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6.1 LEARNING STOCHASTIC NONLINEAR DYNAMICS

Since the advent of cybernetics, dynamical systems have been an

important modeling tool in fields ranging from engineering to the physical

and social sciences. Most realistic dynamical systems models have two

essential features. First, they are stochastic – the observed outputs are a

noisy function of the inputs, and the dynamics itself may be driven by

some unobserved noise process. Second, they can be characterized by
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some finite-dimensional internal state that, while not directly observable,

summarizes at any time all information about the past behavior of the

process relevant to predicting its future evolution.

From a modeling standpoint, stochasticity is essential to allow a model

with a few fixed parameters to generate a rich variety of time-series

outputs.1 Explicitly modeling the internal state makes it possible to

decouple the internal dynamics from the observation process. For exam-

ple, to model a sequence of video images of a balloon floating in the wind,

it would be computationally very costly to directly predict the array of

camera pixel intensities from a sequence of arrays of previous pixel

intensities. It seems much more sensible to attempt to infer the true state of

the balloon (its position, velocity, and orientation) and decouple the

process that governs the balloon dynamics from the observation process

that maps the actual balloon state to an array of measured pixel intensities.

Often we are able to write down equations governing these dynamical

systems directly, based on prior knowledge of the problem structure and

the sources of noise – for example, from the physics of the situation. In

such cases, we may want to infer the hidden state of the system from a

sequence of observations of the system’s inputs and outputs. Solving this

inference or state-estimation problem is essential for tasks such as tracking

or the design of state-feedback controllers, and there exist well-known

algorithms for this.

However, in many cases, the exact parameter values, or even the gross

structure of the dynamical system itself, may be unknown. In such cases,

the dynamics of the system have to be learned or identified from

sequences of observations only. Learning may be a necessary precursor

if the ultimate goal is effective state inference. But learning nonlinear

state-based models is also useful in its own right, even when we are not

explicitly interested in the internal states of the model, for tasks such as

prediction (extrapolation), time-series classification, outlier detection, and

filling-in of missing observations (imputation). This chapter addresses the

problem of learning time-series models when the internal state is hidden.

Below, we briefly review the two fundamental algorithms that form the

basis of our learning procedure. In section 6.2, we introduce our algorithm

1There are, of course, completely deterministic but chaotic systems with this property. If

we separate the noise processes in our models from the deterministic portions of the

dynamics and observations, we can think of the noises as another deterministic (but highly

chaotic) system that depends on initial conditions and exogenous inputs that we do not

know. Indeed, when we run simulations using a psuedo-random-number generator started

with a particular seed, this is precisely what we are doing.
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and derive its learning rules. Section 6.3 presents results of using the

algorithm to identify nonlinear dynamical systems. Finally, we present

some conclusions and potential extensions to the algorithm in Sections 6.4

and 6.5.

6.1.1 State Inference and Model Learning

Two remarkable algorithms from the 1960s – one developed in engineer-

ing and the other in statistics – form the basis of modern techniques in

state estimation and model learning. The Kalman filter, introduced by

Kalman and Bucy in 1961 [1], was developed in a setting where the

physical model of the dynamical system of interest was readily available;

its goal is optimal state estimation in systems with known parameters. The

expectation–maximization (EM) algorithm, pioneered by Baum and

colleagues [2] and later generalized and named by Dempster et al. [3],

was developed to learn parameters of statistical models in the presence of

incomplete data or hidden variables.

In this chapter, we bring together these two algorithms in order to learn

the dynamics of stochastic nonlinear systems with hidden states. Our goal

is twofold: both to develop a method for identifying the dynamics of

nonlinear systems whose hidden states we wish to infer, and to develop a

general nonlinear time-series modeling tool. We examine inference and

learning in discrete-time2 stochastic nonlinear dynamical systems with

hidden states xk , external inputs uk , and noisy outputs yk . (All lower-case

characters (except indices) denote vectors. Matrices are represented by

upper-case characters.) The systems are parametrized by a set of tunable

matrices, vectors, and scalars, which we shall collectively denote as y. The

inputs, outputs, and states are related to each other by

xkþ1 ¼ f ðxk; ukÞ þ wk; ð6:1aÞ

yk ¼ gðxk; ukÞ þ vk; ð6:1bÞ

2Continuous-time dynamical systems (in which derivatives are specified as functions of the

current state and inputs) can be converted into discrete-time systems by sampling their

outputs and using ‘‘zero-order holds’’ on their inputs. In particular, for a continuous-time

linear system _xxðtÞ ¼ AcxðtÞ þ BcuðtÞ sampled at interval t, the corresponding dynamics and

input driving matrices so that xkþ1 ¼ Axk þ Buk are A ¼
P1

k¼0
Ak

ct
k=k! ¼ expðActÞ and

B ¼ A�1
c ðA� I ÞBc.
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where wk and vk are zero-mean Gaussian noise processes. The state vector

x evolves according to a nonlinear but stationary Markov dynamics3

driven by the inputs u and by the noise source w. The outputs y are

nonlinear, noisy but stationary and instantaneous functions of the current

state and current input. The vector-valued nonlinearities f and g are

assumed to be differentiable, but otherwise arbitrary. The goal is to

develop an algorithm that can be used to model the probability density

of output sequences (or the conditional density of outputs given inputs)

using only a finite number of example time series. The crux of the problem

is that both the hidden state trajectory and the parameters are unknown.

Models of this kind have been examined for decades in systems and

control engineering. They can also be viewed within the framework of

probabilistic graphical models, which use graph theory to represent the

conditional dependencies between a set of variables [4, 5]. A probabilistic

graphical model has a node for each (possibly vector-valued) random

variable, with directed arcs representing stochastic dependences. Absent

connections indicate conditional independence. In particular, nodes are

conditionally independent from their non-descendents, given their parents

– where parents, children, descendents, etc, are defined with respect to the

directionality of the arcs (i.e., arcs go from parent to child). We can

capture the dependences in Eqs. (6.1a,b) compactly by drawing the

graphical model shown in Figure 6.1.

One of the appealing features of probabilistic graphical models is that

they explicitly diagram the mechanism that we assume generated the data.

This generative model starts by picking randomly the values of the nodes

that have no parents. It then picks randomly the values of their children

Figure 6.1 A probabilistic graphical model for stochastic dynamical
systems with hidden states xk , inputs uk , and observables yk .

3Stationarity means here that neither f nor the covariance of the noise process wk , depend

on time; that is, the dynamics are time-invariant. Markov refers to the fact that given the

current state, the next state does not depend on the past history of the states.
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given the parents’ values, and so on. The random choices for each child

given its parents are made according to some assumed noise model. The

combination of the graphical model and the assumed noise model at each

node fully specify a probability distribution over all variables in the model.

Graphical models have helped clarify the relationship between dyna-

mical systems and other probabilistic models such as hidden Markov

models and factor analysis [6]. Graphical models have also made it

possible to develop probabilistic inference algorithms that are vastly

more general than the Kalman filter.

If we knew the parameters, the operation of interest would be to infer

the hidden state sequence. The uncertainty in this sequence would be

encoded by computing the posterior distributions of the hidden state

variables given the sequence of observations. The Kalman filter (reviewed

in Chapter 1) provides a solution to this problem in the case where f and g

are linear. If, on the other hand, we had access to the hidden state

trajectories as well as to the observables, then the problem would be

one of model-fitting, i.e. estimating the parameters of f and g and the

noise covariances. Given observations of the (no longer hidden) states and

outputs, f and g can be obtained as the solution to a possibly nonlinear

regression problem, and the noise covariances can be obtained from the

residuals of the regression. How should we proceed when both the system

model and the hidden states are unknown?

The classical approach to solving this problem is to treat the parameters

y as ‘‘extra’’ hidden variables, and to apply an extended Kalman filtering

(EKF) algorithm (see Chapter 1) to the nonlinear system with the state

vector augmented by the parameters [7, 8]. For stationary models, the

dynamics of the parameter portion of this extended state vector are set to

the identity function. The approach can be made inherently on-line, which

may be important in certain applications. Furthermore, it provides an

estimate of the covariance of the parameters at each time step. Finally, its

objective, probabilistically speaking, is to find an optimum in the joint

space of parameters and hidden state sequences.

In contrast, the algorithm we present is a batch algorithm (although, as

we discuss in Section 6.4.2, online extensions are possible), and does not

attempt to estimate the covariance of the parameters. Like other instances

of the EM algorithm, which we describe below, its goal is to integrate over

the uncertain estimates of the unknown hidden states and optimize the

resulting marginal likelihood of the parameters given the observed data.

An extended Kalman smoother (EKS) is used to estimate the approximate

state distribution in the E-step, and a radial basis function (RBF) network

[9, 10] is used for nonlinear regression in the M-step. It is important not to
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confuse this use of the extended Kalman algorithm, namely, to estimate

just the hidden state as part of the E-step of EM, with the use that we

described in the previous paragraph, namely to simultaneously estimate

parameters and hidden states.

6.1.2 The Kalman Filter

Linear dynamical systems with additive white Gaussian noises are the

most basic models to examine when considering the state-estimation

problem, because they admit exact and efficient inference. (Here, and in

what follows, we call a system linear if both the state evolution function

and the state-to-output observation function are linear, and nonlinear

otherwise.) The linear dynamics and observation processes correspond

to matrix operations, which we denote by A;B and C;D, respectively,

giving the classic state-space formulation of input-driven linear dynamical

systems:

xkþ1 ¼ Axk þ Buk þ wk; ð6:2aÞ

yk ¼ Cxk þ Duk þ vk : ð6:2bÞ

The Gaussian noise vectors w and v have zero mean and covariances Q

and R respectively. If the prior probability distribution pðx1Þ over initial

states is taken to be Gaussian, then the joint probabilities of all states and

outputs at future times are also Gaussian, since the Gaussian distribution is

closed under the linear operations applied by state evolution and output

mapping and under the convolution applied by additive Gaussian noise.

