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Abstract

Curve evolution schemes for segmentation, implemented
with level set methods, have become an important approach
in computer vision. Previous work has modeled evolving
contours which are curves in 2D or surfaces in 3D. Our ob-
jective is to explore recent mathematical work enabling the
evolution of manifolds of higher co-dimension. We consider
1D curves in 3D (codimension-two) for the application of
automatically segmenting blood vessels in volumetric mag-
netic resonance angiography (MRA) images. This paper de-
scribes the theoretical foundations of our system, CURVES,
then provides segmentation results compared against seg-
mentations obtained interactively by a neurosurgeon. Seg-
mentations of bronchi in lung computed tomography (CT)
scans are also presented. The new experiments, compar-
isons to manual segmentations, and sample comparison to
the use of a codimension-one regularization force are the
primary contributions of this report.

1. Introduction

Curve-shortening flow is the evolution of a curve over
time to minimize some distance metric. When this distance
metric is based on image properties, it can be used for seg-
mentation. The idea of geodesic active contours (or geo-
metric active contours) is to define the metric so that indi-
cators of the object boundary, such as large intensity gra-
dients, have a very small “distance” [4, 12, 3]. The mini-
mization will attract the curve to such image areas, thereby
segmenting the image, while preserving properties of the
curve such as smoothness and connectivity. Geodesic active
contours can also be viewed as a more mathematically so-

phisticated variant of classical snakes which evolve a curve
explicitly according to image data and regularization con-
straints [11]. Further, geodesic active contours are imple-
mented with level set methods [24, 19] which are based
on recent results in differential geometry [7, 5]. This im-
plementation technique provides for topological flexibility
and increased numerical stability. Geodesic active contours
have been extended to evolve surfaces in 3D for the seg-
mentation of 3D imagery such as medical datasets [4, 26].

A limitation of the method was that its theoretical foun-
dations applied only to hypersurfaces. Recent work in dif-
ferential geometry, however, developed the equations nec-
essary to evolve arbitrary dimensional manifolds in ar-
bitrary dimensional space [1]. Subsequent work devel-
oped and analyzed a diffusion-generated motion scheme
for codimension-two curves [22]. We have developed
the first application of 1D geodesic active contours in 3D
(codimension-two), based on [1]. Our system, CURVES,
has been applied to automatic segmentation of blood ves-
sels in medical images [17]. It evolves an initial bound-
ary estimate toward the true structures in the image us-
ing a codimension-two regularization force which is based
on the the vessel centerlines instead of on the vessel sur-
face. This novel regularization force enables the segmen-
tation of very thin structures which would not be possible
with a traditional codimension one evolution. This paper
reviews CURVES and its underlying theory, then presents
novel experiments and validation comparisons. In particu-
lar, we compare CURVES segmentations of cerebral vessels
to segmentations obtained manually by a neurosurgeon. We
also show the advantage of a codimension-two regulariza-
tion force over the traditional mean curvature force for the
segmentation of lung CT data.
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Figure 1. Simple segmentation example: (a)
Evolving curve. (b) Level set implementation
of curve evolution.

2. Vascular Segmentation in Medical Images

In neurological surgery the vasculature is of utmost im-
portance. Direct visualization of images acquired with cur-
rent imaging modalities, however, cannot provide a spatial
representation of small vessels. These vessels, and their
branches which show considerable variations, are most im-
portant in planning and performing neurosurgical proce-
dures. In planning they provide information on where the
lesion draws its blood supply, and where it drains. This
is of particular interest in vascular malformations. During
surgery the vessels serve as landmarks, and guidelines to
the lesion. The more minute the information is, the more
precise are navigation and localization of computer guided
procedures.

For these reasons we consider the segmentation of volu-
metric vasculature images, such as the magnetic resonance
angiography (MRA) images pictured in section 5, with a
focus on segmenting the small vessels. Areas of flowing
blood appear bright in this imaging modality. The images
are displayed in maximum intensity projection in which the
stack of slices is collapsed into a single image for viewing
by performing a projection through the stack that assigns
to each pixel in the projection the brightest voxel over all
slices. The approach of simply thresholding the raw data
is commonly used for segmentation but incorrectly labels
bright noise regions as vessel and cannot recover very small
vessels which may not appear connected in the volumetric
image.

