop this assumption, we can derive another family of estimators. Making samples

independent amounts to setting Ti = T̃i = pi and thus we get P [x] =
∏N
i=0 pi(xi).

W[x] is still defined as in equation (9.7) but if we insert this again into (9.4) we

can now factor out the independent terms to arrive at

ZN
Z0

=

∫ N∏

i=0

pi(xi)e
−

∑N−1
j=0 [Ej+1(xj)−Ej(xj)] dx =

N−1∏

i=0

〈
eEi−Ei+1

〉

pi
. (9.8)

This result can also be written as the telescope product
∏N−1
i Zi+1/Zi, where every

term Zi+1/Zi is represented by the well known entity 〈p∗i+1/p
∗
i 〉pi . If we additionally



On Bennett’s acceptance ratio for estimating the partition function of RBMs 161

assume that F [x] = ∏N−1
i=0 fi(xi) and set fi(x) = αi(x)e

−Ei(x) = αi(x)p
∗
i (x) we arrive

at bridge sampling

ZN
Z0

=

N−1∏

i=0

〈
αip

∗
i+1

〉

pi

〈αip∗i 〉pi+1

.

A prominent choice is α−1
i (x) =

√

p∗i (x)p
∗
i+1(x), the geometric mean of both distri-

butions, see the review by Gelman and Meng (1998). Bennett (1976) used αi(x) =
1

Zi+1pi(x)+Zipi+1(x)
in the derivation of his estimator minimizing the variance. The

BAR estimator he derived generalized to N Gibbs distributions (using independent in-

stead of dependent samples in contrast to Crooks (2000)) is equivalent to the solution

found for (9.5) applied to each pair of distributions pi and pi+1 for i = 0, . . . , N − 1

separately, leading to maximum likelihood estimates Ci for Zi+1/Zi. The estimator of

ZN/Z0 is finally given by C =
∑N
i Ci.

9.4 Experiments and results

We added several partition function estimation methods to an RBM library (the im-

plementation will be made available upon positive evaluation of the manuscript). We

compared them on RBMs trained on a number of artificial datasets as well as on the

MNIST dataset (LeCun et al., 1998a). In all experiments we considered the task of

estimating ln(ZN

Z0
). We do not report running times, because the runtime is dominated

by the sampling procedure and, thus, runtime differences between the different meth-

ods are negligible. For the artificial datasets we made sure that our experimental setup

always allowed to calculate the exact values of the normalization constants as ground

truth. Let C be the estimate of ln ZN

Z0
. We measured the mean relative error

E =

〈∣
∣
∣
∣
∣

C

ln ZN

Z0

− 1

∣
∣
∣
∣
∣

〉

p(C)

=

〈∣
∣
∣C − ln(ZN

Z0
)
∣
∣
∣

〉

p(C)
∣
∣
∣ln(ZN

Z0
)
∣
∣
∣

,

which allows us to compare the results of RBMs with different normalization constants.

This error measure has the disadvantage that it becomes overly sensitive towards small

perturbations when ln ZN

Z0
→ 0. This is not a problem, because it usually only happens

in the first few iterations.

All our experiments were based on the same setup. For a given RBM we took

two sets of samples, one created by PT and one using path sampling as in equation

(9.6). In both cases, block Gibbs sampling served as transition operator. We chose

βi = 2σ( 6i
N−1 ) − 1, which leads to a majority of chains having inverse temperatures

close to 1. We used a short burn-in time for the PT chains of 10% of the number of

samples drawn. To make the experiments fair, we increased the number of samples by



162 Chapter 9

 

�

� 

��

� 

��

� 

��

� 

��

 � � � � � �� �� �� ��

AIS
AISPT

AISPT-ind
BARPT

BARPT-ind

#
R
B
M
s

E in %

(a) Error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  0.1  0.2  0.3  0.4  0.5  0.6 ��	

AIS
AISPT

AISPT-ind
BARPT

BARPT-ind

#
R
B
M
s

Fraction of trials with C > ln(ZN/Z0)

(b) Error Distribution

Figure 9.1: Histograms of the results of experiment 1 for 100 randomly generated

RBMs with 16 visible and 32 hidden units and weights drawn from N (0, 0.5). The

partition function of each RBM was estimated 100 times using 5000 samples for each

algorithm. Left: Histogram over the mean errors in %. Right: Histogram over the

fraction of trials in which the estimate was bigger than the true value. The black

vertical line marks the 50% point.

this amount when sampling the paths. Thus, all algorithms used the same number of

samples. All algorithms rely on − ln p∗i (h) instead of Ei(v,h) as energy estimate, so

we integrate over all possible visible states for every hidden sample.

The dependent path samples were used to calculate the original AIS baseline fol-

lowing equation (9.4). All other algorithms we considered used the same PT samples.

We call AIS using PT samples AISPT, and AIS using the independence assumption

of equation (9.8) is called AISPT-ind. Bennett’s acceptance ratio using equation (9.5)

(i.e., not making use of the independence assumption) is denoted by BARPT and the

same estimator using paths of length 1 as described in the end of section 9.3.2 and thus

using the independence of the samples is termed BARPT-ind. We are not looking at

results of Bennett’s acceptance ratio using path sampling, because this would require

unbiased samples from pN , which are not available unless we additionally use PT with

many intermediate chains to obtain them.

In experiment 1, we generated a set of RBMs with 16 visible and 32 hidden units.

The weights of the RBMs were chosen randomly with mean 0 and variance 0.5. This

leads to values of ln(ZN/Z0) between 10 and 40. For every RBM we calculated the

mean error over a 100 estimates with 5 intermediate distributions and 1000 samples for

each of these distributions. Additionally we counted the number of times, the estimate

was bigger than the target value to assess the symmetry of the distributions of the

estimates. The results for the single RBMs were cumulated in histograms which can

be seen in Figure 9.1.

All algorithms using PT samples were better than AIS. Moreover, the BAR variants



On Bennett’s acceptance ratio for estimating the partition function of RBMs 163

 0.01

 0.1

 1

 10

 100

 0 
��� ���� ��� ���� ����� �
��� ����� ���� ����� 
����

E
in

%

(a) 5 chains, Bars&Stripes

 0.01

 0.1

 1

 10

 100

 0 ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

(b) 20 chains, MNIST

 0.01

 0.1

 1

 10

 100

 0 ���� ���� ���� ���� ����� ����� ����� ����� ����� �����

E
in

%

(c) 20 chains, Bars&Stripes

 0.01

 0.1

 1

 10

 100

 0 ���� ���� ���� !��� "���� "���� "���� "���� "!��� �����

(d) 50 chains, MNIST

 0.01

 0.1

 1

 10

 100

 0 #$$$ %$$$ &$$$ '$$$ ($$$$ (#$$$ (%$$$ (&$$$ ('$$$ #$$$$

E
in

%

Iterations

(e) 100 chains, Bars&Stripes

 0.01

 0.1

 1

 10

 100

 0 )*** +*** ,*** -*** .**** .)*** .+*** .,*** .-*** )****

Iterations

(f) 100 chains, MNIST

Figure 9.2: Mean relative error in percent for the different algorithms during train-

ing of RBMs with 16 hidden units. Left: Bars&Stripes, 100 evaluations every 100

iterations. Right: MNIST , 10 evaluations every 500 iterations. Both experiments

were carried out with different numbers of chains and 1000 samples per chain and

evaluation. We use the same color coding as in Figure 9.1. The curves of BARPT

and BARPT-int as well as AISPT and AISPT-int are overlapping in (b).

outperformed the AIS variants. When looking at the error distribution, we see that AIS

typically underestimated the normalization constant and only rarely overestimated it.

In comparison, BAR showed a symmetric distribution suggesting that the true value

is the mode of the distribution.

In experiment 2, we analyzed the performance of the estimators over the training



164 Chapter 9

 0.4

 1

 10

 20  100  2000 1000

E
in

%

Temperatures

(a) Number of Temperatures

 1

 10

 2  4  6 / 01 02

E
in

%

α

(b) Temperature distribution

Figure 9.3: Mean relative error in percent of ln(ZN/Z0) for the CD-25 RBM with 500

hidden units. Every point is the mean of 10 evaluations. We use the same color coding

as in Figure 9.1. Left: The number of chains was varied (20, 25, . . . , 100, 200, . . . , 2000)

and the total amount of samples per run was fixed to 600000. Right: For 500 tem-

peratures, where the distribution of the temperatures was changed.

process when the number of intermediate (i.e, bridging) chains is varied. We trained an

RBM with 16 hidden units on the Bars&Stripes (MacKay, 2002) and MNIST dataset.

We trained them with 1-step Contrastive Divergence (CD-1, Hinton, 2002) on the

full datasets with learning rate 0.1 for 20000 iterations. On Bars&Stripes ln(ZN/Z0)

was estimated every 100 iterations 100 times, each time using 1000 samples from each

distribution. On MNIST an evaluation was done every 500 iterations with 10 estimates

using again 1000 samples per distribution. For Bars&Stripes 5, 20 and 100 chains were

considered, while MNIST used 20, 50 and 100. Note that in the case of 100 chains the

estimators were based on 100000 samples, which is bigger than the cardinality 216 of

the state space of the hidden units. The results, depicted in Figure 9.2, confirmed the

findings from the first experiment. In addition, it can be observed that with decreasing

number of chains the performance gap between AISPT and BARPT grows.

Experiment 3 investigated the effect of changing the number of temperatures on

the quality of the estimates for a bigger RBM while keeping the overall number of

samples constant. We used the CD-25 RBM trained by Salakhutdinov and Murray

(2008) to model MNIST with 500 hidden units. We varied the number of temperatures

between {20, 25, . . . , 100, 200, . . . , 2000} and used 600000 samples in total. That is, in

the case of 5 chains, every chain had 30000 samples, and in the case of 2000 chains

only 300 samples were taken from each chain. As ground truth we used the value

ln(ZN/Z0) = −438.72 reported by Salakhutdinov and Murray (2008). The results are

given in Figure 9.3(a).

When the number of chains was small, AIS started with relatively high error rates.

When the number of chains was increased, it performed better, in the end even outper-



On Bennett’s acceptance ratio for estimating the partition function of RBMs 165

Burn-in AIS % AISPT % AISPT-ind % BARPT% BARPT-ind%

30 3.06324 3.13405 3.83176 3.58562 3.86240

150 2.68570 2.87891 2.98900 2.99325 2.99545

300 2.75816 2.40381 2.45748 2.45838 2.45836

Table 9.1: Error rates of the estimators with 2000 intermediate chains when the

burn-in time is prolonged.

forming the other methods. The overall minimum error was achieved by BARPT-ind

and BARPT in settings with a relatively low number of chains. The error increased

for all methods except from AIS when more chains were used. We analysed this ob-

servation and found out that the reason is the bias of the samples gained by PT when

having only a very short burn-in time. As we added a burn-in of 10% of the number of

samples drawn, we have a burn-in phase of 3000 sampling steps when using 20 inter-

mediate chains, but only of 30 in the case of 2000 chains. We conducted an experiment

investigating the error when increasing the burn-in time and found that this reduced

the error of all estimators considerably and made the difference between estimators

small. The results can be found in Table 9.1.

In experiment 4 we investigated the effect of the chosen distribution of the tem-

peratures on the quality of the estimates when using 500 chains. We defined a new set

of beta values, βi,α = σ(αi/N)−σ(0)
σ(α)−σ(0) , where α > 0, i = 0, . . . , N . With small values of

α the distribution of temperatures approaches the uniform distribution. Bigger values

of α lead to more and more β values being close to 1. We used the same experimental

setup as in experiment 3 with a fixed number of 500 temperatures while only changing

the distribution of temperatures. To reduce the impact from slow mixing chains, we

increased the burn-in time to 100% which amounts to 1200 samples. It turned out

that α values close to 7.3 lead to a similar distribution of temperatures as used in

experiment 3, see Figure 9.4 for the evaluated temperature distributions.

The results in Figure 9.3(b) show that with growing α the performance of AIS and

AISPT decreased considerably, while the results of the other methods remained almost

constant. Thus, our initial choice of the temperature distribution was not optimal for

AIS. In light of these results, we repeated experiment 1 with a uniform distribution

of the temperatures and a set of temperatures resulting from the above formula with

α = 2. The results (Figure 9.6 in the appendix in Section 9.6) are similar to the one

shown in Figure 9.1, albeit less pronounced.