Thus, all distributions over hidden state variables are fully described by

their means and covariance matrices. The algorithm for exactly computing

the posterior mean and covariance for xk given some sequence of

observations consists of two parts: a forward recursion, which uses the

observations from y1 to yk , known as the Kalman filter [11], and a

backward recursion, which uses the observations from yT to ykþ1. The

combined forward and backward recursions are known as the Kalman or

Rauch–Tung–Streibel (RTS) smoother [12]. These algorithms are

reviewed in detail in Chapter 1.

There are three key insights to understanding the Kalman filter. The

first is that the Kalman filter is simply a method for implementing Bayes’

rule. Consider the very general setting where we have a prior pðxÞ on some

180 6 LEARNING NONLINEAR DYNAMICAL SYSTEMS USING EM



state variable and an observation model pðyjxÞ for the noisy outputs given

the state. Bayes’ rule gives us the state-inference procedure:

pðxjyÞ ¼
pðyjxÞpðxÞ

pðyÞ
¼

pðyjxÞpðxÞ

Z
; ð6:3aÞ

Z ¼ pðyÞ ¼

ð
x

pðyjxÞpðxÞ dx; ð6:3bÞ

where the normalizer Z is the unconditional density of the observation. All

we need to do in order to convert our prior on the state into a posterior is

to multiply by the likelihood from the observation equation, and then

renormalize.

The second insight is that there is no need to invert the output or

dynamics functions, as long as we work with easily normalizable

distributions over hidden states. We see this by applying Bayes’ rule to

the linear Gaussian case for a single time step.4 We start with a Gaussian

belief nðxk�1, Vk�1Þ on the current hidden state, use the dynamics to

convert this to a prior nðxþ, VþÞ on the next state, and then condition on

the observation to convert this prior into a posterior nðxk, VkÞ. This gives

the classic Kalman filtering equations:

pðxk�1Þ ¼nðxþ;VþÞ; ð6:4aÞ

xþ ¼ Axk�1; Vþ ¼ AVk�1A> þ Q; ð6:4bÞ

pðyk jxkÞ ¼nðCxk;RÞ; ð6:4cÞ

pðxk jykÞ ¼nðxk;VkÞ; ð6:4dÞ

xk ¼ xþ þ Kðyk � CxþÞ; Vk ¼ ðI � KCÞVþ; ð6:4eÞ

K ¼ VþC>ðCVþC> þ RÞ
�1: ð6:4f Þ

The posterior is again Gaussian and analytically tractable. Notice that

neither the dynamics matrix A nor the observation matrix C needed to be

inverted.

The third insight is that the state-estimation procedures can be imple-

mented recursively. The posterior from the previous time step is run

through the dynamics model and becomes our prior for the current time

step. We then convert this prior into a new posterior by using the current

observation.

4Some notation: A multivariate normal (Gaussian) distribution with mean m and covariance

matrix S is written as nðm;SÞ. The same Gaussian evaluated at the point z is denoted by

nðm;SÞjz. The determinant of a matrix is denoted by jAj and matrix inversion by A�1. The

symbol 	 means ‘‘distributed according to.’’
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For the general case of a nonlinear system with non-Gaussian noise,

state estimation is much more complex. In particular, mapping through

arbitrary nonlinearities f and g can result in arbitrary state distributions,

and the integrals required for Bayes’ rule can become intractable. Several

methods have been proposed to overcome this intractability, each provid-

ing a distinct approximate solution to the inference problem. Assuming f

and g are differentiable and the noise is Gaussian, one approach is to

locally linearize the nonlinear system about the current state estimate so

that applying the Kalman filter to the linearized system the approximate

state distribution remains Gaussian. Such algorithms are known as

extended Kalman filters (EKF) [13, 14]. The EKF has been used both

in the classical setting of state estimation for nonlinear dynamical systems

and also as a basis for on-line learning algorithms for feedforward neural

networks [15] and radial basis function networks [16, 17]. For more

details, see Chapter 2.

State inference in nonlinear systems can also be achieved by propagat-

ing a set of random samples in state space through f and g, while at each

time step re-weighting them using the likelihood pðyjxÞ. We shall refer to

algorithms that use this general strategy as particle filters [18], although

variants of this sampling approach are known as sequential importance

sampling, bootstrap filters [19], Monte Carlo filters [20], condensation

[21], and dynamic mixture models [22, 23]. A recent survey of these

methods is provided in [24]. A third approximate state-inference method,

known as the unscented filter [25–27], deterministically chooses a set of

balanced points and propagates them through the nonlinearities in order to

recursively approximate a Gaussian state distribution; for more details, see

Chapter 7. Finally, there are algorithms for approximate inference and

learning based on mean field theory and variational methods [28, 29].

Although we have chosen to make local linearization (EKS) the basis of

our algorithms below, it is possible to formulate the same learning algorithms

using any approximate inference method (e.g., the unscented filter).

6.1.3 The EM Algorithm

The EM or expectation–maximization algorithm [3, 30] is a widely

applicable iterative parameter re-estimation procedure. The objective of

the EM algorithm is to maximize the likelihood of the observed data

PðY jyÞ in the presence of hidden5 variables X . (We shall denote the entire

5Hidden variables are often also called latent variables; we shall use both terms. They can

also be thought of as missing data for the problem or as auxiliary parameters of the model.
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sequence of observed data by Y ¼ fy1; . . . ; ytg, observed inputs by

U ¼ fu1; . . . ; uT g, the sequence of hidden variables by X ¼ fx1; . . . ; xtg,

and the parameters of the model by y.) Maximizing the likelihood as a

function of y is equivalent to maximizing the log-likelihood:

LðyÞ ¼ log PðY jU ; yÞ ¼ log

ð
X

PðX ;Y jU ; yÞ dX: ð6:5Þ

Using any distribution QðX Þ over the hidden variables, we can obtain a

lower bound on L:

log

ð
X

PðY ;X jU ; yÞ dX ¼ log

ð
X

QðX Þ
PðX ; Y jU ; yÞ

QðX Þ
dX ð6:6aÞ




ð
X

QðX Þ log
PðX ; Y jU ; yÞ

QðX Þ
dX ð6:6bÞ

¼

ð
X

QðX Þ log PðX ; Y jU ; yÞ dX

�

ð
X

QðX Þ log QðX Þ dX ð6:6cÞ

¼ FðQ; yÞ; ð6:6d Þ

where the middle inequality (6.6b) is known as Jensen’s inequality and can

be proved using the concavity of the log function. If we define the energy

of a global configuration ðX ;Y Þ to be �log PðX ;Y jU ; yÞ, then the lower

bound FðQ; yÞ � LðyÞ is the negative of a quantity known in statistical

physics as the free energy: the expected energy under Q minus the entropy

of Q [31]. The EM algorithm alternates between maximizing F with

respect to the distribution Q and the parameters y, respectively, holding

the other fixed. Starting from some initial parameters y0 we alternately

apply:

E-step: Qkþ1  arg max
Q

FðQ; ykÞ; ð6:7aÞ

M-step: ykþ1  arg max
y
FðQkþ1; yÞ: ð6:7bÞ

It is easy to show that the maximum in the E-step results when Q is exactly

the conditional distribution of X , Q*kþ1ðX Þ ¼ PðX jY ;U ; ykÞ, at which

point the bound becomes an equality: FðQ*kþ1; ykÞ ¼ LðykÞ. The maxi-
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mum in the M-step is obtained by maximizing the first term in (6.6c),

since the entropy of Q does not depend on y:

M-step: y*kþ1  arg max
y

ð
X

PðX jY ;U ; ykÞ log PðX ;Y jU ; yÞ dX :

ð6:8Þ

This is the expression most often associated with the EM algorithm, but it

obscures the elegant interpretation [31] of EM as coordinate ascent in F

(see Fig. 6.2). Since F ¼ L at the beginning of each M-step, and since the

E-step does not change y, we are guaranteed not to decrease the likelihood

after each combined EM step. (While this is obviously true of ‘‘complete’’

EM algorithms as described above, it may also be true for ‘‘incomplete’’ or

‘‘sparse’’ variants in which approximations are used during the E- and=or

M-steps so long as F always goes up; see also the earlier work in [32].)

For example, this can take the form of a gradient M- step algorithm (where

we increase PðY jyÞ with respect to y but do not strictly maximize it), or

any E-step which improves the bound F without saturating it [31].)

In dynamical systems with hidden states, the E-step corresponds

exactly to solving the smoothing problem: estimating the hidden state

trajectory given both the observations=inputs and the parameter values.

The M-step involves system identification using the state estimates from

the smoother. Therefore, at the heart of the EM learning procedure is the

following idea: use the solutions to the filtering=smoothing problem to

estimate the unknown hidden states given the observations and the current

Figure 6.2 The EM algorithm can be thought of as coordinate ascent in the
functional FðQðX Þ, yÞ (see text). The E-step maximizes F with respect to QðX Þ
given fixed y (horizontal moves), while the M-step maximizes F with respect
to y given fixed QðX Þ (vertical moves).
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model parameters. Then use this fictitious complete data to solve for new

model parameters. Given the estimated states obtained from the inference

algorithm, it is usually easy to solve for new parameters. For example,

when working with linear Gaussian models, this typically involves

minimizing quadratic forms, which can be done with linear regression.

This process is repeated, using these new model parameters to infer the

hidden states again, and so on. Keep in mind that our goal is to maximize

the log-likelihood (6.5) (or equivalently maximize the total likelihood) of

the observed data with respect to the model parameters. This means

integrating (or summing) over all the ways in which the model could have

produced the data (i.e., hidden state sequences). As a consequence of

using the EM algorithm to do this maximization, we find ourselves

needing to compute (and maximize) the expected log-likelihood of the

joint data (6.8), where the expectation is taken over the distribution of

hidden values predicted by the current model parameters and the observa-

tions.