Several more sophisticated approaches have been ex-
plored. Multiscale approaches have involved convolving
the image with gaussian filters at multiple scales and ana-
lyzing the eigenvalues of the hessian matrix at each voxel in
the image to determine the local shape of the structures in
the image [23, 8, 16, 14, 15]. Anisotropic diffusion has also
been applied [13, 20]. Another multiscale approach based
on medial axes uses the fact that the centerlines of the ves-
sels appear brightest to detect these centerlines as intensity
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Figure 2. Codimension-two curve: (a) Tubular
isolevel set
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ridges of the image [2]. A differential geometry approach
treats the 3D MRA image as a hypersurface of 4D space
in which extrema of curvature correspond to vessel center-
lines [21]. A statistical approach based on the expectation
maximization (EM) algorithm has been proposed as a fully
automatic MRA segmentation method [25, 6]. Deformable
models have also been applied to 3D vascular segmentation
[4, 18].

3. Background

The CURVES algorithm is an extension of geodesic ac-
tive contours research, also using a level set implementa-
tion. The extension was enabled by theoretical work on
level set methods for arbitrary co-dimensional manifolds.

3.1. Geodesic Active Contours

The task of finding the curve that best fits the object
boundary is posed [4, 3, 12] as a minimization problem over
all closed planar curves ��� �
	���
 ������������� . The objective
function is ���

�! �#" $&%'�(��� �)	#	 " 	 " �+*,� �
	 " � �
where % �-
 �.�#/0�21!
 �.�435��� 
 �.�768	 is the image and  �
 ���469	:� �<; is a strictly decreasing function such that

 �>= 	?�@� as = �A6 , such as  �#" $-%
" 	?B
�� ;?C D<EFC G .

To minimize this objective function by steepest descent,
consider � to be a function of time H as well as spatial pa-
rameter � . The Euler-Lagrange equations yield the curve
evolution equation��JI B  .K �LNM �O$  QP �L 	 �L (1)

where K is the Euclidean curvature and
�L

is the unit inward
normal. In the absence of image gradients, this equation



Figure 3. Tubular object evolving to smooth the underlying curve, as in CURVES. Notice the bumps
are first smoothed out until the shape approximates a torus, then the torus shrinks to a point.

causes the curve to shrink according to its curvature; the
presence of image gradients causes the curve to stop on the
object boundary (Figure 1a).

3.2. Level Set Method for Hypersurfaces

Level set methods increase the dimensionality of the
problem from the dimensionality of the evolving manifold
to the dimensionality of the embedding space [24, 19]. For
the example of planar curves, instead of evolving the one-
dimensional curve, the method evolves a two-dimensional
surface. Let � � � � � � be the signed distance function
to curve � as in Figure 1b; � is thus the zero level-set of
� , and � is an implicit representation of � . Let � � be the
initial curve. It is shown in [7, 5] that evolving � according
to �� I B�� �L
with initial condition ��� P �5�0	?B � � � P 	 for any function � , is
equivalent to evolving � according to

� I B�� " $���"
with initial condition �<� P �#� 	<B � � � P 	 and � � �O� � 	 B � in the
sense that the zero level set of � is identical to the evolv-
ing curve for all time. Choosing � B  .K M �O$  QP

�L 	 as in
Equation 1 gives the behavior illustrated in Figure 1b ac-
cording to the update equation

� I B  K " $���"��8$  &P $����
The extension to surfaces in 3D is straightforward and is

called minimal surfaces [4]. The advantages of the level set
representation are that it is intrinsic (independent of param-
eterization) and that it is topologically flexible since differ-
ent topologies of � are represented by the constant topology
of � .