Experiment 5 was designed to compare the performance of the estimators when

reusing the samples gained from PT during training for the estimators, instead of

starting a new PT chain for every estimate. We trained an RBM with 16 hidden

neurons on MNIST with PT using 50 tempered chains. We used the full training set



166 Chapter 9

 0

 0.2

 0.4

 0.6

345

 1

3 633 733 833 933 :33

a;<=a>6

a;<=a>64:?7

a;<=a>64:?9

a;<=a>64:?:

a;<=a>64:?@

default

β
i,
α

Temperature i

Figure 9.4: Temperature distributions used in experiment 4. The curves for α = 1.5

and α = 1.53 are not shown to avoid a cluttered plot. We refer to the distribution

used in all remaining experiments as ’default’.

 0.1

 1

 10

 100

 0  2000  4000  6000   1

AIS
AISPT-ind(Online)
BARPT-ind(Online)
AISPT-ind(Offline)
BARPT-ind(Offline)

E
in

%

Iterations

Figure 9.5: Comparison of the errors of the estimators using samples from the PT

chain used for training (Online) or using samples gained from a separate PT chain

(Offline). Estimators were based on 250000 samples from 50 chains. The mean error

of 10 offline trials is compared with one online trial.



On Bennett’s acceptance ratio for estimating the partition function of RBMs 167

but only 5000 PT-samples for the gradient approximation in every learning iteration.

We refer to the estimators that reuse the samples from training as online and to the

estimators using separate PT chains as offline. As in all other experiments we used

10% burn-in time for the offline estimators. The results can be seen in Figure 9.5

The online estimators got considerably lower error rates compared to their offline

counterparts. This is because the persistent PT chains used during training have

enough time to mix and thus are much closer to the true distribution.

9.5 Conclusion

This paper introduced a theoretic framework linking the expectation over a distribution

of samples generated by a transition operator to the expectation over the distribution

induced by the reversed operator. This leads to a generalized form of Crooks’ equality,

which can be used to devise generalizations of known estimators for the normalization

constants of energy-based probabilistic models, including Annealed Importance Sam-

pling (AIS) and Bennett’s Acceptance Ratio method (BAR). These generalizations

allow the use of different sample sources. We focused on Parallel Tempering (PT) and

path sampling for generating samples, but Linked Importance Sampling (Neal, 2005)

also fits into this scheme.

In our experiments, we considered estimating the partition functions of RBMs. We

compared the AIS- and BAR-based estimators using independent samples from PT

with vanilla AIS. All PT based approaches performed better than vanilla AIS. Fur-

thermore, the algorithms based on BAR outperformed all AIS variants.2 Statistics

on the estimation errors showed that AIS estimates are not only worse compared to

BAR, but the results are heavily skewed: AIS almost always underestimated the true

value. In contrast, the error distribution in the BAR experiments was almost symmet-

ric. Moreover, AIS strongly depends on the right choice of bridging distributions, while

BAR worked reliably across a range of temperature choices. The drawback of BAR is

that it requires samples from PT and, thus, one has to be careful about the bias of

samples when using short burn-in times. This, however, was no problem when using

the samples from a persistent PT chain during learning. In summary, we suggest to

use BAR with PT to estimate the partition function of an RBM instead of AIS.

2The superior performance of BAR is in accordance with the observations by Desjardins et al.

(2011), who reported good results when estimating the partition function in an iterative learning task

by a sampling procedure using, among others, BAR and PT as building blocks.



168 Chapter 9

9.6 Appendix

Derivation of the maximum likelihood estimate of ln(ZN/Z0)

In the following we show that the maximum likelihood estimate C of ln(ZN/Z0) given

a set of samples W1, . . . ,Wr, Wi = W[xi] from the forward distribution and a set of

samples W̃1, . . . , W̃r W̃j =W[x̃j ] from the reverse distribution can be found by solving

equation (9.5) which is given by

r∑

j=1

σ(W̃j − C)−
r∑

i=1

σ(−Wi + C) = 0 ,

where σ(x) = 1
1+exp(−x) .

We start by recalling equation (9.3): For a weighting function F we have

〈F〉P̃ =
Z0

ZN

〈
Fe−W

〉

P
, (9.9)

where P and P̃ denote the forward distribution and the reverse distribution of X,

respectively.

To take into account that a sample x of X may be either be drawn from P or

from P̃, we introduce an additional binary random variable D ∈ {F,R} indicating if

the former or the latter has been the case.

Now let us change our point of view and do not consider sampling the random

variable X directly, but instead the process of sampling a certain value W =W[x] of

W[X] where x is drawn from a mixture distribution P[x]P (D = F ) + P̃[x]P (D = R).

For a given W we can now ask for the probabilities that it was either acquired by

sampling x from the forward or the reverse distribution, that is, for the probabilities

P (F |W ) and P (R|W ).

In the next step, we will derive P (F |W ) from equation (9.9). Let us in the following

assume P (D = F ) = P (D = R) = 1
2 to simplify the derivation. By setting F [x] =

δ(W[x] − W ) where δ is the dirac-delta function, 〈F〉P now gives the probability

P (W |F ) of sampling W from the forward distribution. Analogously we get P (W |R) =
〈F〉P̃ . Inserting everything into equation (9.9) and reordering the terms gives

P (W |F )
P (W |R) =

ZN
Z0

eW . (9.10)

We now use Bayes’ theorem to get

P (W |F )
P (W |R) =

P (F |W )P (R)

P (R|W )P (F )
=

P (F |W )

1− P (F |W )
,

where we used P (F |W ) + P (R|W ) = 1 in the last step. Inserting into equation (9.10)

and solving for P (F |W ) leads to P (F |W ) = σ(W + ln(ZN/Z0)). Using this we can



On Bennett’s acceptance ratio for estimating the partition function of RBMs 169

derive the probability of the reverse distribution as P (R|W ) = 1−P (F |W ) = σ(−W −
ln(ZN/Z0)). If the quotient C = ln(ZN/Z0) is unknown we can treat it as a parameter

and find the maximum log-likelihood solution given a set of samples W1, . . . ,Wr from

the forward and a set of samples W̃1, . . . , W̃r from the reverse distribution. That is,

we solve the optimization problem

max
C

ln





r∏

i=1

P (F |Wi)

r∏

j=1

P (R|W̃j)



 .

Thus, for the maximum likelihood estimate C it must hold

r∑

j=1

σ(W̃j + C)−
r∑

i=1

σ(−Wi − C) = 0 .

Additional experimental results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  1  2  3  4  5  6 A

AIS
AISPT

AISPT-ind
BARPT

BARPT-ind

#
R
B
M
s

E in %

(a) Uniform, Error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.1  0.2  0.3  0.4  0.5  0.6 BCD

AIS
AISPT

AISPT-ind
BARPT

BARPT-ind

#
R
B
M
s

Fraction of trials with C > ln(ZN/Z0)

(b) Uniform, Error Distribution

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  1  2  3  4  5  6 E F G

AIS
AISPT

AISPT-ind
BARPT

BARPT-ind

#
R
B
M
s

E in %

(c) α = 2, Error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.1  0.2  0.3  0.4  0.5  0.6 HIJ

AIS
AISPT

AISPT-ind
BARPT

BARPT-ind

#
R
B
M
s

Fraction of trials with C > ln(ZN/Z0)

(d) α = 2, Error Distribution

Figure 9.6: Repeated experiment 1 with different choices of the temperature distri-

bution. Figures a) and b) are the corresponding results for the uniform distribution

of temperatures, βi = i/N , while c) and d) are the results for βi,α = σ(αi/N)−σ(0)
σ(α)−σ(0)

with α = 2. See Figure 9.1 and the descriptions of experiment 1 and 4 for details.





Chapter 10

Approximation properties of DBNs

with binary hidden units and

real-valued visible units

This chapter is based on the manuscript “Approximation properties of DBNs with

binary hidden units and real-valued visible unit” by O. Krause, A. Fischer, T. Glas-

machers, and C. Igel, published in JMLR W&CP: ICML 2013, 28(1), pp. 419-426,

2013.

Abstract

Deep belief networks (DBNs) can approximate any distribution over fixed-length binary

vectors. However, DBNs are frequently applied to model real-valued data, and so

far little is known about their representational power in this case. We analyze the

approximation properties of DBNs with two layers of binary hidden units and visible

units with conditional distributions from the exponential family. It is shown that these

DBNs can, under mild assumptions, model any additive mixture of distributions from

the exponential family with independent variables. An arbitrarily good approximation

in terms of Kullback-Leibler divergence of an m-dimensional mixture distribution with

n components can be achieved by a DBN withm visible variables and n and n+1 hidden

variables in the first and second hidden layer, respectively. Furthermore, relevant

infinite mixtures can be approximated arbitrarily well by a DBN with a finite number

of neurons. This includes the important special case of an infinite mixture of Gaussian

distributions with fixed variance restricted to a compact domain, which in turn can

approximate any strictly positive density over this domain.



172 Chapter 10

10.1 Introduction

Restricted Boltzmann machines (RBMs, Smolensky, 1986; Hinton, 2002) and deep

belief networks (DBNs, Hinton et al., 2006; Hinton and Salakhutdinov, 2006) are

probabilistic models with latent and observable variables, which can be interpreted

as stochastic neural networks. Binary RBMs, in which each variable conditioned on

the others is Bernoulli distributed, are able to approximate arbitrarily well any distri-

bution over the observable variables (Le Roux and Bengio, 2008; Montufar and Ay,

2011). Binary deep belief networks are built by layering binary RBMs, and the rep-

resentational power does not decrease by adding layers (Le Roux and Bengio, 2008;

Montufar and Ay, 2011). In fact, it can be shown that a binary DBN never needs more

variables than a binary RBM to model a distribution with a certain accuracy (Le Roux

and Bengio, 2008).

However, arguably the most prominent applications in recent times involving RBMs

consider models in which the visible variables are real-valued (e.g., Salakhutdinov and

Hinton, 2007; Lee et al., 2009a; Taylor et al., 2010; Le Roux et al., 2011). Welling

et al. (2005) proposed a notion of RBMs where the conditional distributions of the

observable variables given the latent variables and vice versa are (almost) arbitrarily

chosen from the exponential family. This includes the important special case of the

Gaussian-binary RBM (GB-RBM, also Gaussian-Bernoulli RBM), an RBM with binary

hidden and Gaussian visible variables.

Despite their frequent use, little is known about the approximation capabilities of

RBMs and DBNs modeling continuous distributions. Clearly, orchestrating a set of

Bernoulli distributions to model a distribution over binary vectors is easy compared

to approximating distributions over Ω ⊆ R
m. Recently, Wang et al. (2012) have em-

phasized that the distribution of the visible variables represented by a GB-RBM with

n hidden units is a mixture of 2n Gaussian distributions with means lying on the ver-

tices of a projected n-dimensional hyperparallelotope. This limited flexibility makes

modeling even a mixture of a finite number of Gaussian distributions with a GB-RBM

difficult.

This work is a first step towards understanding the representational power of DBNs

with binary latent and real-valued visible variables. We will show for a subset of dis-

tributions relevant in practice that DBNs with two layers of binary hidden units and a

fixed family of conditional distribution for the visible units can model finite mixtures of

that family arbitrarily well. As this also holds for infinite mixtures of Gaussians with

fixed variance restricted to a compact domain, our results imply universal approxima-

tion of strictly positive densities over compact sets.



Properties of DBNs with binary hidden and real-valued visible units 173

10.2 Background

This section will recall basic results on approximation properties of mixture distribu-

tions and binary RBMs. Furthermore, the considered models will be defined.