In the past, the EM algorithm has been applied to learning linear

dynamical systems in specific cases, such as ‘‘multiple-indicator multiple-

cause’’ (MIMC) models with a single latent variable [33] or state-space

models with the observation matrix known [34]), as well as more generally

[35]. This chapter applies the EM algorithm to learning nonlinear

dynamical systems, and is an extension of our earlier work [36]. Since

then, there has been similar work applying EM to nonlinear dynamical

systems [37, 38]. Whereas other work uses sampling for the E-step and

gradient M-steps, our algorithm uses the RBF networks to obtain a

computationally efficient and exact M-step.

The EM algorithm has four important advantages over classical

approaches. First, it provides a straightforward and principled method

for handing missing inputs or outputs. (Indeed this was the original

motivation for Shumway and Stoffer’s application of the EM algorithm

to learning partially unknown linear dynamical systems [34].) Second, EM

generalizes readily to more complex models with combinations of discrete

and real-valued hidden variables. For example, one can formulate EM for

a mixture of nonlinear dynamical systems [39, 40]. Third, whereas it is

often very difficult to prove or analyze stability within the classical on-line

approach, the EM algorithm is always attempting to maximize the like-

lihood, which acts as a Lyapunov function for stable learning. Fourth, the

EM framework facilitates Bayesian extensions to learning – for example,

through the use of variational approximations [29].
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6.2 COMBINING EKS AND EM

In the next sections, we shall describe the basic components of our EM

learning algorithm. For the expectation step of the algorithm, we infer an

approximate conditional distribution of the hidden states using Extended

Kalman Smoothing (Section 6.2.1). For the maximization step, we first

discuss the general case (Section 6.2.2), and then describe the particular

case where the nonlinearities are represented using Gaussian radial basis

function (RBF) networks (Section 6.2.3). Since, as with all EM or

likelihood ascent algorithms, our algorithm is not guaranteed to find the

globally optimum solutions, good initialization is a key factor in practical

success. We typically use a variant of factor analysis followed by

estimation of a purely linear dynamical system as the starting point for

training our nonlinear models (Section 6.2.4).

6.2.1 Extended Kalman smoothing (E-step)

Given a system described by Eqs. (6.1a,b), the E-step of an EM learning

algorithm needs to infer the hidden states from a history of observed

inputs and outputs. The quantities at the heart of this inference problem

are two conditional densities

Pðxk ju1; . . . ; uT ; y1; . . . ; yT Þ; 1 � k � T ; ð6:9Þ

Pðxk; xkþ1ju1; . . . ; uT ; y1; . . . ; yT Þ; 1 � k � T � 1: ð6:10Þ

For nonlinear systems, these conditional densities are in general non-

Gaussian, and can in fact be quite complex. For all but a very few

nonlinear systems, exact inference equations cannot be written down in

closed form. Furthermore, for many nonlinear systems of interest, exact

inference is intractable (even numerically), meaning that, in principle, the

amount of computation required grows exponentially in the length of the

time series observed. The intuition behind all extended Kalman algorithms

is that they approximate a stationary nonlinear dynamical system with a

non-stationary (time-varying) but linear system. In particular, extended

Kalman smoothing (EKS) simply applies regular Kalman smoothing to a

local linearization of the nonlinear system. At every point ~xx in x space, the

derivatives of the vector-valued functions f and g define the matrices,

A~xx �
@f

@x

����
x¼~xx

and C~xx �
@g

@x

����
x¼~xx

;
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respectively. The dynamics are linearized about x̂xk , the mean of the current

filtered (not smoothed) state estimate at time t. The output equation can be

similarly linearized. These linearizations yield

xkþ1 � f ðx̂xk; ukÞ þ Ax̂xk
ðxk � x̂xkÞ þ w; ð6:11Þ

yk � gðx̂xk; ukÞ þ Cx̂xk
ðxk � x̂xkÞ þ v: ð6:12Þ

If the noise distributions and the prior distribution of the hidden state at

k ¼ 1 are Gaussian, then, in this progressively linearized system, the

conditional distribution of the hidden state at any time k given the history

of inputs and outputs will also be Gaussian. Thus, Kalman smoothing can

be used on the linearized system to infer this conditional distribution; this

is illustrated in Figure 6.3.

Notice that although the algorithm performs smoothing (in other words,

it takes into account all observations, including future ones, when

inferring the state at any time), the linearization is only done in the

forward direction. Why not re-linearize about the backwards estimates

during the RTS recursions? While, in principle, this approach might give

better results, it is difficult to implement in practice because it requires the

dynamics functions to be uniquely invertible, which it often is not true.

Unlike the normal (linear) Kalman smoother, in the EKS, the error

covariances for the state estimates and the Kalman gain matrices do

Figure 6.3 Illustration of the information used in extended Kalman smooth-
ing (EKS), which infers the hidden state distribution during the E-step of our
algorithm. The nonlinear model is linearized about the current state esti-
mate at each time, and then Kalman smoothing is used on the linearized
system to infer Gaussian state estimates.
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depend on the observed data, not just on the time index t. Furthermore, it

is no longer necessarily true that if the system is stationary, the Kalman

gain will converge to a value that makes the smoother act as the optimal

Wiener filter in the steady state.

6.2.2 Learning Model Parameters (M-step)

The M-step of our EM algorithm re-estimates the parameters of the model

given the observed inputs, outputs, and the conditional distributions over

the hidden states. For the model we have described, the parameters define

the nonlinearities f and g, and the noise covariances Q and R (as well as

the mean and covariance of the initial state, x1).

Two complications can arise in the M-step. First, fully re-estimating f

and g in each M-step may be computationally expensive. For example, if

they are represented by neural network regressors, a single full M-step

would be a lengthy training procedure using backpropagation, conjugate

gradients, or some other optimization method. To avoid this, one could use

partial M-steps that increase but do not maximize the expected log-

likelihood (6.8) – for example, each consisting of one or a few gradient

steps. However, this will in general make the fitting procedure much

slower.

The second complication is that f and g have to be trained using the

uncertain state-estimates output by the EKS algorithm. This makes it

difficult to apply standard curve-fitting or regression techniques. Consider

fitting f , which takes as inputs xk and uk and outputs xkþ1. For each t, the

conditional density estimated by EKS is a full-covariance Gaussian in ðxk ,

xkþ1Þ space. So f has to be fit not to a set of data points but instead to a

mixture of full-covariance Gaussians in input–output space (Gaussian

‘‘clouds’’ of data). Ideally, to follow the EM framework, this conditional

density should be integrated over during the fitting process. Integrating

over this type of data is nontrivial for almost any form of f . One simple but

inefficient approach to bypass this problem is to draw a large sample from

these Gaussian clouds of data and then fit f to these samples in the usual

way. A similar situation occurs with the fitting of the output function g.

We present an alternative approach, which is to choose the form of the

function approximator to make the integration easier. As we shall show,

using Gaussian radial basis function (RBF) networks [9, 10] to model f

and g allows us to do the integrals exactly and efficiently. With this choice

of representation, both of the above complications vanish.
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6.2.3 Fitting Radial Basis Functions to Gaussian Clouds

We shall present a general formulation of an RBF network from which it

should be clear how to fit special forms for f and g. Consider the

following nonlinear mapping from input vectors x and u to an output

vector z:

z ¼
PI
i¼1

hiriðxÞ þ Axþ Buþ bþ w; ð6:13Þ

where w is a zero-mean Gaussian noise variable with covariance Q, and ri

are scalar valved RBFs defined below. This general mapping can be used

in several ways to represent dynamical systems, depending on which of

the input to hidden to output mappings are assumed to be nonlinear. Three

examples are: (1) representing f using (6.13) with the substitutions

x xk , u uk , and z xkþ1; (2) representing f using x ðxk; ukÞ,

u ;, and z xkþ1; and (3) representing g using the substitutions

x xk , u uk , and z yk . (Indeed, for different simulations, we shall

use different forms.) The parameters are the I coefficients hi of the RBFs;

the matrices A and B multiplying inputs x and u, respectively; and an

output bias vector b, and the noise covariance Q. Each RBF is assumed to

be a Gaussian in x space, with center ci and width given by the covariance

matrix Si:

riðxÞ ¼ j2pSij
�1=2 exp½� 1

2
ðx� ciÞ

>
S�1

i ðx� ciÞ�; ð6:14Þ

where jSij is the determinant of the matrix Si. For now, we assume that the

centers and widths of the RBFs are fixed, although we discuss learning

their locations in Section 6.4.

The goal is to fit this RBF model to data (u; x; z). The complication is

that the data set comes in the form of a mixture of Gaussian distributions.

Here we show how to analytically integrate over this mixture distribution

to fit the RBF model.