3.3. Level Set Method for Curves in Higher Codi-
mension

For the task of evolving one-dimensional curves in three-
dimensional space, however, the above level set relation
does not hold. It is applicable only to hypersurfaces, that

is, surfaces whose co-dimension is one: the co-dimension
of a manifold is the difference between the dimension of
the evolving space and the dimension of the manifold. The
examples of a planar curve and a 3D surface have co-
dimension one, but 1D curves in three dimensions have
co-dimension two. Intuition for why the level set method
above no longer holds is that there is not an “inside” and an
“outside” to a manifold with co-dimension larger than one,
so one cannot create the embedding surface � in the same
fashion as for planar curves; a distance function must be ev-
erywhere positive, and is thus singular on the curve itself.
Recently, however, more general level set equations were
found for curvature-based evolution [1].

Let 	 � ��
-� 
 �.�469	 be an auxiliary function whose zero
level set is identically ��� �)	 � 
 �.� ��� � ��
 , that is smooth
near � , and such that $�	 is non-zero outside � . For a
nonzero vector ��
 ��� , define ��� B % M �����C � C G where %
is the identity matrix as the projector onto the plane normal
to � . Further define � �O$�	)��� � H 	7� $ � 	)��� � H 	 	 as the smaller
nonzero eigenvalue of � D�� $ � 	�� D�� . The level set evolution
equation for curve-shortening flow is then [1]

	 I B � �O$�	
��� � H 	7� $ � 	
��� � H 	#	 �
That is, this evolution is equivalent to evolving � according
to

��JI B K �L in the sense that � is the zero level set of 	
throughout the evolution.

For intuition, let � be some curve in ��
 and 	�� be the
distance function to � , which satisfies " $�	 � " B � . Consider
then an isolevel set

� � B�� �<" 	 � ��� 	 B �"! of 	 � where �
is small and positive, so

� �
is a thin tube around � (Fig-

ure 2a). The nonzero eigenvalues of � D��$# $ � 	 � � D��%# are
equal to the principal curvatures of this tube. The larger
principal curvature depends on � while the smaller is related
to the geometry of � . It is according to � that we want the
evolution to proceed; thus, the smaller principal curvature
is chosen. For the more general embedding function 	 , the
nonzero eigenvalues are equal to the principal curvatures
scaled by " $�	
" , and the intuition for choosing the smaller is
the same.

Figure 3 demonstrates the behavior of a shape undergo-
ing this motion, where the smoothing force corresponds to
the curvature of the underlying 1D curve. Figure 4 then



Figure 4. Codimension-one flow. The high
curvatures corresponding to the small radius
of the tube cause the shape to become thin-
ner until it disappears without perceptibly af-
fecting the geometry of the underlying curve.

compares this behavior to that of traditional (codimension-
one) mean curvature flow in which the regularization is
based on the mean curvature of the surface.

Now assume there is an underlying vector field driving
the evolution, so the desired evolution equation is�� I B K

�L M�� �� �
where

�
is the projection operator onto the normal space of� (which is a vector space of dimension � ) and

��
is a given

vector field in ��
 , (Figure 2b). The evolution equation for
the embedding space then becomes [1]

	 I B � �O$�	 � $ � 	 	 �9$�	 P
�� �

4. CURVES

The evolution equation we use follows directly from an
energy-minimization problem statement. Beyond that equa-
tion, several additional features of the program are incorpo-
rated for numerical and application-specific reasons.

4.1. Evolution Equation

For the case of 1D structures in 3D images, we wish to
minimize

� �
�  �#" $-%)�O��� �)	#	 " 	 " � * � �)	 " � �

where ��� �
	 �+
 �.� ���-� ��
 is the 1D curve, % � 
 ���#/0�21
 ���535�F1+
 �.���4��� 
 �.�469	 is the image, and  ��
 ���469	 �@��; is
a strictly decreasing function such that  � = 	?�@� as = � 6
(analogous to [4]). For our current implementation, we use

 �>= 	 B����
	 � M = 	 because it works well in practice. The
Euler-Lagrange equations give��JI B K �LNM  * 