10.2.1 Mixture distributions

A mixture distribution pmix(v) over Ω is a convex combination of simpler distribu-

tions which are members of some family G of distributions over Ω parameterized by

θ ∈ Θ. We define MIX(n,G) = {∑n
i=1 pmix(v|i)pmix(i) |

∑n
i=1 pmix(i) = 1 and ∀i ∈

{1, . . . , n} : pmix(i) ≥ 0 ∧ pmix(v|i) ∈ G} as the family of mixtures of n distributions

from G. Furthermore, we denote the family of infinite mixtures of distributions from

G as CONV(G) = {
∫

Θ
p(v|θ)p(θ) dθ |

∫

θ
p(θ) dθ = 1 and ∀θ ∈ Θ : p(θ) ≥ 0∧p(v|θ) ∈

G}.
Li and Barron have shown that for some family of distributions G every element

from CONV(G) can be approximated arbitrarily well by finite mixtures with respect

to the Kullback-Leibler divergence (KL-divergence):

Theorem 10.1 (Li and Barron, 2000). Let f ∈ CONV(G). There exists a finite

mixture pmix ∈ MIX(n,G) such that

KL(f‖pmix) ≤
c2fγ

n
,

where

c2f =

∫

Ω

∫
f2(v|θ)f(θ) dθ
∫
f(v|θ)f(θ) dθ dv

and γ = 4[log(3
√
e) + a] with

a = sup
θ1,θ2,v

log
f(v|θ1)
f(v|θ2)

.

The bound is not necessarily finite. However, it follows from previous results by

Zeevi and Meir (1997) that for every f and every ǫ > 0 there exists a mixture pmix

with n components such that KL(f‖pmix) ≤ ǫ + c
n for some constant c if Ω ⊂ R

m

is a compact set and f is continuous and bounded from below by some η > 0 (i.e,

∀x ∈ Ω : f(x) ≥ η > 0).

Furthermore, it follows that for compact Ω ⊂ R
m every continuous density f on Ω

can be approximated arbitrarily well by an infinite but countable mixture of Gaussian

distributions with fixed variance σ2 and means restricted to Ω, that is, by a mixture

of distributions from the family

Gσ(Ω) =

{

p(x) =
1

(2πσ2)m/2
exp

(

−‖x− µ‖2
2σ2

) ∣
∣
∣x,µ ∈ Ω

}

, (10.1)

for sufficient small σ.



174 Chapter 10

10.2.2 Restricted Boltzmann Machines

An RBM is an undirected graphical model with a bipartite structure (Smolensky, 1986;

Hinton, 2002) consisting of one layer of m visible variables V = (V1, . . . , Vm) ∈ Ω and

one layer of n hidden variables H = (H1, . . . , Hn) ∈ Λ. The modeled joint distribution

is a Gibbs distribution p(v,h) = 1
Z e

−E(v,h) with energy E and normalization constant

Z =
∫

Ω

∫

Λ
e−E(v,h) dh dv, where the variables of one layer are mutually independent

given the state of the other layer.

Binary-Binary-RBMs. In the standard binary RBMs the state spaces of the

variables are Ω = {0, 1}m and Λ = {0, 1}n. The energy is given by E(v,h) =

−vTWh− vT b− cTh with weight matrix W and bias vectors b and c.

Le Roux and Bengio showed that binary RBMs are universal approximators for

distributions over binary vectors:

Theorem 10.2 (Le Roux and Bengio, 2008). Any distribution over Ω = {0, 1}m can

be approximated arbitrarily well (with respect to the KL-divergence) with an RBM with

k+1 hidden units, where k is the number of input vectors whose probability is not zero.

The number of hidden neurons required can be reduced to the minimum number

of pairs of input vectors differing in only one component with the property that their

union contains all observable patterns having positive probability (Montufar and Ay,

2011).

Exponential-Family RBMs. Welling et al. (2005) introduced a framework for con-

structing generalized RBMs called exponential family harmoniums. In this framework,

the conditional distributions p(hi|v) and p(vj |h), i = 1, . . . , n, j = 1, . . . ,m, belong to

the exponential family. Almost all types of RBMs encountered in practice, including

binary RBMs, can be interpreted as exponential family harmoniums.

The exponential family is the class F of probability distributions that can be writ-

ten in the form

p(x) =
1

Z
exp

(
k∑

r=1

Φ(r)(x)Tµ(r)(θ)

)

, (10.2)

where θ are the parameters of the distribution and Z is the normalization constant.1

The functions Φ(r) and µ(r), for r = 1, . . . , k, transform the sample space and the

distribution parameters, respectively. Let I be the subset of F where the components

of x = (x1, . . . , xm) are independent from each other, that is, I = {p ∈ F | ∀x :

p(x1, . . . , xm) = p(x1)p(x2) · · · p(xm)}. For elements of I the function Φ(r) can be

1By setting k = 1 and rewriting Φ and µ accordingly, one obtains the standard formulation.



Properties of DBNs with binary hidden and real-valued visible units 175

written as Φ(r)(x) = (φ
(r)
1 (x1), . . . , φ

(r)
m (xm)). A prominent subset of I is the family of

Gaussian distributions with fixed variance σ2, Gσ(Ω) ⊂ I, see equation (10.1).

Following Welling et al., the energy of an RBM with binary hidden units and visible

units with p(v|h) ∈ I is given by

E(v,h) = −
k∑

r=1

Φ(r)(v)TW (r)h−
k∑

r=1

Φ(r)(v)T b(r) − cTh , (10.3)

where Φ(r)(v) = (φ
(r)
1 (x1), . . . , φ

(r)
m (xm)). Note that not every possible choice of pa-

rameters necessarily leads to a finite normalization constant and thus to a proper

distribution.

If the joint distribution is properly defined, the conditional probability of the visible

units given the hidden is

p(v|h) = 1

Zh

exp

(
k∑

r=1

Φ(r)(v)T
(

W (r)h+ b(r)
)
)

, (10.4)

where Zh is the corresponding normalization constant. Thus, the marginal distribution

of the visible units p(v) can be expressed as a mixture of 2n conditional distributions:

p(v) =
∑

h∈{0,1}n

p(v|h)p(h) ∈ MIX(2n, I)

10.2.3 Deep Belief Networks

A DBN is a graphical model with more than two layers built by stacking RBMs (Hinton

et al., 2006; Hinton and Salakhutdinov, 2006). A DBN with two layers of hidden

variables H and Ĥ and a visible layer V is characterized by a probability distribution

p(v,h, ĥ) that fulfills

p(v,h, ĥ) = p(v|h)p(h, ĥ) = p(ĥ|h)p(v,h) .

In this study we are interested in the approximation properties of DBNs with two

binary hidden layers and real-valued visible neurons. We will refer to such a DBN as

a B-DBN. With B-DBN(G) we denote the family of all B-DBNs having conditional

distributions p(v|h) ∈ G for all h ∈H.

10.3 Approximation properties

This section will present our results on the approximation properties of DBNs with

binary hidden units and real-valued visible units. It consists of the following steps:



176 Chapter 10

• Lemma 10.1 gives an upper bound on the KL-divergence between a B-DBN and a

finite additive mixture model – however, under the assumption that the B-DBN

“contains” the mixture components. For mixture models from a subset of I,
Lemma 10.2 and Theorem 10.3 show that such B-DBNs actually exist and that

the KL-divergence can be made arbitrarily small.

• Corollary 10.1 specifies the previous theorem for the special case of Gaussian

mixtures, showing how the bound can be applied to distributions used in practice.

• Finally, Theorem 10.4 generalizes the results to infinite mixture distributions, and

thus to the approximation of arbitrary strictly positive densities on a compact

set.

10.3.1 Finite mixtures

We first introduce a construction that will enable us to model mixtures of distribu-

tions by DBNs. For some family G an arbitrary mixture of distributions pmix(v) =
∑n
i=1 pmix(v|i)pmix(i) ∈ MIX(n,G) over v ∈ Ω can be expressed in terms of a joint

probability distribution of v and h ∈ {0, 1}n by defining the distribution

qmix(h) =

{

pmix(i), if h = ei,

0, else
(10.5)

over {0, 1}n, where ei is the ith unit vector. Then we can rewrite pmix(v) as

pmix(v) =
∑

h qmix(v|h)qmix(h), where qmix(v|h) ∈ G for all h ∈ {0, 1}n and

qmix(v|ei) = pmix(v|i) for all i = 1, . . . , n. This can be interpreted as expressing

pmix(v) as an element of MIX(2n, G) with 2n − n mixture components having a prob-

ability (or weight) equal to zero. Now we can model pmix(v) by the marginal distribu-

tion of the visible variables p(v) =
∑

h,ĥ p(v|h)p(h, ĥ) =
∑

h p(v|h)p(h) of a B-DBN

p(v,h, ĥ) ∈ B-DBN(G) with the following properties:

1. p(v|ei) = pmix(v|i) for i = 1, . . . , n and

2. p(h) =
∑

ĥ p(h, ĥ) approximates qmix(h).

Following this line of thoughts we can formulate our first result. It provides an

upper bound on the KL-divergence of any element from MIX(n,G) and the marginal

distribution of the visible variables of a B-DBN with the properties stated above, where

p(h) models qmix(h) with an approximation error smaller than a given ǫ.

Lemma 10.1. Let pmix(v) =
∑n
i=1 pmix(v|i)pmix(i) ∈ MIX(n,G) be a mixture with n

components from a family of distributions G, and qmix(h) be defined as in (10.5). Let

p(v,h, ĥ) ∈ B-DBN(G) with the properties p(v|ei) = pmix(v|i) for i = 1, . . . , n and



Properties of DBNs with binary hidden and real-valued visible units 177

∀h ∈ {0, 1}n : |p(h) − qmix(h)| < ǫ for some ǫ > 0. Then the KL-divergence between

pmix and p is bounded by

KL(p‖pmix) ≤ B(G, pmix, ǫ) ,

where

B(G, pmix, ǫ) = ǫ

∫

Ω

α(v)β(v) dv + 2n(1 + ǫ) log(1 + ǫ)

with

α(v) =
∑

h

p(v|h)

and

β(v) = log

(

1 +
α(v)

pmix(v)

)

.

Proof. Using |p(h)− qmix(h)| < ǫ for all h ∈ {0, 1}n and pmix(v) =
∑

h p(v|h)qmix(h)

we can write

p(v) =
∑

h

p(v|h)p(h) =
∑

h

p(v|h)(qmix(h) + p(h)− qmix(h))

= pmix(v) +
∑

h

p(v|h)(p(h)− qmix(h)) ≤ pmix(v) + α(v)ǫ ,

where α(v) is defined as above. Thus, we get for the KL-divergence

KL(p‖pmix) =

∫

Ω

p(v) log

(
p(v)

pmix(v)

)

dv

≤
∫

Ω

(pmix(v) + α(v)ǫ) log

(
pmix(v) + α(v)ǫ

pmix(v)

)

︸ ︷︷ ︸

=F (ǫ,v)

dv =

∫

Ω

ǫ∫

0

∂

∂ǭ
F (ǭ,v) dǭ dv

using F (0,v) = 0. Because 1+xǫ ≤ (1+x)(1+ ǫ) for all x, ǫ ≥ 0, we can upper bound
∂
∂ǫF (ǫ,v) by

∂

∂ǫ
F (ǫ,v) = α(v)

[

1 + log

(

1 +
α(v)

pmix(v)
ǫ

)]

≤ α(v)
[

1 + log

(

(1 +
α(v)

pmix(v)
)(1 + ǫ)

)]

= α(v) [1 + β(v) + log(1 + ǫ)]

with β(v) as defined above. By integration we get

F (ǫ,v) =

∫ ǫ

0

∂

∂ǭ
F (ǭ,v) dǭ ≤ α(v)β(v)ǫ+ α(v)(1 + ǫ) log(1 + ǫ) .

Integration with respect to v completes the proof.



178 Chapter 10

The proof does not use the independence properties of p(v|h). Thus, it is possible
to apply this bound also to mixture distributions which do not have conditionally

independent variables. However, in this case one has to show that a generalization of

the B-DBN exists which can model the target distribution, as the formalism introduced

in formula (10.3) does not cover distributions which are not in I.
For a family G ⊆ I it is possible to construct a B-DBN with the properties required

in Lemma 10.1 under weak technical assumptions. The assumptions hold for families

of distributions used in practice, for instance Gaussian and truncated exponential dis-

tributions.

Lemma 10.2. Let G ⊂ I and pmix(v) =
∑n
i=1 pmix(v|i)pmix(i) ∈ MIX(n,G) with

pmix(v|i) =
1

Zi
exp

(
k∑

r=1

Φ(r)(v)Tµ(r)(θ(i))

)

(10.6)

for i = 1, . . . , n and corresponding parameters θ(1), . . . ,θ(n). Let the distribution

qmix(h) be defined by equation (10.5). Assume that there exist parameters b(r) such

that for all c ∈ R
n the joint distribution p(v,h) of v ∈ R

m and h ∈ {0, 1}n with energy

E(v,h) =
k∑

r=1

Φ(r)(v)T
(

W (r)h+ b(r)
)

+ cTh

is a proper distribution (i.e., the corresponding normalization constant is finite), where

the ith column of W (r) is µ(r)(θ(i))− b(r). Then the following holds:

For all ǫ > 0 there exists a B-DBN with joint distribution p(v,h, ĥ) =

p(v|h)p(h, ĥ) ∈ B-DBN(G) such that

i) pmix(v|i) = p(v|ei) for i = 1, . . . , n and

ii) ∀h ∈ {0, 1}n : |p(h)− qmix(h)| < ǫ.