Assume the data set is

Pðx; z; uÞ ¼
1

J

P
j

njðx; zÞdðu� ujÞ: ð6:15Þ

That is, we observe samples from the u variables, each paired with a

Gaussian ‘‘cloud’’ of data, nj, over ðx; zÞ. The Gaussian nj has mean mj

and covariance matrix Cj.
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Let ẑzyðx; uÞ ¼
PI

i¼1 hiriðxÞ þ Axþ Buþ b, where y is the set of para-

meters. The log-likelihood of a single fully observed data point under the

model would be

� 1
2
½z� ẑzyðx; uÞ�>Q�1½z� ẑzyðx; uÞ� � 1

2
ln jQj þ const:

Since the ðx; zÞ values in the data set are uncertain, the maximum expected

log-likelihood RBF fit to the mixture of Gaussian data is obtained by

minimizing the following integrated quadratic form:

min
y;Q

P
j

ð
x

ð
z

njðx; zÞ½z� ẑzyðx; ujÞ�
>Q�1½z� ẑzyðx; ujÞ� dx dzþ J ln jQj

( )
:

ð6:16Þ

We rewrite this in a slightly different notation, using angular brackets h�ij
to denote expectation over nj, and defining

y � ½h1; h2; . . . ; hI ;A;B; b�;

F � ½r1ðxÞ; r2ðxÞ; . . . ; rI ðxÞ; x>; u>; 1�>:

Then, the objective is written as

min
y;Q

P
j

hðz� yFÞ>Q�1ðz� yFÞij þ J ln jQj

( )
: ð6:17Þ

Taking derivatives with respect to y, premultiplying by �Q�1, and setting

the result to zero gives the linear equations
P

jhðz� yFÞFT ij ¼ 0, which

we can solve for y and Q:

ŷy ¼
P

j

hzF>ij

 ! P
j

hFF>ij

 !�1

; Q̂Q ¼
1

J

P
j

hzz>ij � ŷy
P

j

hFz>ij

 !
:

ð6:18Þ

In other words, given the expectations in the angular brackets, the optimal

parameters can be solved for via a set of linear equations. In the Appendix,

we show that these expectations can be computed analytically and

efficiently, which means that we can take full and exact M-steps. The

derivation is somewhat laborious, but the intuition is very simple: the
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Gaussian RBFs multiply the Gaussian densities nj to form new unnor-

malized Gaussians in (x; y) space. Expectations under these new

Gaussians are easy to compute. This fitting algorithm is illustrated in

Figure 6.4.

Note that among the four advantages we mentioned previously for the

EM algorithm – ability to handle missing observations, generalizability to

extensions of the basic model, Bayesian approximations, and guaranteed

stability through a Lyapunov function – we have had to forgo one. There is

no guarantee that extended Kalman smoothing increases the lower bound

on the true likelihood, and therefore stability cannot be assured. In

practice, the algorithm is rarely found to become unstable, and the

approximation works well: in our experiments, the likelihoods increased

monotonically and good density models were learned. Nonetheless, it may

be desirable to derive guaranteed-stable algorithms for certain special

cases using lower-bound preserving variational approximations [29] or

other approaches that can provide such proofs.

The ability to fully integrate over uncertain state estimates provides

practical benefits as well as being theoretically pleasing. We have

compared fitting our RBF networks using only the means of the state

estimates with performing the full integration as derived above. When

using only the means, we found it necessary to introduce a ridge

Figure 6.4 Illustration of the regression technique employed during the M-
step. A fit to a mixture of Gaussian densities is required; if Gaussian RBF
networks are used, then this fit can be solved analytically. The dashed line
shows a regular RBF fit to the centers of the four Gaussian densities, while the
solid line shows the analytical RBF fit using the covariance information. The
dotted lines below show the support of the RBF kernels.
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regression (weight decay) parameter in the M-step to penalize the very

large coefficients that would otherwise occur based on precise cancella-

tions between inputs. Since the model is linear in the parameters, this ridge

regression regularizer is like adding white noise to the radial basis outputs

riðxÞ (i.e., after the RBF kernels have been applied).6 By linearization, this

is approximately equivalent to Gaussian noise at the inputs x with a

covariance determined by the derivatives of the RBFs at the input

locations. The uncertain state estimates provide exactly this sort of

noise, and thus automatically regularize the RBF fit in the M-step. This

naturally avoids the need to introduce a penalty on large coefficients, and

improves generalization.

6.2.4 Initialization of Models and Choosing Locations
for RBF Kernels

The practical success of our algorithm depends on two design choices that

need to be made at the beginning of the training procedure. The first is to

judiciously select the placement of the RBF kernels in the representation

of the state dynamics and=or output function. The second is to sensibly

initialize the parameters of the model so that iterative improvement with

the EM algorithm (which finds only local maxima of the likelihood

function) finds a good solution.

In models with low-dimensional hidden states, placement of RBF

kernel centers can be done by gridding the state space and placing one

kernel on each grid point. Since the scaling of the state variables is given

by the covariance matrix of the state dynamics noise wk in Eq. (6.1a)

which, without loss of generality, we have set to I , it is possible to

determine both a suitable size for the gridding region over the state space,

and a suitable scaling of the RBF kernels themselves. However, the

number of kernels in such a grid increases exponentially with the grid

dimension, so, for more than three or four state variables, gridding the

state space is impractical. In these cases, we first use a simple initializa-

tion, such as a linear dynamical system, to infer the hidden states, and then

place RBF kernels on a randomly chosen subset of the inferred state

means.7 We set the widths (variances) of the RBF kernels once we have

6Consider a simple scalar linear regression example yj ¼ yzj, which can be solved by

minimizing
P

jðyj � yzjÞ
2. If each zj has mean �zzj and variance l, the expected value of this

cost function is
P

jðyj � y�zzjÞ
2
þ Jly2, which is exactly ridge regression with l controlling

the amount of regularization.
7In order to properly cover the portions of the state space that are most frequently used, we

require a minimum distance between RBF kernel centers. Thus, in practice, we reject

centers that fall too close together.
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the spacing of their centers by attempting to make neighboring kernels

cross when their outputs are half of their peak value. This ensures that,

with all the coefficients set approximately equal, the RBF network will

have an almost ‘‘flat’’ output across the space.8

These heuristics can be used both for fixed assignments of centers and

widths, and as initialization to an adaptive RBF placement procedure. In

Section 6.4.1, we discuss techniques for adapting both the positions of the

RBF centers and their widths during training of the model.

For systems with nonlinear dynamics but approximately linear output

functions, we initialize using maximum-likelihood factor analysis (FA)

trained on the collection of output observations (or conditional factor

analysis for models with inputs). Factor analysis is a very simple model,

which assumes that the output variables are generated by linearly

combining a small number of independent Gaussian hidden state variables

and then adding independent Gaussian noise to each output variable [6].

One can think of factor analysis as a special case of linear dynamical

systems with Gaussian noise where the states are not related in time (i.e.,

A ¼ 0). We used the weight matrix (called the loading matrix) learned by

factor analysis to initialize the observation matrix C in the dynamical

system. By doing time-independent inference through the factor analysis

model, we can also obtain approximate estimates for the state at each time.

These estimates can be used to initialize the nonlinear RBF regressor by

fitting the estimates at one time step as a function of those at the previous

time step. (We also sometimes do a few iterations of training using a

purely linear dynamical system before initializing the nonlinear RBF

network.) Since such systems are nonlinear flows embedded in linear

manifolds, this initialization estimates the embedding manifold using a

linear statistical technique (FA) and the flow using a nonlinear regression

based on projections into the estimated manifold.

If the output function is nonlinear but the dynamics are approximately

linear, then a mixture of factor analyzers (MFA) can be trained on the

output observations [41, 42]. A mixture of factor analyzers is a model that

assumes that the data were generated from several Gaussian clusters with

differing means, with the covariance within each cluster being modeled by

a factor analyzer. Systems with nonlinear output function but linear

dynamics capture linear flows in a nonlinear embedding manifold, and

8One way to see this is to consider Gaussian RBFs in an n-dimensional grid (i.e., a square

lattice), all with heights 1. The RBF centers define a hypercube, the distance between

neighboring RBFs being 2d, where d is chosen such that e�d2=ð2s2Þ ¼ 1
2
. At the centers of

the hypercubes, there are 2n contributions from neighboring Gaussians, each of which is a

distance
ffiffiffi
n
p

d, and so contributes ð1
2
Þ
n to the height. Therefore, the height at the interiors is

approximately equal to the height at the corners.
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the goal of the MFA initialization is to capture the nonlinear shape of the

output manifold. Estimating the dynamics is difficult (since the hidden

states of the individual analyzers in the mixture cannot be combined easily

into a single internal state representation), but is still possible.9 A

summary of the algorithm including these initialization techniques is

shown in Figure 6.5.

Ideally, Bayesian methods would be used to control the complexity of

the model by estimating the internal state dimension and optimal number

of RBF centers. However, in general, only approximate techniques such as

cross-validation or variational approximations can be implemented in

practice (see Section 6.4.4). Currently, we have set these complexity

parameters either by hand or with cross-validation.

6.3 RESULTS

We tested how well our algorithm could learn the dynamics of a nonlinear

system by observing only the system inputs and outputs. We investigated

the behavior on simple one- and two-dimensional state-space problems

whose nonlinear dynamics were known, as well as on a weather time-

series problem involving real temperature data.

6.3.1 One- and Two-Dimensional Nonlinear State-Space
Models

In order to be able to compare our algorithm’s learned internal state

representation with a ground truth state representation, we first tested it on

Figure 6.5 Summary of the main steps of the NLDS-EM algorithm.

9As an approximate solution to the problem of getting a single hidden state from a MFA,

we can use the following procedure: (1) Estimate the ‘‘similarity’’ between analyzer centers

using average separation in time between data points for which they are active. (2) Use

standard embedding techniques such as multidimensional scaling (MDS) [43] to place the

MFA centers in a Euclidean space of dimension k. (3) Time-independent state inference for

each observation now consists of the responsibility-weighted low-dimensional MFA

centers, where the responsibilities are the posterior probabilities of each analyzer given

the observation under the MFA.
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synthetic data generated by nonlinear dynamics whose form was known.

The systems we considered consisted of three inputs and four observables

at each time, with either one or two hidden state variables. The relation of

the state from one time step to the next was given by a variety of nonlinear

functions followed by Gaussian noise. The outputs were a linear function

of the state and inputs plus Gaussian noise. The inputs affected the state

only through a linear driving function. The true and learned state transition

functions for these systems, as well as sample outputs in response to

Gaussian noise inputs and internal driving noise, are shown in Figures

6.6c,d, 6.7c, and 6.8c.