� ��� $-%" $-% " 	��
where � is the Hessian of the intensity function. The aux-
iliary vector field in the above equation is thus�� B  * �

$&%" $&% " �

u = 0A B

Figure 5. To evolve a point on the distance
function, CURVES chooses image informa-
tion from 
 instead of � .

so the equation for the embedding space is

	 I B � �O$�	)��� � H 	7� $ � 	
��� � H 	 	 �  * $�	
���
� H 	 P � $&%" $&% "

4.2. Features

Initial experiments required that the evolving volume be
a distance function to the underlying curve; however, it was
not clear how to robustly extract the zero level set or even
evolve those points since the distance function was singu-
lar exactly there. For this reason, we developed the � -Level
Set Method which defines a thin tube of radius � around the
initial curve, then evolves that tube instead of the curve. �
does not denote a fixed value here, but means only that the
evolving shape is a “tubular” surface of some unspecified
and variable nonzero width. Thus, we are now evolving
surfaces similar to [4], but that follow the motion of the un-
derlying curve so they do not regularize against the high
curvatures found in thin cylindrical structures such as blood
vessels. In addition to being more robust, this method bet-
ter captures the geometry of such structures, which have
nonzero diameter. We stress that this is an approximation to
evolving the underlying curve but is not equivalent. If we
were to constrain the width of the tube to remain constant
along the tube, it would be equivalent; however, allowing
the image to attract local surface areas independently causes
the width to vary, so the tube is no longer as isolevel set of
the distance function to its centerline.

Moreover, although early experiments were initialized
with a tube of constant width around a pre-specified curve,
we obtain improved performance when we start with a tube-
like structure derived from the medical data. Current exper-
iments are thus initialized by thresholding the raw data, as
seen below in Section 5.1, so � represents the intuition for
using tubes, but never indicates a particular value.

Next, we modified the update equation for the MRA seg-
mentation application. To control the trade-off between fit-
ting the surface to the image data and enforcing the smooth-
ness constraint on the surface, we incorporate an image



Figure 6. Surface evolution over time: initialization, followed by successive boundary estimates.

weighting term � which is set by the user or is pre-set to a
default value. Second, because vessels in MRA and bronchi
in CT appear brighter than the background, we weight the
image term by the cosine of the angle between the normal
to the surface and the gradient in the image. This cosine is
given by the dot product of the respective gradients of 	 and% , so the update equation becomes

	 I B � �O$�	 � $ � 	 	 ���
�O$�	 P $-% 	  * $�	 P �
$&%" $&% " (2)

A third aspect of our system is that we do not propa-
gate the image information off the current object boundary
to obtain the values near the boundary, as is customary in
level set methods [4, 3, 12, 9]. Instead, we use directly the
image information at each point in the image (Figure 5).
Our choice has the advantage of enabling attraction to im-
age gradients not on the current boundary, thereby reducing
sensitivity to initialization, at the expense of requiring more
frequent reinitializations of the distance function and los-
ing the equivalence to the Lagrangian method (updating �
directly instead of 	 ) off the boundary.

In short, the CURVES system takes in a 3D image that
contain thin tubular structures, such as an MRA image. An
initial segmentation estimate is generated by thresholding
the image. That estimate is used to generate an initial dis-
tance function, which is iteratively updated according to
Equation 2. Convergence is detected automatically when
volumetric change in the segmentation is very small over
some number of iterations. Further detail was published in
[17].

5. Results

We have run CURVES on approximately 30 medical
datasets, primarily phase contrast magnetic resonance an-
giography (PC-MRA), of various resolutions and scanner

types. We provide images of several representative segmen-
tations.

We first show successive boundary estimates in a seg-
mentation of a cerebral MRA image to demonstrate the
behavior of the algorithm over time, until convergence is
reached. We then illustrate the advantage of our system
compared to codimension-one surface evolution with an ex-
periment involving the segmentation of bronchi in a com-
puted tomography (CT) image of lung. The codimension-
one result was obtained using the mean curvature of the
surface as the regularization force, as in previous level set
segmentation schemes [4]. Finally, we show CURVES seg-
mentations of cerebral MRA images compared to those ob-
tained with a manual segmentation technique used clinically
at our institution.