Proof. Property i) follows from equation (10.4) by setting h = ei and the ith column

of W (r) to µ(r)(θ(i))− b(r). Property ii) follows directly from applying Theorem 10.2

to p.

For some families of distributions, such as truncated exponential or Gaussian dis-

tributions with uniform variance, choosing b(r) = 0 for r = 1, . . . , k is sufficient to yield

a proper joint distribution p(v,h) and thus a B-DBN with the desired properties. If

such a B-DBM exists, one can show, under weak additional assumptions on G ⊂ I,
that the bound shown in Lemma 10.1 is finite. It follows that the bound decreases to

zero as ǫ does.



Properties of DBNs with binary hidden and real-valued visible units 179

Theorem 10.3. Let G ⊂ I be a family of densities and pmix(v) =
∑n
i=1 pmix(v|i)pmix(i) ∈ MIX(n,G) with pmix(v|i) given by equation (10.6). Further-

more, let qmix(h) be given by equation (10.5) and let p(v,h, ĥ) ∈ B-DBN(G) with

(i) pmix(v|i) = p(v|ei) for i = 1, . . . , n

(ii) ∀h ∈ {0, 1}n : |p(h)− qmix(h)| < ǫ

(iii) ∀h ∈ {0, 1}n :
∫

Ω

p(v|h)||Φ(r)(v)||1 dv <∞.

Then B(G, pmix, ǫ) is finite and thus in O(ǫ).

Proof. We have to show that under the conditions given above
∫

Ω
α(v)β(v) dv is finite.

We will first find an upper bound for β(v) = log
(

1 + α(v)
pmix(v)

)

for an arbitrary

but fixed v. Since pmix(v) =
∑

i

pmix(v|i)pmix(i) is a convex combination, by defining

i∗ = argmini pmix(v|i) and h∗ = argmaxh p(v|h) we get

α(v)

pmix(v)
=
∑

h

p(v|h)
∑

i

pmix(v|i)pmix(i)
≤ 2n

p(v|h∗)

pmix(v|i∗)
. (10.7)

The conditional distribution pmix(v|i) of the mixture can be written as in equa-

tion (10.6) and the conditional distribution p(v|h) of the RBM can be written as

in formula (10.4). We define

u(r)(h) = W (r)h+ b(r)

and get

p(v|h∗)

pmix(v|i∗)
=

exp
(
∑k
r=1 Φ

(r)(v)Tu(r)(h∗)
)

exp
(
∑k
r=1 Φ

(r)(v)Tµ(r)(θ(i∗))
)

= exp

(
k∑

r=1

Φ(r)(v)T
[

u(r)(h∗)− µ(r)(θ(i∗))
]
)

≤ exp





k∑

r=1

m∑

j=1

∣
∣
∣φ

(r)
j (v)

∣
∣
∣ ·
∣
∣
∣u

(r)
j (h∗)− µ(r)

j (θ(i∗))
∣
∣
∣



 .

Note that the last expression is always larger or equal to one. We can further bound

this term by defining

ξ(r) = max
j,h,i

∣
∣
∣u

(r)
j (h∗)− µ(r)

j (θ(i))
∣
∣
∣

and arrive at

p(v|h∗)

pmix(v|i∗)
≤ exp

(
k∑

r=1

ξ(r)||Φ(r)(v)||1
)

. (10.8)



180 Chapter 10

By plugging these results into the formula for β(v) we obtain

β(v)
(10.7)

≤ log

[

1 + 2n
p(v|h∗)

pmix(v|i∗)

]
(10.8)

≤ log

[

1 + 2n exp

(
k∑

r=1

ξ(r)||Φ(r)(v)||1
)]

≤ log

[

2n+1 exp

(
k∑

r=1

ξ(r)||Φ(r)(v)||1
)]

= (n+ 1) log(2) +

k∑

r=1

ξ(r)||Φ(r)(v)||1 .

In the third step, we used that the second term is always larger than 1. Insertion into
∫

Ω
α(v)β(v) dv leads to

∫

Ω

α(v)β(v) dv ≤
∫

Ω

α(v)

[

(n+ 1) log(2) +
k∑

r=1

ξ(r)||Φ(r)(v)||1
]

dv

= 2n(n+ 1) log(2) +
∑

h

k∑

r=1

ξ(r)
∫

Ω

p(v|h)||Φ(r)(v)||1 dv , (10.9)

which is finite by assumption.

10.3.2 Finite Gaussian mixtures

Now we apply Lemma 10.2 and Theorem 10.3 to mixtures of Gaussian distributions

with uniform variance.

The KL-divergence is continuous for strictly positive distributions. Our previous

results thus imply that for every mixture pmix of Gaussian distributions with uniform

variance and every δ ≥ 0 we can find a B-DBN p such that KL(p‖pmix) ≤ δ. The

following corollary gives a corresponding bound:

Corollary 10.1. Let Ω = R
m and Gσ(Ω) be the family of Gaussian distributions

with variance σ2. Let ǫ > 0 and pmix(v) =
∑n
i=1 pmix(v|i)pmix(i) ∈ MIX(n,Gσ(Ω)) a

mixture of n distributions with means z(i) ∈ R
m, i = 1, . . . , n. By

D = max
r,s∈{1,...,n}
k∈{1,...,m}

{∣
∣
∣z

(r)
k − z

(s)
k

∣
∣
∣

}

we denote the edge length of the smallest hypercube containing all means. Then there

exists p(v,h, ĥ) ∈ B-DBN(Gσ(Ω)), with ∀h ∈ {0, 1}n : |p(h) − qmix(h)| < ǫ and

pmix(v|i) = p(v|ei), i = 1, . . . , n, such that

KL(p‖pmix) ≤ ǫ · 2n
(

(n+ 1) log(2) +m

(

n2

(σ/D)2
+

√
2n√

π(σ/D)

))

+ 2n(1 + ǫ) log(1 + ǫ) .

Proof. In a first step we apply an affine linear transformation to map the hypercube of

edge length D to the unit hypercube [0, 1]m. Note that doing this while transforming



Properties of DBNs with binary hidden and real-valued visible units 181

the B-DBN-distribution accordingly does not change the KL-divergence, but it does

change the standard deviation of the Gaussians from σ to σ/D. In other words, it

suffices to show the above bound for D = 1 and z(i) ∈ [0, 1]m.

The energy of the Gaussian-Binary-RBM p(v,h) is typically written as

E(v,h) =
1

2σ2
vTv − 1

σ2
vT b− 1

σ2
vTWh− cTh ,

with weight matrix W and bias vectors b and c. This can be brought into the form

of formula (10.3) by setting k = 2, φ
(1)
j (vj) = vj , φ

(2)
j (vj) = v2j , W (1) = W /σ2,

W (2) = 0, b
(1)
j = bj/σ

2, and b
(2)
j = 1/2σ2. With b = 0 (and thus b(1) = 0), it follows

from Lemma 10.2 that a B-DBN p(v,h, ĥ) = p(v|h)p(h, ĥ) with properties (i) and (ii)

from Theorem 10.3 exists.

It remains to show that property (iii) holds. Since the conditional probability

factorizes, it suffices to show that (iii) holds for every visible variable individually. The

conditional probability of the jth visible neuron of the constructed B-DBN is given by

p(vj |h) =
1√
2πσ2

exp

(

− (vj − zj(h))2
2σ2

)

,

where the mean zj(h) is the jth element of Wh. Using this, it is easy to see that
∫ ∞

−∞

p(vj |h)|φ(2)(vj)| dvj =
∫ ∞

−∞

p(vj |h)v2j dvj <∞ ,

because it is the second moment of the normal distribution. For
∫∞

−∞ p(vj |h)|φ(1)(vj)| dvj we get

1√
2πσ2

∫ ∞

−∞

exp

(

− (vj − zj(h))2
2σ2

)

|vj | dvj

= −zj(h) +
2√
2πσ2

∫ ∞

0

exp

(

− (vj − zj(h))2
2σ2

)

vj dvj

= −zj(h) +
2√
2πσ2

∫ ∞

−zj(h)

exp

(

− t2

2σ2

)

(t+ zj(h))dt

= −zj(h) + 2zj(h)

∫ ∞

0

p(vj |h)dvj +
2√
2πσ2

∫ ∞

−zj(h)

exp

(

− t2

2σ2

)

t dt

≤ zj(h) +
√
2σ√
π

exp

(

−
z2j (h)

2σ2

)

≤ n+

√
2σ√
π

. (10.10)

In the last step we used that zj(ei) = z
(i)
j ∈ [0, 1] by construction and thus zj(h) can

be bounded from above by

zj(h) =

n∑

i=0

hizj(ei) ≤ n . (10.11)

Thus it follows from Theorem 10.3 that the bound from Lemma 10.1 holds and is finite.

To get the actual bound, we only need to find the constants ξ(1) and ξ(2) to be inserted



182 Chapter 10

into (10.9). The first constant is given by ξ(1) = maxj,h,i

∣
∣
∣
zj(h)
σ2 −

z
(i)
j

σ2

∣
∣
∣. It can be upper

bounded by maxj,h
zj(h)
σ2 ≤ n

σ2 , as an application of equation (10.11) shows. The

second constant is given by ξ(2) = maxj,h,i | 1
2σ2 − 1

2σ2 | = 0. Inserting these variables

into inequality (10.9) leads to the bound.

The bound B(Gσ(Ω), pmix, ǫ) is also finite when Ω is restricted to a compact subset

of Rm. This can easily be verified by adapting equation (10.10) accordingly.

Similar results can be obtained for other families of distributions. A prominent

example are B-DBMs with truncated exponential distributions. In this case the energy

function of the first layer is the same as for the binary RBM, but the values of the

visible neurons are chosen from the interval [0, 1] instead of {0, 1}. It is easy to see

that for every choice of parameters the normalization constant as well as the bound

are finite.

10.3.3 Infinite mixtures

We will now transfer our results for finite mixtures to the case of infinite mixtures

following Li and Barron (2000).

Theorem 10.4. Let G be a family of continuous distributions and f ∈ CONV(G)

such that the bound from Theorem 10.1 is finite for all pmix-n ∈ MIX(n,G), n ∈ N.

Furthermore, for all pmix-n ∈ MIX(n,G), n ∈ N, and for all ǫ̂ > 0 let there exist a

B-DBN in B-DBN(G) such that B(G, pmix, ǫ̂) is finite. Then for all ǫ > 0 there exists

p(v,h, ĥ) ∈ B-DBN(G) with KL(f‖p) ≤ ǫ.

Proof. From Theorem 10.1 and the assumption that the corresponding bound is finite

it follows that for all ǫ > 0 there exists a mixture pmix-n′ ∈ MIX(n′, G) with n′ ≥ 2c2fγ/ǫ

such that KL(f‖pmix-n′) ≤ ǫ
2 .

By assumption there exists a B-DBN ∈ B-DBN(G) such that B(G, pmix-n′ , ǫ̂) is

finite. Thus, one can define a sequence of B-DBNs (pǫ̂)ǫ̂ ∈ B-DBN(G) with ǫ̂ de-

caying to zero (where the B-DBNs only differ in the weights between the hidden

layers) for which it holds KL(pǫ̂‖pmix-n′)
ǫ̂→0−→ 0. This implies that pǫ̂

ǫ̂→0−→ pmix-n′

uniformly. It follows KL(f‖pǫ̂) ǫ̂→0−→ KL(f‖pmix-n′). Thus, there exists ǫ′ such that

|KL(f‖pǫ′)−KL(f‖pmix-n′)| < ǫ/2. A combination of these inequalities yields

KL(f‖pǫ′) ≤ |KL(f‖pǫ′) − KL(f‖pmix-n′)| + KL(f‖pmix-n′) ≤ ǫ .