We initialized each nonlinear model with a linear dynamical model

trained with EM, which, in turn, we initialized with a variant of factor

analysis (see Section 6.2.4). The one-dimensional state-space models were

given 11 RBFs in x space, which were uniformly spaced. (The range of

maximum and minimum x values was automatically determined from the

density of inferred points.) Two-dimensional state-space models were

given 25 RBFs spaced in a 5� 5 grid uniformly over the range of inferred

Figure 6.6 Example of fitting a system with nonlinear dynamics and linear
observation function. The panels show the fitting of a nonlinear system with
a one-dimensional hidden state and 4 noisy outputs driven by Gaussian
noise inputs and internal state noise. (a) The true dynamics function (line)
and states (dots) used to generate the training data (the inset is the
histogram of internal states). (b) The learned dynamics function and
states inferred on the training data (the inset is the histogram of inferred
internal states). (c) The first component of the observable time series from
the training data. (d) The first component of fantasy data generated from
the learned model (on the same scale as c).
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states. After the initialization was over, the algorithm discovered the

nonlinearities in the dynamics within less than 5 iterations of EM (see

Figs. 6.6a,b, 6.7a,b, and 6.8a,b.

After training the models on input–output observations from the

dynamics, we examined the learned internal state representation and

Figure 6.7 More examples of fitting systems with nonlinear dynamics and
linear observation functions. Each of the five rows shows the fitting of a
nonlinear system with a one-dimensional hidden state and four noisy
outputs driven by Gaussian noise inputs and internal-state noise. (a) The
true dynamics function (line) and states (dots) used to generate the training
data. (b) The learned dynamics function and states inferred on the training
data. (c) The first component of the observable time series: training data on
the top and fantasy data generated from the learned model on the
bottom. The nonlinear dynamics can produce quasi-periodic outputs in
response to white driving noise.

196 6 LEARNING NONLINEAR DYNAMICAL SYSTEMS USING EM



compared it with the known structure of the generating system. As the

figures show, the algorithm recovers the form of the nonlinear dynamics

quite well. We are also able to generate ‘‘fantasy’’ data from the models

once they have been learned by exciting them with Gaussian noise of

similar variance to that applied during training. The resulting observation

streams look qualitatively very similar to the time series from the true

systems.

We can quantify this quality of fit by comparing the log-likelihood of

the training sequences and novel test sequences under our nonlinear model

with the likelihood under a basic linear dynamical system model or a static

model such as factor analysis. Figure 6.9 presents this comparison. The

nonlinear dynamical system had significantly superior likelihood on both

training and test data for all the example systems. (Notice that for system

E, the linear dynamical system is much better than factor analysis because

of the strong hysteresis (mode-locking) in the system. Thus, the output at

the previous time step is an excellent predictor of the current output.)

6.3.2 Weather Data

As an example of a real system with a nonlinear output function as well as

important dynamics, we trained our model on records of the daily

maximum and minimum temperatures in Melbourne, Australia, over the

period 1981–1990.10 We used a model with two internal state variables,

Figure 6.8 Multidimensional example of fitting a system with nonlinear
dynamics and linear observation functions. The true system is piecewise-
linear across the state space. The plots show the fitting of a nonlinear system
with a two-dimensional hidden state and 4 noisy outputs driven by Gaussian
noise inputs and internal state noise. (a) The true dynamics vector field
(arrows) and states (dots) used to generate the training data. (b) The
learned dynamics vector field and states inferred on the training data. (c)
The first component of the observable time series: training data on the top
and fantasy data generated from the learned model on the bottom.

10This data is available on the world wide web from the Australian Bureau of Meteorology

at http:==www.bom.gov.au=climate.
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three outputs, and no inputs. During the training phase, the three outputs

were the minimum and maximum daily temperature as well as a real

valued output indicating the time of the year (month) in the range [0, 12].

The model was trained on 1500 days of temperature records, or just over

four seasons. We tested on the remaining 2150 days by showing the model

only the minimum and maximum daily temperatures and attempting to

predict the time of year (month). The prediction was performed by using

the EKS algorithm to do state inference given only the two available

observation streams. Once state inference was performed, the learned

output function of the model could be used to predict the time of year.

This prediction problem inherently requires the use of information from

previous and=or future times, since the static relationship between

temperature and season is ambiguous during spring=fall. Figure 6.10

shows the results of this prediction after training; the algorithm has

discovered a relationship between the hidden state and the observations

that allows it to perform reasonable prediction for this task. Also shown

Figure 6.9 Differences in log-likelihood assigned by various models to
training and test data from the systems in Figures 6.6 and 6.7. Each adjacent
group of five bars shows the log-likelihood of the five examples (A–E) under
factor analysis (FA), linear dynamical systems (LDS), and our nonlinear
dynamical system model (NLDS). Results on training data appear on the
left and results on test data on the right; taller bars represent better models.
Log-likelihoods are offset so that FA on the training data is zero. Error bars
represent the 68% quantile about the median across 100 repetitions of
training or testing. For NLDS, the exact likelihood cannot be computed;
what is shown is the pseudo-likelihood computed by EKS.
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are the model predictions of minimum and maximum temperatures given

the inferred state.

Although not explicitly part of the generative model, the learned system

implicitly parameterizes a relationship between time of year and tempera-

ture. We can discover this relationship by evaluating the nonlinear output

function at many points in the state space. Each evaluation yields a triple

of month, minimum temperature and maximum temperature. These triples

can then be plotted against each other as in Figure 6.11 to show that the

model has discovered Melbourne’s seasonal temperature variations.

Figure 6.10 Model of maximum and minimum daily temperatures in
Melbourne, Australia from 1981 to 1990. Left of vertical line: A system with
two hidden states governed by linear dynamics and a non-linear output
function was trained on observation vectors of a three-dimensional time
series consisting of maximum and minimum temperatures for each day as
well as the (real-valued) month of the year. Training points are shown as
triangles (maximum temperature), squares (minimum temperature) and a
solid line (sawtooth wave below). Right of vertical line: After training, the
system can infer its internal state from only the temperature observations.
Having inferred its internal state it can predict the month of the year as a
missing output (line below). The solid lines in the upper plots show the
model’s prediction of minimum and maximum temperature given the
inferred state at the time.
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6.4 EXTENSIONS

6.4.1 Learning the Means and Widths of the RBFs

It is possible to relax the assumption that the Gaussian radial basis

functions have fixed centers and widths, although this results in a some-

what more complicated and slower fitting algorithm. To derive learning

rules for the RBF centers ci and width matrices Si, we need to consider

how they play into the cost function (6.17) through the RBF kernel (6.14).

We take derivatives with respect to the expectation of the cost function c,

and exchange the order of the expectation and the derivative:

@c

@ci

	 

¼

@c

@ri

@ri

@ci

	 

¼ 2hðyF� zÞ

>
Q�1hiriðxÞS

�1
i ðx� ciÞi: ð6:19Þ

Recalling that F ¼ ½r1ðxÞ r2ðxÞ . . . rI ðxÞ x> u> 1�>, it is clear

that ci figures nonlinearly in several places in this equation, and therefore

it is not possible to solve for ci in closed form. We can, however, use the

above gradient to move the center ci to decrease the cost, which

corresponds to taking a partial M-step with respect to ci. Equation

(6.19) requires the computation of three third-order expectations in

Figure 6.11 Prediction of maximum and minimum daily temperatures
based on time of year. The model from Figure 6.10 implicitly learns a
relationship between time of year and minimum=maximum temperature.
This relationship is not directly invertible, but the temporal information used
by extended Kalman smoothing correctly infers month given temperature
as shown in Figure 6.10.
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addition to the first- and second-order expectations needed to optimize y
and Q: hriðxÞrkðxÞxlij, hriðxÞxkxlij; and hriðxÞzkxlij. Similarly, differentiat-

ing the cost with respect to S�1
i gives

@c

@S�1
i

	 

¼

@c

@ri

@ri

@S�1
i

	 

¼ h½ðyF� zÞ

>
Q�1hi�riðxÞ½Si � ðx� ciÞðx� ciÞ

>
�i:

ð6:20Þ

We now need three fourth-order expectations as well: hriðxÞrkðxÞxlxmij,

hriðxÞkxlxmij, and hriðxÞzkxlxmij.

These additional expectations increase both the storage and computa-

tion time of the algorithm – a cost that may not be compensated by the

added advantage of moving of centers and widths by small gradient steps.

One heuristic is to place centers and widths using unsupervised techniques

such as the EM algorithm for Gaussian mixtures, which considers solely

the input density and not the output nonlinearity. Alternatively, some of

these higher-order expectations can be approximated using, for example,

hriðxÞi � riðhxiÞ.

6.4.2 On-line Learning

One of the major limitations of the algorithm that we have presented in

this chapter is that it is a batch algorithm; that is, it assumes that we use

the entire sequence of observations to estimate the model parameters.

Fortunately, it is relatively straightforward to derive an on-line version of

the algorithm, which updates parameters as it receives observations. This

is achieved using the recursive least-squares (RLS) algorithm, which is in

fact just a special case of the discrete Kalman filter (see, e.g., [8, 44]).

The key observation is that the cost minimized in the M-step of the

algorithm (6.17) is a quadratic function of the parameters y. RLS is simply

a way of solving quadratic problems on-line. Using k to index time step,

the resulting algorithm for scalar z is as follows:

yk ¼ yk�1 þ ðhzFik � yk�1hFF
>
ikÞPk; ð6:21Þ

Pk ¼ Pk�1 �
Pk�1hFF

>
ikPk�1

1þ hF>Pk�1Fik
; ð6:22Þ

Qk ¼ Qk�1 þ
1

k
½hz2ik � ykhFzik � Qk�1�: ð6:23Þ
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Let us ignore the expectations for now. Initializing y0 ¼ 0, Q0 ¼ I, and P0

very large, it is easy to show that, after a few iterations, the estimates of yk

will rapidly converge to the exact values obtained by the least-squares

solution. The estimate of Q will converge to the correct values plus a bias

incurred by the fact that the early estimates of Q were based on residuals

from yk rather than limk!1 yk . Pk is a recursive estimate of

ð
Pk

j¼1hFFijÞ
�1, obtained by using the matrix inversion lemma.

There is an important way in which this on-line algorithm is an

approximation to the batch EM algorithm we have described for nonlinear

state-space models. The expectations h�ik in the online algorithm are

computed by running a single step of the extended Kalman filter using the

previous parameters yk�1. In the batch EM algorithm, the expectations are

computed by running an extended Kalman smoother over the entire

sequence using the current parameter estimate. Moreover, these expecta-

tions are used to re-estimate the parameters, the smoother is then re-run,

the parameters are re-re-estimated, and so on, to perform the usual

iterations of EM. In general, we can expect that, unless the time series

is nonstationary, the parameter estimates obtained by the batch algorithm

after convergence will model the data better than those obtained by the on-

line algorithm.

Interestingly, the updates for the RLS on-line algorithm described here

are very similar to the parameter updates used a dual extended Kalman

filter approach to system identification [45] (see Chapter 5 and Section

6.5.5). This similarity is not coincidental, since, as mentioned, the Kalman

filter can be derived as a generalization of the RLS algorithm. In fact, this

similarity can be exploited in an elegant manner to derive an on-line

algorithm for parameter estimation for nonstationary nonlinear dynamical

systems.

6.4.3 Nonstationarity

To handle nonstationary time series, we assume that the parameters can

drift according to a Gaussian random walk with covariance Sy:

yk ¼ yk�1 þ Ek; where Ek 	nð0;SyÞ:

As before, we have the following function relating the z variables to the

parameters y and nonlinear kernels F:

zk ¼ ykFk þ wk; where wk 	nð0;QÞ;
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which we can view as the observation model for a ‘‘state variable’’ yk with

time-varying ‘‘output matrix’’ Fk . Since both the dynamics and observa-

tion models are linear in y and the noise is Gaussian, we can apply the

following Kalman filter to recursively compute the distribution of drifting

parameters y:

ŷyk ¼ ŷyk�1 þ
ðhzFik � ŷyk�1hFF

>
ikÞPkjk�1

Qk�1 þ hF
>Pkjk�1Fik

; ð6:24Þ

Pkjk�1 ¼ Pk�1 þ Sy; ð6:25Þ

Pk ¼ Pkjk�1 �
Pkjk�1hFF

>
ikPkjk�1

Qk�1 þ hF
>Pkjk�1Fik

; ð6:26Þ

Qk ¼ Qk�1 þ lðhz2ik � ŷykhFzik � Qk�1Þ: ð6:27Þ

There are two important things to note. First, these equations describe an

ordinary Kalman filter, except that both the ‘‘output’’ z and ‘‘output

matrix’’ Fk are jointly uncertain with a Gaussian distribution. Second,

we have also assumed that the output noise covariance can drift by

introducing a forgetting factor l in its re-estimation equation. As before,

the expectations are computed by running one step of the EKF over the

hidden variables using yk�1.

While we derived this on-line algorithm starting from the batch EM

algorithm, what we have ended up with appears almost identical to the

dual extended Kalman filter (discussed in Chapter 5). Indeed, we have two

Kalman filters – one extended and one ordinary – running in parallel,

estimating the hidden states and parameters, respectively.

We can also view this on-line algorithm as an approximation to the

Bayesian posterior over parameters and hidden variables. The true poster-

ior would be some complicated distribution over the x; z, and y para-

meters. Here, we have recursively approximated it with two independent

Gaussians – one over (x; z) and one over y. The approximated posterior for

yk has mean ŷyk and covariance Pk .

6.4.4 Using Bayesian Methods for Model Selection and
Complexity Control

Like any other maximum-likelihood procedure, the EM algorithm

described in this chapter has the potential to overfit the data set – that

is, to find spurious patterns in noise in the data, thereby generalizing
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poorly. In our implementation, we used some ridge regression, that is, a

weight decay regularizer on the hi parameters, which seemed to work well

in practice but required some heuristics for setting regularization para-

meters. (Although, as mentioned previously, integrating over the hidden

variables acts as a sort of modulated input noise, and so, in effect,

performs ridge regression, which can eliminate the need for explicit

regularization.)

A second closely related problem faced by maximum-likelihood

methods is that there is no built-in procedure for doing model selection.

That is, the value of the maximum of the likelihood is not a suitable way to

choose between different model structures. For example, consider the

problems of choosing the dimensionality of the state space x and choosing

the number of basis functions I . Higher dimensions of x and more basis

functions should always, in principle, result in higher maxima of the

likelihood, which means that more complex models will always be

preferred to simpler ones. But this, of course, leads to overfitting.

Bayesian methods provide a very general framework for simultaneously

handling the overfitting and model selection problems in a consistent

manner. The key idea of the Bayesian approach is to avoid maximization

wherever possible. Instead, possible models, structures, parameters – in

short, all settings of unknown quantities – should be weighted by their

posterior probabilities, and predictions should be made according to this

weighted posterior.

For our nonlinear dynamical system, we can, for example, treat the

parameters y as an unknown. Then the model’s prediction of the output at

time k þ 1 is

pð ykþ1ju1:kþ1; y1:kÞ ¼

ð
dy pð ykþ1jukþ1; y1:k; u1:k; yÞpðyj y1:k; u1:kÞ

¼

ð
dy pðyj y1:k; u1:kÞ

ð
dxkþ1pð ykþ1jukþ1; xkþ1; yÞ

� pðxkþ1ju1:kþ1; y1:k; yÞ;

where the first integral on the last line is over the posterior distribution of

the parameters and the second integral is over the posterior distribution of

the hidden variables.

The posterior distribution over parameters can be obtained recursively

from Bayes’ rule:

pðyj y1:k; u1:kÞ ¼
pð yk ju1:k; y1:k�1; yÞpðyjU1:k�1; y1:k�1Þ

pð yk ju1:k; y1:k�1Þ
:
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The dual extended Kalman filter, the joint extended Kalman filter, and the

nonstationary on-line algorithm from Section 6.4.3 are all coarse approx-

imations of these Bayesian recursions.

The above equations are all implicitly conditioned on some choice of

model structure sm, that is, the dimension of x and the number of basis

functions. Although the Bayesian modeling philosophy advocates aver-

aging predictions of different model structures, if necessary it is also

possible to use Bayes’ rule to choose between model structures according

to their probabilities:

Pðsmj y1:k; u1:kÞ ¼
pð y1:k ju1:k; smÞPðsmÞP

n pð y1:k ju1:k; snÞPðsnÞ
:

Tractable approximations to the required integrals can be obtained in

several ways. We highlight three ideas, without going into much detail; an

adequate solution to this problem for nonlinear dynamical systems

requires further research. The first idea is the use of Markov-chain

Monte Carlo (MCMC) techniques to sample over both parameters and

hidden variables. Sampling can be an efficient way of computing high-

dimensional integrals if the samples are concentrated in regions where

parameters and states have high probability. MCMC methods such as

Gibbs sampling have been used for linear dynamical systems [46, 47],

while a promising method for nonlinear systems is particle filtering [18,

24], in which samples (‘‘particles’’) can be used to represent the joint

distribution over parameters and hidden states at each time step. The

second idea is the use of so-called ‘‘automatic relevance determination’’

(ARD [48, 49]). This consists of using a zero-mean Gaussian prior on

each parameter with tunable variances. Since these variances are para-

meters that control the prior distribution of the model parameters, they are

referred to as hyperparameters. Optimizing these variance hyperpara-

meters while integrating over the parameters results in ‘‘irrelevant’’

parameters being eliminated from the model. This occurs when the

variance controlling a particular parameter goes to zero. ARD for RBF

networks with a center on each data point has been used by Tipping [50]

successfully for nonlinear regression, and given the name ‘‘relevance

vector machine’’ in analogy to support vector machines. The third idea is

the use of variational methods to lower-bound the model structure

posterior probabilities. In exactly the same way that EM can be thought

of as forming a lower bound on the likelihood using a distribution over the

hidden variables, variational Bayesian methods lower-bound the evidence

using a distribution over both hidden variables and parameters. Variational

Bayesian methods have been used in [51] to infer the structure of linear
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dynamical systems, although the generalization to nonlinear systems of

the kind described in this chapter is not straightforward.

Of course, in principle, the Bayesian approach would advocate aver-

aging over all possible choices of ci, Si, I ;Q, etc. It is easy to see how this

can rapidly get very unwieldy.

6.5 DISCUSSION

6.5.1 Identifiability and Expressive Power

As we saw from the experiments described above, the algorithm that we

have presented is capable of learning good density models for a variety of

nonlinear time series. Specifying the class of nonlinear systems that our

algorithm can model well defines its expressive power. A related question

is: What is the ability of this model, in principle, to recover the actual

parameters of specific nonlinear systems? This is the question of model

identifiability. These two questions are intimately tied, since they both

describe the mapping between actual nonlinear systems and model

parameter settings.

There are three trivial degeneracies that make our model technically

unidentifiable, but should not concern us. First, it is always possible to

permute the dimensions in the state space and, by permuting the domain of

the output mapping and dynamics in the corresponding fashion, obtain an

exactly equivalent model. Second, the state variables can be rescaled or, in

fact, transformed by any invertible linear mapping. This transformation

can be absorbed by the output and dynamics functions, yielding a model

with identical input–output behavior. Without loss of generality, we always

set the covariance of the state evolution noise to be the identity matrix,

which both sets the scale of the state space and disallows certain state

transformations without reducing the expressive power of the model.

Third, we take the observation noise to be uncorrelated with the state

noise and both noises to be zero-mean, since, again without loss of

generality, these can be absorbed into the f and g functions.11

There exist other forms of unidentifiability that are more difficult to

overcome. For example, if both f and g are nonlinear, then (at least in the

noise-free case), for any arbitrary invertible transformation of the state,

11Imagine that the joint noise covariance was nonzero: hwkv
>
k i ¼ S. Replacing A with

A0 ¼ A� SR�1C gives a new noise process w0 with covariance Q0 ¼ Q� SR�1S> that is

uncorrelated with v, leaving the input–output behavior invariant. Similarly, any nonzero

noise means can be absorbed into the b terms in the functions f and g.
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there exist transformations of f and g that result in identical input–output

behavior. In this case, it would he very hard to detect that the recovered

model is indeed a faithful model of the actual system, since the estimated

and actual states would appear to be unrelated.