This result applies to infinite mixtures of Gaussians with the same fixed but arbi-

trary variance σ2 in all components. In the limit σ → 0 such mixtures can approximate

strictly positive densities over compact sets arbitrarily well (Zeevi and Meir, 1997).



Properties of DBNs with binary hidden and real-valued visible units 183

10.4 Conclusions

We presented a step towards understanding the representational power of DBNs for

modeling real-valued data. When binary latent variables are considered, DBNs with

two hidden layers can already achieve good approximation results. Under mild con-

straints, we showed that for modeling a mixture of n pairwise independent distributions,

a DBN with only 2n + 1 binary hidden units is sufficient to make the KL-divergence

between the mixture pmix and the DBN distribution p arbitrarily small (i.e., for every

δ > 0 we can find a DBN such that KL(p‖pmix) < δ). This holds for deep architectures

used in practice, for instance DBNs having visible neurons with Gaussian or truncated

exponential conditional distributions, and corresponding mixture distributions having

components of the same type as the visible units of the DBN. Furthermore, we ex-

tended these results to infinite mixtures and showed that these can be approximated

arbitrarily well by a DBN with a finite number of neurons. Therefore, Gaussian-binary

DBNs inherit the universal approximation properties from additive Gaussian mixtures,

which can model any strictly positive density over a compact domain with arbitrarily

high accuracy.





Chapter 11

Discussion and conclusion

This thesis presented a series of research articles addressing challenges and hith-

erto open questions in the context of the training of Restricted Boltzmann Machines

(RBMs). The first set of articles analyzed different RBM training algorithms; the

second set presented different approaches to improve learning; and the last article an-

alyzed the representational power of Deep Belief Networks (DBNs) with real-valued

visible variables. In the following the main results will be summarized and discussed.

11.1 Summary and discussion

Restricted Boltzmann machines are Markov random fields also known as undirected

graphical models. The training of RBMs is based on gradient ascent on Markov Chain

Monte Carlo (MCMC) based approximations of the log-likelihood gradient. Despite

the existence of a number of sound tutorials which cover RBM training (e.g., Bengio,

2009; Swersky et al., 2010; Hinton, 2012), a self-contained introduction to RBMs from

a statistical perspective was missing so far. Therefore, Chapter 2 presented an intro-

ductory tutorial on training RBMs embedding them into the framework of probabilistic

graphical models and providing the required concepts from Markov chain theory.

Training undirected graphical models such as RBMs is challenging. The training is

based on likelihood maximization, but the likelihood and its gradient are intractable.

This is due to a normalization constant involving a number of terms that grows expo-

nentially with the size of the model. Getting unbiased approximations of the gradient

by MCMC methods typically needs too many sampling steps to be computationally

efficient. Learning algorithms for RBMs, such as k-step Contrastive Divergence (CD,

Hinton, 2002) or (Fast) Persistent CD ((F)PCD, Tieleman, 2008; Tieleman and Hin-

ton, 2009), make use of the fact that a gradient approximation based on samples from



186 Chapter 11

a Gibbs chain iterated only for a small number k of steps (and usually k = 1) appears

to be sufficient for training. Obviously the resulting approximations are biased. As

follows from Markov chain theory, this bias depends on k and the mixing rate of the

Gibbs chain, and it is known that the mixing rate decreases with increasing magnitude

of the RBM parameters (Hinton, 2002; Carreira-Perpiñán and Hinton, 2005; Bengio

and Delalleau, 2009).

11.1.1 An analysis of RBM training algorithms

The first part of the thesis analyzed different aspects of RBM training algorithms.

An analysis of the approximation bias of Gibbs sampling based training

methods. Chapter 3 empirically analyzed the impact of the bias of the Gibbs sam-

pling based gradient approximations used in CD, PCD and FPCD learning. While it is

common knowledge that learning based on the biased approximations may only result

in an approximation of a maximum likelihood solution (Carreira-Perpiñán and Hinton,

2005; Bengio and Delalleau, 2009), it was shown that bias can even lead to a distortion

of the learning process: after an initial increase, the likelihood can start to diverge,

and thus the bias can lead to a systematic and drastic decrease of model quality.1 This

can be explained by the increase of the absolute values of the model parameters during

learning that steadily slows down the mixing rate of the Gibbs chain associated with

the gradient approximation.

In CD learning the Gibbs chain is initialized with a sample from the training set

and the modeled distribution gets closer to this starting distribution during training.

Nevertheless, the property of Gibbs chains to generally converge faster if the starting

distribution is close to the target distribution seems not to compensate for the increase

of parameter magnitudes.

In accordance with the fact that the bias decreases with increasing number of

sampling steps, it was found that increasing k leads to models with higher likelihood

and can prevent divergence. However, divergence occurs even for values of k too large

to be computationally tractable for large models. Furthermore, the analysis showed

that the divergence can be avoided by an adaptive learning rate or the usage of weight

decay, though only when an appropriate annealing schedule or weight decay parameter

is chosen. However, for doing so one would need a reliable heuristics for choosing

the annealing schedule or the weight decay parameter. The divergence could also be

avoided by early stopping, but this requires some reliable indicator that tells us when to

stop, and which can be computed efficiently. However, the likelihood is only tractable

1The divergence effects were reported before by Fischer and Igel (2009) and Desjardins et al. (2010b)

but analyzed first in detail in the presented work.



Discussion and conclusion 187

for small models and it was shown in this work that the reconstruction error, which

has been suggested for monitoring the training progress (Bengio et al., 2007; Taylor

et al., 2007), may further decrease in spite of a divergence of the likelihood and thus

is not reliable. Here efficient estimators for the likelihood could be a solution, for

example Bennett’s Acceptance Ratio (BAR, Bennett, 1976), an estimation method

further analyzed along with variants of Annealed Importance Sampling (AIS, Neal,

2001) in Chapter 9 of this thesis, as it will be discussed below.

It was reported by Bengio and Delalleau (2009) that, despite of the bias, the signs

of most components of the CD update are equal to the corresponding signs of the log-

likelihood gradient (that is, the signs of the corresponding log-likelihood derivatives).

Therefore, the usage of optimization techniques only depending on the signs, such

as resilient backpropagation (RProp, Riedmiller, 1994; Igel and Hüsken, 2003), seems

promising. This idea was investigated in Chapter 4, where RProp was combined with

CD learning for RBM training. It was found that if no divergence occurs for steepest

ascent on the gradient approximation, the distributions underlying the training data

could also be learned with Rprop. However, if the likelihood diverges when using

steepest ascent, the divergence became even more severe when using Rprop. This is

due to the faster growth of the RBM parameters induced by Rporp, which also leads to

a faster increase of the approximation bias. Thus, although the sign of the components

of the CD update direction vector has been reported to often be right, learning based

on these signs tends to diverge.

The work in Chapter 5 theoretically analyzed the CD-k approximation bias by

deriving an upper bound for the expected approximation error. It is based on a well

known upper bound for the convergence rate of the Gibbs sampler (see e.g., Brémaud,

1999, highlighting again the close connection between the magnitude of the bias and

the mixing rate of the Gibbs chain. The new bound is considerably tighter than a

previous published result (Bengio and Delalleau, 2009). Moreover, the derived bound

shows a dependency on the magnitude of the RBM parameters and the number of sam-

pling steps that is in line with the empirical results given in Chapter 3 and discussed

above. It increases with increasing absolute values of the model parameters, reflecting

the dependency of the approximation bias on the parameters and indicating the rele-

vance of controlling the absolute parameter values, for example by using weight-decay.

Like the bias, the upper bound decreases with increasing number k of sampling steps

emphasizing the fact that larger values of k stabilize CD learning. Furthermore, the

bound increases with increasing size of the RBM (that is, with increasing number of

variables) and decreases with decreasing distance between the modeled distribution

and the starting distribution of the Gibbs chain.

In the presented analysis the starting distribution was chosen to be the empirical



188 Chapter 11

distribution underlying the training data, since in CD learning the Gibbs chain is

initialized with a sample from the training set. If the starting distribution is chosen

to be the distribution given by the persistent Gibbs chain employed in PCD learning

instead, the results can also be applied to bounding the approximation error of this

training method.

Experiments comparing the values of bias and bound of the CD approximation for

small RBMs trained on toy data sets showed the tightness of the new bound. Only

in the initial phase of learning, the bound was rather loose. While the bound takes

rather large values in the beginning, because the distance between starting and model

distribution is large, the bias is small in the initial phase when the parameters are

close to zero and Gibbs sampling mixes fast. However, the difference between bias and

bound decreases fast and the bound gets tight during training.

An analysis of the mixing rate of PT sampling in RBMs. Parallel tempering

(PT, Swendsen and Wang, 1986; Geyer, 1991) is an advanced sampling technique aimed

at increasing the mixing rate of Metropolis-Hastings based methods such as Gibbs sam-

pling. It samples in parallel from several tempered Gibbs chains, corresponding to more

and more smoothed versions of the original chain, and allows samples to swap between

chains. Parallel tempering was successfully applied for sampling in RBM training,

where it was shown to lead to better generative models (Desjardins et al., 2010b; Cho

et al., 2010). Furthermore, it can prevent the divergence of the log-likelihood if the

number of parallel chains is sufficiently large. This can for example be seen from the

results of the introductory experiments presented in Chapter 2.

Chapter 6 presented the first analysis of the convergence rate of PT for sampling

in RBMs. Based on general results for the mixing rate of PT (Woodard et al., 2009b),

a lower bound on the spectral gap was derived. This yielded an upper bound on the

convergence rate, which shows an exponential dependency on the maximum size of the

two layers and the sum of the absolute values of the RBM parameters. Thus, the bound

indicates that mixing slows down with an increase of the number of variables and the

magnitude of the model parameters. These dependencies are similar to those of the well

known bound on the convergence rate of the Gibbs sampler (see, e.g. Brémaud, 1999)

used for deriving the bound on the CD-approximation bias in Chapter 5 as discussed

above.

Since the results of empirical studies imply that PT has better mixing properties

than Gibbs sampling, one would like to find a bound on the convergence rate of PT

that is tighter than that on the convergence rate of the Gibbs sampler. However, this

property does not hold for the bound derived in this thesis. One reason for this is that

it bounds the convergence of the ensemble of all tempered chains used in parallel (also



Discussion and conclusion 189

referred to as product chain) and not only of the original chain and the product chain

always converges slower than the single chains. Finding a direct bound on the mixing

rate of the original chain instead seems difficult. To my knowledge, all approaches to

analyze the mixing rate of general PT sampling published so far consider the ensemble

of chains (e.g., Woodard et al. (2009b); Madras and Zheng (2003); Bhatnagar and

Randall (2004)). This also explains why they all suffer (as the derived bound) from

the same linear dependency on the number of parallel chains.

The derived bound is arguably loose, but it is non trivial and presents the first

approach to investigate the mixing rate of PT for RBMs. Furthermore, it may be

interpreted as being in favor of the conjecture that it is not possible to get rid of

the exponential dependencies of the mixing rate on the RBM complexity. This would

mean that PT for RBMs is not rapidly mixing, a property shown to be true for related

models from physics (as for example certain types of the mean field Potts model, or

the mean field Ising model if the number of parallel chains used in PT is not increased

with the model complexity (Woodard et al., 2009a)). However, this conjecture needs

to be further investigated.

11.1.2 Improvements for RBM training

The second part of the thesis presented several improvements for RBM training.

A transition operator for sampling in RBMs that increases the mixing rate.

The results described in the previous section emphasize that the performance of RBM

learning algorithms strongly depends on the mixing rate of the Markov chains used

for sampling. The sampling techniques used in CD learning and its variants as well as

PT rely on Gibbs sampling, which is a Metropolis-type transition operator. Chapter 7

suggested to replace Gibbs sampling by another transition operator from this family.

The proposed operator was designed to maximize the probability of state changes and

is referred to as flip-the-state operator. It is related to the Metropolized Gibbs sampler

previously discussed as an alternative to the standard Gibbs sampler for sampling in

Ising models (Neal, 1993; Liu, 1996).