Clearly, not all systems can be modeled by assuming that f is linear and

g is nonlinear. Similarly, not all systems can be modeled by assuming that

f is nonlinear and g is linear. For example, consider the case where the

observations yk and ykþn are statistically independent, but each observa-

tion lies on a curved low-dimensional manifold in a high-dimensional

space. Modeling this would require a nonlinear g as in nonlinear factor

analysis, but an f ¼ 0. Therefore, choosing either f or g to be linear

restricts the expressive power of the model.

Unlike the state noise covariance Q, assuming that the observation

noise covariance R is diagonal does restrict the expressive power of the

model. This is easy to see for the case where the dimension of the state

space is small and the dimension of the observation vector is large. A full

covariance R can capture all correlations between observations at a single

time step, while a diagonal R model cannot.

For nonlinear dynamical systems, the Gaussian-noise assumption is not

as restrictive as it may initially appear. This is because the nonlinearity can

be used to turn Gaussian noise into non-Gaussian noise [6].

Of course, we have restricted our expressive power by using an RBF

network, especially one in which the means and centers of the RBFs are

fixed. One could try to appeal to universal approximation theorems to

make the claim that one could, in principle, model any nonlinear

dynamical system. But this would be misleading in the light of the

noise assumptions and the fact that only a finite and usually small

number of RBFs are going to be used in practice.

6.5.2 Embedded Flows

There are two ways to think about the dynamical models we have

investigated, shown in Figure 6.12. One is as a nonlinear Markov process

(flow) xk that has been embedded (or potentially projected) into a manifold

yk . From this perspective, the function f controls the evolution of the

stochastic process, and the function g specifies the nonlinear embedding

(or projection) operation.12

12To simplify presentation, we shall neglect driving inputs uk in this section, although the

arguments extend as well to systems with inputs.
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Another way to think of the same model is as a nonlinear version of a

latent-variable model such as factor analysis (but possibly with external

inputs as well) in which the latent variables or factors evolve through time

rather than being drawn independently for each observation. The nonlinear

factor analysis model is represented by g and the time evolution of the

latent variables by f .

If the state space is of lower dimension than the observation space and

the observation noise is additive, then a useful geometrical intuition

applies. In such cases, we have observed a flow inside an embedded

manifold. The observation function g specifies the structure (shape) of the

manifold, while the dynamics f specifies the flow within the manifold.

Armed with this intuition, the learning problem looks as if it might be

decoupled into two separate stages: first find the manifold by doing some

sort of density modeling on the collection of observed outputs (ignoring

their time order); second, find the flow (dynamics) by projecting the

observations into the manifold and doing nonlinear regression from one

time step to the next. This intuition is partly true, and indeed provides the

basis for many of the practical and effective initialization schemes that we

have tried. However, the crucial point as far as the design of learning

algorithms is concerned is that the two learning problems interact in a way

that makes the problem easier. Once we know something about the

dynamics, this information gives some prior knowledge when trying to

learn the manifold shape. For example, if the dynamics suggest that the

next state will be near a certain point, we can use this information to do

better than naive projection when we locate a noisy observation on the

manifold. Conversely, knowing something about the manifold allows us to

estimate the dynamics more effectively.

Figure 6.12 Two interpretations of the graphical model for stochastic
(non)linear dynamical systems (see text). (a) A Markov process embedded
in a manifold. (b) Nonlinear factor analysis through time.

208 6 LEARNING NONLINEAR DYNAMICAL SYSTEMS USING EM



We discuss separately two special cases of flows in manifolds: systems

with linear output functions but nonlinear dynamics, and systems with

linear dynamics but nonlinear output function.

When the output function g is linear and the dynamics f is nonlinear

(Fig. 6.13), the observed sequence forms a nonlinear flow in a linear

subspace of the observation space. The manifold estimation is made

easier, even with high levels of observation noise, by the fact that its shape

is known to be a hyperplane. All that is required is to find its orientation

and the character of the output noise. Time-invariant analysis of the

observations by algorithms such as factor analysis is an excellent way to

initialize estimates of the hyperplane and noises. However, during learn-

ing, we may have cause to tilt the hyperplane to make the dynamics fit

better, or conversely cause to modify the dynamics to make the hyperplane

model better.

This setting is actually more expressive than it might seem initially.

Consider a nonlinear output function gðxÞ that is ‘‘invertible’’ in the sense

that it be written in the form gðxÞ ¼ C ~ggðxÞ for invertible ~gg and non-square

matrix C. Any such nonlinear output function can be made strictly linear if

we transform to a new state variable ~xx:

~xx ¼ ~ggðxÞ ) ~xxkþ1 ¼
~ff ð~xxk;wkÞ ¼ ~ggð f ð ~gg�1ð~xxÞÞ þ wkÞ; ð6:28aÞ

yk ¼ C ~xxk þ vk ¼ gðxkÞ þ vk; ð6:28bÞ

Figure 6.13 Linear and nonlinear dynamical systems represent flow fields
embedded in manifolds. For systems with linear output functions, such as
the one illustrated, the manifold is a hyperplane while the dynamics may be
complex. For systems with nonlinear output functions the shape of the
embedding manifold is also curved.
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which gives an equivalent model but with a purely linear output process,

and potentially nonadditive dynamics noise.

For nonlinear output functions g paired with linear dynamics f , the

observation sequence forms a matrix (linear) flow in a nonlinear manifold:

xkþ1 ¼ Axk þ wk; ð6:29aÞ

yk ¼ gðxkÞ þ vk : ð6:29bÞ

The manifold learning is harder now, because we must estimate a thin,

curved subspace of the observation space in the presence of noise.

However, once we have learned this manifold approximately, we project

the observations into it and learn only linear dynamics. The win comes

from the following fact: in the locations where the projected dynamics do

not look linear, we know that we should bend the manifold to make the

dynamics more linear. Thus, not only the shape of the outputs (ignoring

time) but also the linearity of the dynamics give us clues to learning the

manifold.

6.5.3 Stability

Stability is a key issue in the study of any dynamical system. Here we have

to consider stability at two levels: the stability of the learning procedure,

and the stability of the learned nonlinear dynamical system.

Since every step of the EM algorithm is guaranteed to increase the log-

likelihood until convergence, it has a built-in Lyapunov function for stable

learning. However, as we have pointed out, our use of extended Kalman

smoothing in the E-step of the algorithm represents an approximation to

the exact E-step, and therefore we have to forego any guarantees of

stability of learning. While we rarely had problems with stability of

learning, this is sure to be problem-specific, depending both on the quality

of the EKS approximation and on how close the true system dynamics is

to the boundary of stability. In contrast to the EKS approximations, certain

variational approximations [29] transform the intractable Lyapunov func-

tion into a tractable one, and therefore preserve stability of learning. It is

not clear how to apply these variational approximations to nonlinear

dynamics, although this would clearly be an interesting area of research.

Stability of the learned nonlinear dynamical system can be analyzed by

making use of some linear systems theory. We know that, for discrete-time

linear dynamical systems, if all eigenvalues of the A matrix lie inside the

unit circle, then the system is globally stable. The nonlinear dynamics of
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our RBF network f can be decomposed into two parts (cf. Eq. (6.13)): a

linear component given by A, and a nonlinear component given byP
i hiriðxÞ. Clearly, for the system to be globally stable, A has to satisfy

the eigenvalue criterion for linear systems. Moreover, if the RBF coeffi-

cients for both f and g have bounded norm (i.e., maxi jhij < �hhÞ and the

RBF is bounded, with mini detðSiÞ > smin > 0 and maxij jci � cjj < �cc,

then the nonlinear system is stable in the following sense. The conditions

on Si and h mean that����P
i

hiriðxÞ

���� < I �hh

ð2pÞd=2 ffiffiffiffiffiffiffiffi
smin

p � k:

Therefore, the noise-free nonlinear component of the dynamics alone will

always maintain the state within a sphere of radius k around �cc. So, if the

linear component is stable, then for any sequence of bounded inputs, the

output sequence of the noise-free system will be bounded. Intuitively,

although unstable behavior might occur in the region of RBF support,

once x leaves this region it is drawn back in by A.

For the on-line EM learning algorithm, the hidden state dynamics and

the parameter re-estimation dynamics will interact, and therefore a

stability analysis would be quite challenging. However, since there is no

stability guarantee for the batch EKS-EM algorithm, it seems very

unlikely that a simple form of the on-line algorithm could be provably

stable.

6.5.4 Takens’ Theorem and Hidden States

It has long been known that for linear systems, there is an equivalence

between so called state-space formulations involving hidden variables and

direct vector autoregressive models of the time series. In 1980, Takens

proved a remarkable theorem [52] that tells us that, for almost any

deterministic nonlinear dynamical system with a d-dimensional state

space, the state can be effectively reconstructed by observing 2d þ 1

time lags of any one of its outputs. In particular, Takens showed that such

a lag vector will be a smooth embedding (diffeomorphism) of the true

state, if one exists. This notion of finding an ‘‘embedding’’ for the state has

been used to justify a nonlinear regression approach to learning nonlinear

dynamical systems. That is, if you suspect that the system is nonlinear and

that it has d state dimensions, then instead of building a state-space model,

you can do away with representing states and just build an autoregressive

(AR) model directly on the observations that nonlinearly relates previous
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outputs and the current output. (Chapter 4 discusses the case of chaotic

dynamics.) This view begs the question: Do we need our models to have

hidden states at all?

While no constructive realization for Takens’ theorem exists in general,

there are very strong results for linear systems. For purely linear systems,

we can appeal to the Cayley–Hamilton theorem13 to show that the hidden

state can always be eliminated to obtain an equivalent vector autoregres-

sive model by taking only d time lags of the output. Furthermore, there is

a construction that allows this conversion to be performed explicitly.14

Takens’ theorem offers us a similar guarantee for elimination of hidden

states in nonlinear dynamical systems, as long as we take 2d þ 1 output

lags. (However, no similar recipe exists for explicitly converting to an

autoregressive form). These results appear to make hidden states unne-

cessary.

The problem with this view is that it does not generalize well to many

realistic high-dimensional and noisy scenarios. Consider the example

mentioned in the introduction. While it is mathematically true that the

pixels in the video frame of a balloon floating in the wind are a (highly

nonlinear) function of the pixels in the previous video frames, it would be

ludicrous from the modeling perspective to build an AR model of the

video images. This would require a number of parameters of the order of

the number of pixels squared. Furthermore, unlike the noise-free case of

Takens’ theorem, when the dynamics are noisy, the optimal prediction of

the observation would have to depend on the entire history of past

observations. Any truncation of this history throws away potentially

valuable information about the unobserved state. The state-space formula-

tion of nonlinear dynamical systems allows us to overcome both of these

limitations of nonlinear autoregressive models. That is, it allows us to have

compact representations of dynamics, and to integrate uncertain informa-

tion over time. The price paid for this is that it requires inference over the

hidden state.

13Any square matrix A of size n satisfies its own characteristic equation. Equivalently, any

matrix power Am for m 
 n can be written as a linear combination of lower matrix powers

I ;A;A2; . . . ;An�1.
14Start with the system xkþ1 ¼ Axk þ wk , yk ¼ Cxk þ vk . Create a d-dimensionl lag vector

zk ¼ ½yk; ykþ1; . . . ; ykþd�1� that holds the current and d � 1 future outputs. Write

zk ¼ Gxk þ nk for G ¼ ½CI;CA;CA2; . . . ;CAd�1� and Gaussian noise n (although with

nondiagonal covariance). The Cayley–Hamilton theorem assures us that G is full rank, and

thus we need not take any more lags. Given the lag vector zk, we can solve the system

zk ¼ Gxk for xk ; write this solution as Gþzk . Using the original observation equation d

times, to solve for yk ; . . . ; ykþd�1 in terms of zk , we can write an autoregression for zk as

zkþ1 ¼ GþAGzk þ mk for Gaussian noise m.
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6.5.5 Should Parameters and Hidden States be Treated
Differently?

The maximum-likelihood framework on which the EM algorithm is based

makes a distinction between parameters and hidden variables: it attempts

to integrate over hidden variables to maximize the likelihood as a function

of parameters. This leads to the two-step approach, which computes

sufficient statistics over the hidden variables in the E-step and optimizes

parameters in the M-step. In contrast, a fully Bayesian approach to

learning nonlinear dynamical state-space models would treat both

hidden variables and parameters as unknown and attempt to compute or

approximate the joint posterior distribution over them – in effect integ-

rating over both.

It is important to compare these approaches to system identification

with more traditional ones. We highlight two such approaches: joint EKF

approaches and dual EKF approaches.

In joint EKF approaches [7, 8], an augmented hidden state space is

constructed that comprises the original hidden state space and the

parameters. Since parameters and hidden states interact, even for linear

dynamical systems this approach results in nonlinear dynamics over the

augmented hidden states. Initializing a Gaussian prior distribution both

over parameters and over states, an extended Kalman filter is then used to

recursively update the joint distribution over states and parameters based

on the observations, pðX ; yjY Þ. This approach has the advantage that it can

model uncertainties in the parameters and correlations between parameters

and hidden variables. In fact, this approach treats parameters and state

variables completely symmetrically, and can be thought of as iteratively

implementing a Gaussian approximation to the recursive Bayes’ rule

computations. Nonstationarity can be easily built in by giving the

parameters (e.g., random-walk) dynamics. Although it has some very

appealing properties, this approach is known to suffer from instability

problems, which is the reason why dual EKF approaches have been

proposed.

In dual EKF approaches (see Chapter 5), two interacting but distinct

extended Kalman filters run simultaneously. One computes a Gaussian

approximation of the state posterior given a parameter estimate and the

observations: pðX jŷyold; Y Þ, while the other computes a Gaussian approx-

imation of the parameter posterior given the estimated states pðyjX̂Xold;Y Þ.

The two EKFs interact by each feeding its estimate (i.e., the posterior

means X̂X and ŷy) into the other. One can think of the dual EKF as

performing approximate coordinate ascent in pðX ; yjY Þ by iteratively
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maximizing pðX jŷyold;Y Þ and pðyjX̂Xold; Y ) under the assumption that each

conditional is Gaussian. Since the only interaction between parameters

and hidden variables occurs through their respective means, the procedure

has the flavor of mean-field methods in physics and neural networks [53].

Like these methods, it is also likely to suffer from the overconfidence

problem – namely, since the parameter estimate does not take into account

the uncertainty in the states, the parameter covariance will be overly

narrow, and likewise for the states.

For large systems, both joint and dual EKF methods suffer from the fact

that the parameter covariance matrix is quadratic in the number of

parameters. This problem is more pronounced for the joint EKF, since it

considers the concatenated state space. Furthermore, both joint and dual

EKF methods rely on Gaussian approximations to parameter distributions.

This can sometimes be problematic – for example, consider retaining

positive-definiteness of a noise covariance matrix under the assumption

that its parameters are Gaussian-distributed.

6.6 CONCLUSIONS

This chapter has brought together two classic algorithms – one from

statistics and another from systems engineering – to address the learning

of stochastic nonlinear dynamical systems. We have shown that by pairing

the extended Kalman smoothing algorithm for approximate state estima-

tion in the E-step with a radial basis function learning model that permits

exact analytic solution of the M-step, the EM algorithm is capable of

learning a nonlinear dynamical model from data. As a side-effect we have

derived an algorithm for training a radial basis function network to fit data

in the form of a mixture of Gaussians. We have also derived an on-line

version of the algorithm and a version for dealing with nonstationary time

series.

We have demonstrated the algorithm on a series of synthetic and

realistic nonlinear dynamical systems, and have shown that it is able to

learn accurate models from only observations of inputs and outputs.

Initialization of model parameters and placement of the radial basis

kernels are important to the practical success of the algorithm. We have

discussed techniques for making these choices, and have provided gradient

rules for adapting the centers and widths of the basis functions.

The main strength of our algorithm is that by making a specific choice

of nonlinear estimator (Gaussian radial basis networks), we are able to

exactly account for the uncertain state estimates generated during infer-

ence. Furthermore, the parameter-update procedures still only require the
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solution of systems of linear equations. However, we rely on the standard,

but potentially inaccurate, extended Kalman smoother for approximate

inference. For certain problems where local linearization is an extremely

poor approximation, greater accuracy may be achieved using other

approximate inference techniques such as the unscented filter (see Chapter

7). Another area worthy of further investigation is how to initialize the

parameters more effectively when the data lie on a nonlinear manifold; in

these cases, factor analysis provides an inadequate static model.

The belief network literature has recently been dominated by two

methods for approximate inference: Markov-chain Monte Carlo [54]

and variational approximations [29]. To the best of our knowledge, [36]

and [45] were the first instances where extended Kalman smoothing was

used to perform approximate inference in the E-step of EM. While EKS

does not have the theoretical guarantees of variational methods (which are

also approximate, but monotonically optimize a computable objective

function during learning), its simplicity has gained it wide acceptance in

the estimation and control literatures as a method for doing inference in

nonlinear dynamical systems. Our practical success in modeling a variety

of nonlinear time series suggests that the combination of extended Kalman

algorithms and the EM algorithm can provide powerful tools for learning

nonlinear dynamical systems.
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APPENDIX: EXPECTATIONS REQUIRED TO FIT THE RBFs

The expectations that we need to compute for Eq. (6.78) are hxij, hzij,

hxx>ij, hzz>ij, hxz>ij, hriðxÞij, hxriðxÞij, hzpiðxÞij; and hriðxÞrlðxÞij. Start-

ing with some of the easier ones that do not depend on the RBF kernel r,

we have

hxij ¼ mx
j ; hzij ¼ mz

j ;

hxx>ij ¼ mx
jm

x;>
j þ Cxx

j ; hzz>ij ¼ mz
jm

z;>
n þ Czz

j ;

hxz>ij ¼ mx
jm

z;>
j þ Cxz

j :
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Observe that when we multiply the Gaussian RBF kernel riðxÞ (Eq. (6.14))

and nj, we get a Gaussian density over ðx; zÞ with mean and covariance

mij ¼ Cij C�1
j mj þ

S�1
i ci

0

� �
 �
; Cij ¼ C�1

j þ
S�1

i 0

0 0

� �
 ��1

;

and an extra constant (due to lack of normalization),

bij ¼ ð2pÞ
�dx=2
jSij
�1=2jCjj

�1=2jCijj
1=2 expð� 1

2
dijÞ;

where

dij ¼ c>i S�1
i ci þ m>j C�1

j mj � m>ij C�1
ij mij:

Using bij and mij, we can evaluate the other expectations:

hriðxÞij ¼ bij; hxriðxÞij ¼ bijm
x
ij; hzriðxÞij ¼ bijm

z
ij:

Finally,

hriðxÞrlðxÞij ¼ ð2pÞ
�dx jCjj

�1=2jSij
�1=2jSlj

�1=2jCiljj
1=2 expð1

2
giljÞ;

where

Cilj ¼ C�1
j þ

S�1
i þ S�1

l 0

0 0

" # !�1

;

milj ¼ Cilj C�1
j mj þ

S�1
i ci þ S�1

l cl

0

" # !
;

gilj ¼ c>i S�1
i ci þ c>l S�1

l cl þ m>j C�1
j mj � m>iljC

�1
ilj milj:
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