Chapter 7 presented a theoretical as well as an empirical analysis of the proposed

operator. In the theoretical analysis, it was proven that the flip-the-state operator in-

duces an aperiodic and irreducible Markov chain, which guarantees that it is properly

converging to the stationary distribution. The empirical analysis compared the mixing

behavior of the flip-the-state method with Gibbs sampling in various experiments in-

vestigating the second largest eigenvalues of the corresponding transition matrices, the

induced autocorrelation times and the resulting number of class changes that reflect

mode changes. While Gibbs sampling is optimal if the RBM parameters are (close



190 Chapter 11

to) zero, the results clearly show that the proposed flip-the-state method increases

the mixing rate compared to Gibbs sampling when the magnitude of the parameters

increases. Better mixing properties in a scenario with large weights make the flip-the-

state operator especially promising for sampling in learning methods. A comparison of

the standard learning methods CD, PCD and training based on PT employing either

the Gibbs or the flip-the-state transition operator indeed showed that the proposed

operator leads to better learning results. Statistically significant higher likelihood val-

ues were reached during training for most experimental settings. The improvements

on the learning outcome were rather small, but consistently observed for all learning

algorithms. Furthermore, flip-the-state sampling does not introduce computational

overhead. Therefore, it should clearly be used instead of Gibbs sampling in practice.

A way of parametrizing RBMs that leads to better models and robustness

against changes of the data representation. Recently, Montavon and Müller

(2012) showed that subtracting mean values from the variables of Deep Boltzmann

Machines (DBMs) leads to better conditioned optimization problems and to better

generative properties in the case of locally connected DBMs.

Inspired by this work, Chapter 8 analyzed centered binary RBMs, where centering

corresponds to subtracting offset parameters from visible and hidden variables. It was

shown analytically that, since centered RBMs and normal RBMs are different param-

eterizations of the same model class, training a centered RBM can be reformulated to

training a normal binary RBM based on a new update direction, which is used instead

of the gradient and is called the centered gradient. From this new formulation followed

that the enhanced gradient (Cho et al., 2011) is equivalent to centering for a certain

choice of offset parameters. The enhanced gradient was designed as an alternative

update direction replacing the log-likelihood gradient in RBM training, with the aim

of making the training procedure more robust against changes of the input representa-

tion. In particular, training should perform equally well on a data set and the inverted

version of the same set (generated by flipping all bits). This desired invariance of the

training performance to changes of the data representation holds more generally for

centered RBMs for a broad set of offset values as proven in this work.

An empirical analysis showed that centered RBMs are not only robust against

changes of the data representation but can also reach significantly higher log-likelihood

values than normal binary RBMs. The analysis comprised a comparison of different

offset values and different ways to train centered RBMs, including the centering version

equal to the enhanced gradient, the paramterization subtracting the data mean from

the visible variables introduced by Tang and Sutskever (2011) and the centering ver-

sion suggested by Montavon and Müller (2012). The comparison showed that optimal



Discussion and conclusion 191

performance is achieved when both visible and hidden variables are centered and when

the offsets are set to (approximations of) the variable expectations under the data or

model distribution. However, using the expectation under the RBM distribution (as

for example the enhanced gradient does) can lead to a severe divergence of the log-

likelihood when using PT for training. This can be prevented when an exponentially

moving average is applied to the approximations of the offset values.

One explanation for the superiority of centered RBMs is that they explicitly model

the mean values, which allows the weights to model second and higher order statistics

right from the start. This is in contrast to normal binary RBMs, where the weights usu-

ally capture parts of the mean values. This explanation was supported by an empirical

comparison of the norms of weight and bias parameters showing that training centered

RBMs leads to smaller weight norms and larger bias norms compared to normal bi-

nary RBMs. Another experiment compared the centered gradient and the standard

gradient to the natural gradient (Amari, 1998), which would be the update direction of

choice if it were tractable for RBMs (Desjardins et al., 2013). An investigation of the

angle between the centered and the natural gradient as well as the angle between the

standard and the natural gradient showed that the centered gradient is closer to the

natural gradient supporting the observed superiority of centered RBMs. In summary,

all presented results clearly show that centering should always be used when training

binary RBMs.

New estimators for the normalization constant for assessing model quality.

Computing the log-likelihood of the RBM parameters given some data requires to

compute the normalization constant (also referred to as partition function), which is

only tractable for small RBMs. This makes it difficult to assess the model quality of

trained RBMs, to monitor the training process, or to perform likelihood ratio tests.

Therefore, statistical techniques for efficiently estimating the normalization constant

are needed. So far, two estimation methods borrowed from statistical physics have

been applied for estimating the partition function of RBMs: Salakhutdinov and Murray

(2008) suggested to use AIS and Desjardins et al. (2011) employed BAR in combination

with an importance sampling based estimator using samples from previous learning

iterations and a Kalman filter like inference procedure.

Chapter 9 introduced a theoretic framework for deriving estimates for the fraction

of the normalization constants of two distributions (where one can be chosen to be the

RBM distribution and the other to be a reference distribution for which the normal-

ization constant is known). The framework uses a generalized form of Crooks’ equality

(Crooks, 2000), which links this fraction of normalization constants to the fraction

of two expectations, one over a distribution of samples generated by a transition op-



192 Chapter 11

erator and the other over the distribution induced by the reversed operator. From

there, generalizations of AIS and BAR can be derived, which allow the use of different

sampling methods for drawing samples from a set of bridging distributions connecting

the RBM and the reference distribution. The analysis focused on path sampling (as

typically used for AIS (Neal, 2001)) and PT as methods for generating dependent or

independent samples from a set of bridging distributions, respectively.

In a set of experiments, the partition function estimation via vanilla AIS was com-

pared with AIS- and BAR-based estimators using independent samples from PT. The

results showed that all approaches using PT lead to better estimation results than

vanilla AIS. Furthermore, algorithms based on AIS were clearly outperformed by BAR-

like estimators. This is in accordance with the results reported by Desjardins et al.

(2011), who found that the RBM likelihood can efficiently be tracked with an estima-

tion procedure using, among others, BAR and PT as components. A comparison of the

estimation errors for the normalization constant of randomly generated RBMs further

showed that AIS tends to underestimate the true value of the partition function, while

the distribution of the approximation error of BAR was almost symmetric. The ten-

dency of underestimation was especially strong for vanilla AIS and already reduced if

AIS variants relying on PT samples were employed. Experiments varying the number

of bridging distributions and the bridging distributions themselves showed the superi-

ority of BAR over AIS especially for settings where only a small number of bridging

chains are employed. Moreover, the performance of AIS strongly depends on the right

choice of bridging distributions, while BAR worked reliably across a range of different

distributions. The results further showed that if PT is employed for sampling from

the bridging distributions, the estimation performance depends on the sample quality.

Thus, it is important that the burn-in times are not too short. However, when the

estimators were used to track the partition function during PT based training (reusing

the samples generated for learning), the persistent PT chains seemed to be sufficiently

close to the bridging distributions such that biased samples were not a problem. In

summary, the results clearly suggest to use BAR with PT instead of AIS to estimate

the normalization constants of RBMs.

11.1.3 An analysis of the representational power of DBNs with

real-valued visible variables

Restricted Boltzmann machines are the building blocks of DBNs. While it is known

that DBNs with binary variables can approximate any distribution over fixed-length

binary vectors arbitrarily well (Le Roux and Bengio, 2008; Montufar and Ay, 2011;

Le Roux and Bengio, 2010), little is known about the approximation capabilities of

DBNs modeling distributions over real-valued data.



Discussion and conclusion 193

Chapter 10 contributed to filling this gap by analyzing the representational power of

DBNs with two layers of binary hidden variables and real-valued visible variables with

conditional distributions from the exponential family. It was shown that, under mild

technical assumptions, these DBNs can model any additive mixture of distributions

from the exponential family with independent variables arbitrarily well. This was done

by deriving an upper bound on the Kullback-Leibler divergence between the model and

the mixture distribution. The bound can be made arbitrarily small for an m dimen-

sional mixture distribution of n pairwise independent components and the distribution

represented by a DBN with m visible variables and n and n+1 hidden variables in the

first and second hidden layer, respectively. The required technical assumptions hold,

for example, for DBNs having visible variables with Gaussian or truncated exponential

conditional distributions and corresponding mixture distributions having components

of the same type. Thus, the results hold for architectures relevant in practice.

The results were further transferred from finite to infinite mixtures. It was shown

that an infinite mixture can be approximated arbitrarily well by a DBN with a finite

number of variables. This also applies to infinite additive mixtures of Gaussians, which

in turn can model any strictly positive density over a compact domain with arbitrary

high accuracy (Zeevi and Meir, 1997). Therefore, DBNs with Gaussian visible and

binary hidden neurons can also model any strictly positive density over a compact

domain arbitrarily well.

A similar idea as underlying this analysis was also used by Cho et al. (2013a) for

proving universal approximation properties for DBMs with Gaussian visible and two

layers of binary hidden variables.

11.2 Conclusion

In this thesis it was shown that the bias of Gibbs sampling based approximations of

the log-likelihood gradient as used for CD or PCD learning in RBMs can lead to a

divergence of the likelihood and thus to a severe disturbance of the learning process.

This divergence occurs for gradient ascent as well as for Rprop, a gradient based op-

timization technique only relying on the signs of the derivatives. The approximation

bias can be upper bounded by an expression reflecting, among others, the dependency

of the approximation error on the number of sampling steps and the magnitude of the

RBM parameters, which is known to influence the mixing rate of the Gibbs chain.

In this thesis, the first analysis of the convergence rate of PT was presented, an ad-

vanced sampling technique aiming at increasing the mixing rate of Gibbs sampling by

running several Gibbs chains in parallel, that leads to higher log-likelihood values and

can prevent divergence in RBM training. Furthermore, it was shown that the mixing



194 Chapter 11

rate of all sampling methods used for RBM training can be increased by replacing

the Gibbs sampler by the proposed flip-the-state transition operator, that maximizes

the probability of state changes. By subtracting the mean from the variables, which

leads to centered RBMs (a different parametrization of the same model class), the

training procedure gets more robust against changes of the data representation and

better models of the training data can be learned. An analysis showed that the BAR

method gives results superior to AIS for estimating the likelihood of the RBM param-

eters, and that it can be employed to reliably assess model performance and training

progress, optimally during PT based training. Finally, the representational power of

DBNs with real-valued visible variables was analyzed and it was shown that (under

mild assumptions) an DBN with 2n+ 1 hidden units can model any additive mixture

of n distributions from the exponential family with independent variables arbitrarily

well. Furthermore, a finite number of hidden variables is sufficient to approximate any

strictly positive density over a compact domain.

Summarizing the main conclusions for training RBMs in practice, I recommend

training centered RBMs with PT and employing the flip-the-state operator. Further-

more BAR should be preferred over AIS for tracking the model performance.

11.3 Future work

Most of the work presented in this thesis focused on RBMs with binary variables. Some

of the concepts and ideas could be transferred to RBMs with real valued variables,

most prominently RBMs having binary hidden and visible variables with a Gaussian

conditional distribution, also called Gaussian-Bernoulli-RBMs (GB-RBMs). Firstly,

the bounds on the approximation bias of CD and the convergence rate of PT can

be adapted to sampling from GB-RBMs. Secondly, the idea underlying the flip-the-

state operator, namely the idea of ‘trying to move away’ from the current value of a

variable when drawing a new value, can also be applied to RBM variables with Gaussian

conditional distributions. For this purpose, the over-relaxation method described by

Adler (1981) could be employed, where a new value of a variable is drawn from a

Gaussian that is biased to the side of the conditional distribution opposite to the

current value. How this influences the mixing behavior of sampling methods and the

learning outcome of RBM training makes up an interesting question. Thirdly, analyzing

centered RBMs with Gaussian variables could be interesting, since Cho et al. (2013a)

reported that the enhanced gradient, which was shown to be a version of centering,

improves the training of Gaussian-Bernoulli-DBMs.

Furthermore, the hypothesis that PT is not rapid but torpid mixing in RBMs, that

means that the convergence rate decreases exponentially and not polynomially as a



Discussion and conclusion 195

function of the size of the RBM, needs to be further investigated. An approach could

be based on the conditions for torpid mixing of PT specified by Woodard et al. (2009a).

Arguably, PT is one of the most successful methods for sampling in RBMs. In

Markov random fields often used in physics, like the Ising and the Potts model, another

family of MCMC techniques, sometimes referred to as cluster MCMC methods, became

quite popular (Wang and Swendsen, 1990). Prominent examples are the Swendsen-

Wang and the Wolff algorithm (Swendsen and Wang, 1987; Wolff, 1989). The basic

idea of these type of methods is to sample a new value for a whole cluster of variables

and not only for single variable in each step. It is interesting to investigate if this

principle could also be applied to sampling in RBMs.

On the other hand, some of the results from this thesis may also be relevant to

the field of physics. For example the convergence proof for the flip-the-state operator

could be adapted to the Ising and Potts model.





Bibliography

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann

machines. Cognitive Science, 9:147–169, 1985.

S. L. Adler. Over-relaxation method for the Monte Carlo evaluation of the partition

function for multiquadratic actions. Physical Review D, 23:2901–2904, 1981.

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):

251–276, 1998.

S. Amari, K. Koji, and N. Hiroshi. Information geometry of Boltzmann machines.

IEEE Transactions on Neural Networks, 3(2):260–271, 1992.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 21(6):1601–1621, 2009.

Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neural

Computation, 21(6):1601–1621, 2009.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training

of deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in

Neural Information Processing (NIPS 19), pages 153–160. MIT Press, 2007.

Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representations.

In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th International

Conference on Machine Learning (ICML), volume 28 of JMLR W&CP, pages 552–

560, 2013.

C. H. Bennett. Efficient estimation of free energy differences from Monte Carlo data.

Journal of Computational Physics, 22(2):245 – 268, 1976.

N. Bhatnagar and D. Randall. Torpid mixing of simulated tempering on the potts

model. In J. I. Munro, editor, Proceedings of the 15th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 478–487. SIAM, 2004.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.



198 Bibliography

P. Brakel, S. Dieleman, and B. Schrauwen. Training restricted Boltzmann machines

with multi-tempering: harnessing parallelization. In M. Verleysen, editor, European

Symposium on Artificial Neural Networks, Computational Intelligence and Machine

Learning (ESANN), pages 287–292. Evere, Belgium: d-side publications, 2012.

P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues.

Springer-Verlag, 1999.

O. Breuleux, Y. Bengio, and P. Vincent. Quickly generating representative samples

from an RBM-derived process. Neural computation, 23(8):2058–2073, 2011.

K. Brügge, A. Fischer, and C. Igel. The flip-the-state transition operator for restricted

Boltzmann machines. Machine Learning, 13:53–69, 2013.

S. Caracciolo, A. Pelissetto, and A. D. Sokal. Two remarks on simulated tempering.

Unpublished manuscript, 1992.

M. Á. Carreira-Perpiñán and G. E. Hinton. On contrastive divergence learning. In

R. G. Cowell and Z. Ghahramani, editors, 10th International Workshop on Artifi-

cial Intelligence and Statistics (AISTATS), pages 59–66. The Society for Artificial

Intelligence and Statistics, 2005.

K. Cho, T. Raiko, and A. Ilin. Parallel tempering is efficient for learning restricted

Boltzmann machines. In Proceedings of the International Joint Conference on Neural

Networks (IJCNN), pages 3246–3253. IEEE Press, 2010.

K. Cho, T. Raiko, and A. Ilin. Enhanced gradient and adaptive learning rate for train-

ing restricted Boltzmann machines. In L. Getoor and T. Scheffer, editors, Proceed-

ings of 28th International Conference on Machine Learning (ICML), pages 105–112.

ACM, 2011.

K. Cho, T. Raiko, and A. Ilin. Gaussian-Bernoulli deep Boltzmann machines. In

In Proceedings of the International Joint Conference on Neural Networks (IJCNN),

pages 1–8. IEEE, 2013a.

K. Cho, T. Raiko, and A. Ilin. Enhanced gradient for training restricted Boltzmann

machines. Neural Computation, 25:805–831, 2013b.

A. Courville, J. Bergstra, and Y. Bengio. Unsupervised models of images by spike-

and-slab RBMs. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th

International Conference on Machine Learning (ICML), pages 1145–1152. ACM,

2011.



Bibliography 199

G. E. Crooks. Path-ensemble averages in systems driven far from equilibrium. Physical

Review E, 61:2361–2366, 2000.

G. Desjardins, A. Courville, and Y. Bengio. Adaptive parallel tempering for stochastic

maximum likelihood learning of RBMs. In H. Lee, M. Ranzato, Y. Bengio, G. E.

Hinton, Y. LeCun, and A. Y. Ng, editors, NIPS 2010 Workshop on Deep Learning

and Unsupervised Feature Learning, 2010a.

G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Dellaleau. Tempered Markov

chain Monte Carlo for training of restricted Boltzmann machines. In Y. W. Teh

and M. Titterington, editors, Proceedings of the 13th International Workshop on

Artificial Intelligence and Statistics (AISTATS), volume 9 of JMLR W&CP, pages

145–152, 2010b.

G. Desjardins, A. C. Courville, and Y. Bengio. On tracking the partition function. In

Advances in Neural Information Processing Systems 24 (NIPS), pages 2501–2509.

MIT Press, 2011.

G. Desjardins, R. Pascanu, A. Courville, and Y. Bengio. Metric-free natural gradient

for joint-training of Boltzmann machines. CoRR, abs/arXiv:1301.3545, 2013.

P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains.

The Annals of Applied Probability, 3:696–730, 1993.

P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov

chains. The Annals of Applied Probability, 6:695–750, 1996.

P. Diaconis and L. Saloff-Coste. What do we know about the Metropolis algorithm?

Journal of Computer and System Sciences, 57:20–36, 1998.

D. Erhan, A. Courville, Y. Bengio, and P. Vincent. Why does unsupervised pre-training

help deep learning? In Y. W. Teh and M. Titterington, editors, Proceedings of the

13th International Conference on Artificial Intelligence and Statistics (AISTATS),

volume 9 of JMLR W&CP, pages 201–208, 2010.

A. Fischer and C. Igel. Contrastive divergence learning may diverge when training

restricted Boltzmann machines. Frontiers in Computational Neuroscience. Bernstein

Conference on Computational Neuroscience (BCCN), 2009.

A. Fischer and C. Igel. Empirical analysis of the divergence of Gibbs sampling based

learning algorithms for restricted Boltzmann machines. In K. Diamantaras, W. Duch,

and L. S. Iliadis, editors, International Conference on Artificial Neural Networks

(ICANN), volume 6354 of LNCS, pages 208–217. Springer-Verlag, 2010a.



200 Bibliography

A. Fischer and C. Igel. Challenges in training restricted Boltzmann machines. In

B. Hammer and T. Villmann, editors, New Challenges in Neural Computation (NC2),

number 04/2010 in Machine Learning Reports, pages 11–24. 2010b.

A. Fischer and C. Igel. Bounding the bias of contrastive divergence learning. Neural

Computation, 23:664–673, 2011a.

A. Fischer and C. Igel. Parallel tempering, importance sampling, and restricted Boltz-

mann machines. In 5th Workshop on Theory of Randomized Search Heuristics

(ThRaSH), 2011b. Online abstract.

A. Fischer and C. Igel. Training restricted Boltzmann machines: An introduction.

Pattern Recognition, 47:25–39, 2014.

P. V. Gehler, A. D. Holub, and M. Welling. The rate adapting poisson model for

information retrieval and object recognition. In W. Cohen and A. Moore, editors,

Proceedings of 23rd International Conference on Machine Learning (ICML), pages

337–344. ACM, 2006.

A. Gelman and X.-L. Meng. Simulating normalizing constants: from importance sam-

pling to bridge sampling to path sampling. Statistical Science, 13(2):163–185, 1998.

D. Geman, S.and Geman. Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 6(6):721–741, 1984.

C. J. Geyer. Markov chain Monte Carlo maximum likelihood. In E. Kerami, edi-

tor, Proceedings of the 23rd Symposium on the Interface of Computing Science and

Statistics, pages 156–163. Interface Foundation of North America, 1991.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their appli-

cations. Biometrika, 57(1):97–109, 1970.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.

Neural Computation, 14:1771–1800, 2002.

G. E. Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences,

11(10):428–434, 2007a.

G. E. Hinton. Boltzmann machine. Scholarpedia, 2(5):1668, 2007b.

G. E. Hinton. A practical guide to training restricted Boltzmann machines. In Neural

Networks: Tricks of the Trade - Second Edition, pages 599–619. Springer, 2012.



Bibliography 201

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006.

G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines.

In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, vol. 1: Foundations, pages 282–317.

MIT Press, 1986.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief

nets. Neural Computation, 18(7):1527–1554, 2006.

C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algorithm.

Neurocomputing, 50(C):105–123, 2003.

C. Igel, T. Glasmachers, and V. Heidrich-Meisner. Shark. Journal of Machine Learning

Research, 9:993–996, 2008.

J. Kivinen and C. Williams. Multiple texture Boltzmann machines. In N. Lawrence and

M. Girolami, editors, Proceedings of the 14th International Conference on Artificial

Intelligence and Statistics (AISTATS), volume 22 of JMLR W&CP, pages 638–646,

2012.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.

MIT Press, 2009.

O. Krause, A. Fischer, T. Glasmachers, and C. Igel. Approximation properties of

DBNs with binary hidden units and real-valued visible units. In S. Dasgupta and

D. McAllester, editors, Proceedings of the 30th International Conference on Machine

Learning (ICML), volume 28 of JMLR W&CP, pages 419–426, 2013.

H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltzmann

machines. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, Proceedings

of the 25th International Conference on Machine learning (ICML), pages 536–543.

ACM, 2008.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical

evaluation of deep architectures on problems with many factors of variation. In

Z. Ghahramani, editor, Proceedings of the 24th International Conference on Machine

Learning (ICML), pages 473–480. ACM, 2007.

H. Larochelle, M. I. Mandel, R. Pascanu, and Y. Bengio. Learning algorithms for the

classification restricted boltzmann machine. Journal of Machine Learning Research,

13:643–669, 2012.



202 Bibliography

S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.

N. Le Roux and Y. Bengio. Representational power of restricted Boltzmann machines

and deep belief networks. Neural Computation, 20(6):1631–1649, 2008.

N. Le Roux and Y. Bengio. Deep belief networks are compact universal approximators.

Neural Computation, 22(8):2192–2207, 2010.

N. Le Roux, N. Heess, J. Shotton, and J. M. Winn. Learning a generative model

of images by factoring appearance and shape. Neural Computation, 23(3):593–650,

2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998a.

Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller. Efficient backprop. Neural Networks:

Tricks of the trade, 1998b.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for

scalable unsupervised learning of hierarchical representations. In Proceedings of the

26th International Conference on Machine Learning (ICML), pages 609–616. ACM,

2009a.

H. Lee, Y. Largman, P. Pham, and A. Y. Ng. Unsupervised feature learning for

audio classification using convolutional deep belief networks. In Advances in Neural

Information Processing Systems (NIPS 22), pages 1096–1104. MIT Press, 2009b.

J. Q. Li and A. R. Barron. Mixture density estimation. In S. A. Solla, T. K. Leen, and

K. R. Müller, editors, Advances in Neural Information Processing Systems (NIPS

12), pages 279–285. MIT Press, 2000.

M. N. Lingenheil, R. Denschlag, G. Mathias, and P. Tavan. Efficiency of exchange

schemes in replica exchange. Chemical Physics Letters, 478:80 – 84, 2009.

J. S. Liu. Metropolized independent sampling with comparisons to rejection sampling

and importance sampling. Statistics and Computing, 6:113–119, 1996.

D. J. C. MacKay. Failures of the one-step learning algorithm. Cavendish Labora-

tory, Madingley Road, Cambridge CB3 0HE, UK. http://www.cs.toronto.edu/

~mackay/gbm.pdf, 2001.

D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge

University Press, 2002.



Bibliography 203

N. Madras and D. Randall. Markov chain decomposition for convergence rate analysis.

The Annals of Applied Probability, 12(581–606), 2002.

N. Madras and Z. Zheng. On the swapping algorithm. Random Structures Algorithms,

22:66–97, 2003.

X.-L. Meng and W. H. Wong. Simulating ratios of normalizing constants via a simple

identity: A theoretical explanation. Statistica Sinica, 6:831–860, 1996.

V. Mnih, H. Larochelle, and G. E. Hinton. Conditional restricted Boltzmann machines

for structured output prediction. In F. G. Cozman and A. Pfeffer, editors, Proceedings

of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI),

page 514. AUAI Press, 2011.

A. Mohamed and G. E. Hinton. Phone recognition using restricted Boltzmann ma-

chines. In IEEE International Conference on Acoustics Speech and Signal Processing

(ICASSP), pages 4354–4357. IEEE Press, 2010.

G. Montavon and K. Müller. Deep Boltzmann machines and the centering trick. Lecture

Notes in Computer Science (LNCS), 7700:621–637, 2012.

G. Montufar and N. Ay. Refinements of universal approximation results for deep belief

networks and restricted Boltzmann machines. Neural Computation, 23(5):1306–1319,

2011.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Techni-

cal Report CRG-TR-93-1, Department of Computer Science, University of Toronto,

1993.

R. M. Neal. Annealed importance sampling. Statistics and computing, 11:125–139,

2001.

R. M. Neal. Estimating ratios of normalizing constants using linked importance sam-

pling. ArXiv Mathematics e-prints, 2005.

Y. Ollivier, L. Arnold, A. Auger, and N. Hansen. Information-geometric optimization

algorithms: A unifying picture via invariance principles. Technical report, CoRR,

abs/1106.3708v2, 2013.

P. H. Peskun. Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60

(3):607–612, 1973.

T. Raiko, H. Valpola, and Y. LeCun. Deep learning made easier by linear transforma-

tions in perceptrons. Journal of Machine Learning Research, 22:924–332, 2012.



204 Bibliography

M. A. Ranzato, F. J. Huang, Y. L. Boureau, and Y. LeCun. Unsupervised learning of

invariant feature hierarchies with applications to object recognition. In Conference

on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA,

2007. IEEE.

M. Riedmiller. Advanced supervised learning in multi-layer perceptrons – From back-

propagation to adaptive learning algorithms. Computer Standards and Interfaces,

16(5):265–278, 1994.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533–536, 1986a.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations

by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Paral-

lel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1:

Foundations, pages 318–362. MIT Press, 1986b.

R. Salakhutdinov. Learning and evaluating Boltzmann machine. Technical report,

University of Toronto, 2008.

R. Salakhutdinov. Learning in Markov random fields using tempered transitions. In

Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,

Advances in Neural Information Processing Systems (NIPS 22), pages 1598–1606.

MIT Press, 2009.

R. Salakhutdinov and G. E. Hinton. Learning a nonlinear embedding by preserving

class neighbourhood structure. In M. Meila and X. Shen, editors, Proceedings of the

11th International Conference on Artificial Intelligence and Statistics (AISTATS),

volume 2 of JMLR W&CP, pages 412 – 419, 2007.

R. Salakhutdinov and G. E. Hinton. Replicated softmax: an undirected topic model.

In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,

Advances in Neural Information Processing Systems (NIPS 22), pages 1607–1614.

MIT Press, 2009a.

R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In D. van Dyk and

M. Welling, editors, Proceedings of the 12th International Conference on Artificial

Intelligence and Statistics (AISTATS), volume 5 of JMLR W&CP, pages 448–455,

2009b.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks.

In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, Proceedings of the Inter-

national Conference on Machine Learning (ICML), volume 25. ACM, 2008.



Bibliography 205

R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for col-

laborative filtering. In Z. Ghahramani, editor, Proceedings of the 24th International

Conference on Machine Learning (ICML), pages 791–798. ACM, 2007.

J. Schlüter and C. Osendorfer. Music Similarity Estimation with the Mean-Covariance

Restricted Boltzmann Machine. In Proceedings of the 10th International Conference

on Machine Learning and Applications (ICMLA), 2011.

T. Schmah, G. E. Hinton, R. S. Zemel, S. L. Small, and S. C. Strother. Generative

versus discriminative training of RBMs for classification of fMRI images. In D. Koller,

D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information

Processing Systems (NIPS 21), pages 1409–1416. MIT Press, 2009.

H. Schulz, A. Müller, and S. Behnke. Investigating convergence of restricted Boltzmann

machine learning. NIPS 2010 Workshop on Deep Learning and Unsupervised Feature

Learning, 2010.

B. Schwehn. Using the natural gradient for training restricted Boltzmann machines.

Master’s thesis, University of Edinburgh, Edinburgh, 2010.

N. R. Shirts, E. Bair, G. Hooker, and V. S. Pande. Equilibrium free energies from

nonequilibrium measurements using maximum-likelihood methods. Physical Review

Letters, 91:140601, 2003.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony

theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations,

pages 194–281. MIT Press, 1986.

S. Sukhbaatar, T. Makino, K. Aihara, and T. Chikayama. Robust generation of dy-

namical patterns in human motion by a deep belief nets. In C. S. Ong and T. B.

Ho, editors, Proceedings of the 3rd Asian Conference on Machine Learning (ACML),

JMLR W&CP, pages 231–246, 2011.

I. Sutskever and T. Tieleman. On the convergence properties of contrastive divergence.

In Y. W. Teh and M. Titterington, editors, Proceedings of the 13th International

Conference on Artificial Intelligence and Statistics (AISTATS), volume 9 of JMLR

W&CP, pages 789–795, 2010.

R. H. Swendsen and J.-S. Wang. Replica Monte Carlo simulation of spin-glasses.

Physical Review Letters, 57:2607–2609, 1986.

R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo sim-

ulations. Physical Review Letters, 58:86–88, 1987.



206 Bibliography

K. Swersky, B. Chen, B. Marlin, and N. de Freitas. A tutorial on stochastic approxi-

mation algorithms for training restricted Boltzmann machines and deep belief nets.

In Information Theory and Applications Workshop (ITA), 2010, pages 1–10. IEEE,

2010.

Y. Tang and I. Sutskever. Data normalization in the learning of restricted Boltzmann

machines. Technical report, Department of Computer Science, University of Toronto,

2011.

Y. Tang, R. Salakhutdinov, and G. E. Hinton. Robust Boltzmann machines for recog-

nition and denoising. In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 2264–2271. IEEE, 2012.

G. W. Taylor and G. E. Hinton. Factored conditional restricted Boltzmann machines

for modeling motion style. In A. P. Danyluk, L. Bottou, and M. L. Littman, edi-

tors, Proceedings of the 26th International Conference on Machine Learning (ICML),

pages 1025–1032. ACM, 2009.

G. W. Taylor, G. E. Hinton, and S. T. Roweis. Modeling human motion using binary

latent variables. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in

Neural Information Processing Systems (NIPS 19), pages 1345–1352. MIT Press,

2007.

G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-

temporal features. In Computer Vision – ECCV 2010, volume 6316 of LNCS, pages

140–153. Springer, 2010.

M. B. Thompson. A comparison of methods for computing autocorrelation time. Tech-

nical Report 1007, Department of Statistics, University of Toronto, 2010.

M. B. Thompson. Introduction to SamplerCompare. Journal of Statistical Software,

43(12), 2011.

T. Tieleman. Training restricted Boltzmann machines using approximations to the

likelihood gradient. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors,

Proceedings of the 25th International Conference on Machine learning (ICML), pages

1064–1071. ACM, 2008.

T. Tieleman and G. E. Hinton. Using fast weights to improve persistent contrastive

divergence. In A. Pohoreckyj Danyluk, L. Bottou, and M. L. Littman, editors, Pro-

ceedings of the 26th International Conference on Machine Learning (ICML), pages

1033–1040. ACM, 2009.



Bibliography 207

S. N. Tran, D. Wolff, T. Weyd, and A. Garcez. Feature preprocessing with RBMs for

music similarity learning. In Proceedings of the AES 53rd International Conference

on Semantic Audio, 2014.

J.-S. Wang and R. H. Swendsen. Cluster Monte Carlo algorithms. Physica A: Statistical

Mechanics and its Applications, 167(3):565 – 579, 1990.

N. Wang, J. Melchior, and L. Wiskott. An analysis of Gaussian-binary restricted Boltz-

mann machines for natural images. In M. Verleysen, editor, European Symposium

on Artificial Neural Networks, Computational Intelligence and Machine Learning

(ESANN), pages 287–292. Evere, Belgium: d-side publications, 2012.

M. Welling. Product of experts. Scholarpedia, 2(10):3879, 2007.

M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an

application to information retrieval. In L. K. Saul, Y. Weiss, and L. Bottou, editors,

Advances in Neural Information Processing Systems (NIPS 17), pages 1481–1488.

MIT Press, 2005.

U. Wolff. Collective Monte Carlo updating for spin systems. Physical Review Letters,

62:361–364, 1989.

D. Woodard, S. Schmidler, and M. Huber. Sufficient conditions for torpid mixing

of parallel and simulated tempering. Electronic Journal of Probability, 14:780–804,

2009a.

D. B. Woodard, S. C. Schmidler, and M. Huber. Conditions for rapid mixing of par-

allel and simulated tempering on multimodal distributions. The Annals of Applied

Probability, 19:617–640, 2009b.

E. P. Xing, R. Yan, and A. G. Hauptmann. Mining associated text and images with

dual-wing harmoniums. In Proceedings of the 21st Conference on Uncertainty in

Artificial Intelligence (UAI). AUAI Press, 2005.

L. Younes. Maximum likelihood estimation of Gibbs fields. In A. Possolo, editor, Pro-

ceedings of an AMS-IMS-SIAM Joint Conference on Spacial Statistics and Imaging,

Lecture Notes Monograph Series. Institute of Mathematical Statistics, Hayward,

California, 1991.

A. L. Yuille. The convergence of contrastive divergence. In L. Saul, Y. Weiss, and

L. Bottou, editors, Advances in Neural Processing Systems (NIPS 17), pages 1593–

1600. MIT Press, 2005.

A. J. Zeevi and R. Meir. Density estimation through convex combinations of densities:

Approximation and estimation bounds. Neural Networks, 10(1):99 – 109, 1997.





List of Publications

Oswin Krause, Asja Fischer, and Christian Igel. On Bennett’s acceptance ratio for

estimating the partition function of restricted Boltzmann machines, submitted

Jan Melchior, Asja Fischer, and Laurenz Wiskott. How to center restricted Boltzmann

machines, submitted

Asja Fischer and Christian Igel. A bound for the convergence rate of parallel tempering

for sampling restricted Boltzmann machines, submitted.

Asja Fischer and Christian Igel. Training restricted Boltzmann machines: An intro-

duction. Pattern Recognition 47, pp. 25-39, 2014

Kai Brügge, Asja Fischer, and Christian Igel. The flip-the-state transition operator for

restricted Boltzmann machines. Machine Learning 13, pp. 53-69, 2013

Oswin Krause, Asja Fischer, Tobias Glasmachers, and Christian Igel. Approximation

properties of DBNs with binary hidden units and real-valued visible units. In S. Das-

gupta and D. McAllester, eds.: Proceedings of the 30th International Conference on

Machine Learning (ICML 2013), JMLR W&CP, 28(1), pp. 419-426, 2013

Asja Fischer and Christian Igel. An introduction to restricted Boltzmann machines.

In Luis Alvarez, Marta Mejail, Luis Gomez, and Julio Jacobo, eds.: Progress in Pat-

tern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2012),

LNCS 7441, pp. 14-36, Springer-Verlag, 2012

Asja Fischer and Christian Igel. Bounding the bias of contrastive divergence learning.

Neural Computation 23, pp. 664-673, 2011

Asja Fischer and Christian Igel. Training RBMs based on the signs of the CD ap-

proximation of the log-likelihood derivatives. In Michel Verleysen, ed.: 19th European

Symposium on Artificial Neural Networks (ESANN 2011), pp. 495-500, Belgium: d-

side publications, 2011



210 List of Publications

Asja Fischer and Christian Igel. Empirical analysis of the divergence of Gibbs sam-

pling based learning algorithms for restricted Boltzmann machines. In Konstantinos

Diamantaras, Wlodek Duch, and Lazaros S. Iliadis, eds.: International Conference on

Artificial Neural Networks (ICANN 2010), LNCS 6354, pp. 208-217, Springer-Verlag,

2010

Asja Fischer and Christian Igel. Challenges in training restricted Boltzmann machines.

In Barbara Hammer and Thomas Villmann, eds.: New Challenges in Neural Compu-

tation (NC2), Machine Learning Reports 04/2010, pp. 1124, 2010

Asja Fischer and Christian Igel. Contrastive divergence learning may diverge when

training restricted Boltzmann machines. Frontiers in Computational Neuroscience.

Conference Abstract: Bernstein Conference on Computational Neuroscience (BCCN

2009), 2009