5.1. Example Evolution

Figure 6 illustrates the behavior of our system over time
on a phase contrast MRA image of cerebral vessels. The
initial surface is obtained by thresholding the raw dataset,
then CURVES evolution produces the subsequent images.

5.2. Bronchi Segmentation, Comparison to
Codimension-One

In the lung, typically the artery, vein, and bronchus are
running in parallel throughout the bronchial structure. In the
CT scan, we see a combination of all of these tissues, but the
majority of the signal comes from the vessels. So by seg-
menting the bright tubular structures, we are extracting the
structure of the bronchi, but it is primarily the vessels along
those bronchi that are causing the signal. For comparison
purposes, we have created a version of the CURVES pro-
gram which uses the codimension-one regularization force.
Figure 7 shows the CURVES segmentation of bronchi in a
lung CT dataset followed by its codimension-one segmen-



Figure 7. Segmentation of bronchi in CT lung scan: maximum intensity projection of CT dataset,
CURVES segmentation, codimension-one segmentation, and overlay image in which the addition
structures detected by CURVES are colored gray. Notice that CURVES is better able to capture thin
bronchi than is the codimension-one method due to the new regularization force.

tation, for the same parameter settings. The two segmenta-
tions are overlaid in the final image, which is colored gray in
regions where only CURVES detected structures and black
in regions where both methods detected structures. Notice
that the codimension-two regularization force does indeed
allow the segmentation of more thin structures than does
the codimension-one force, as expected.

5.3. Segmentations of Cerebral Vasculature

One specific practical motivation for our work is the use
of surface models of cerebral vasculature as an aid in neu-
rosurgical planning and procedure, especially in the context
of the image-guided surgery program at our institution [10].
Currently the vessel models are obtained manually as fol-
lows. A neurosurgeon interactively chooses a threshold that
is used to binarize the MRA dataset: all voxels brighter than
that threshold are labeled as vessel, while all others are dis-
carded. A “connectivity” program then partitions the set of
labeled voxels into connected components. Each connected
component appears in a distinct color on the user interface.
The surgeon looks at individual slices and clicks on col-
ored regions that correspond to vasculature. All connected
components so chosen are stored as the final manual seg-
mentation. The first drawback of this method is the expert
user-interaction required, the second is that the threshold-
ing step implies that all regions of image “noise” which ad-
join vasculature are incorrectly labeled as vessel and small
thin vessels which may appear broken or disconnected from
larger structures will often be omitted. Thus, our goal is to
reduce user interaction while increasing the ability to seg-
ment thin vessels.

We have compared CURVES segmentations against
manual segmentations constructed as just described for

nine cerebral datasets; Figure 8 shows representative com-
parisons. From left to right, each row shows a maximum
intensity projection of the raw dataset, the CURVES seg-
mentation, the manual segmentation, and an overlay image.
The overlay image is black where both methods detected
vessels, dark gray where only CURVES detected vessels,
and light gray where only the manual method detected
vessels. The first three rows shows a single dataset and a
pair of segmentations from three orthogonal viewpoints.
The dataset shown here was acquired on a 1.5T scanner
with voxel size of � � ��� ������� 1 � � ��� �����	� 1 � � � mm 
 and
image size of � �	
+1 � �	
 1��	� voxels. Notice that CURVES
is able to capture more of the thin vessels than the manual
procedure which is based on simple thresholding. The
final three rows of this figure show comparisons for three
more datasets, shown only from an axial viewpoint. The
first dataset was acquired using the same protocol as that
in the first rows, and the second and third were acquired
on a 0.5T scanner with a size of � ��
 1 � �	
 1

0� voxels
and with the same protocol otherwise. Notice that the
first of these three datasets exhibits an imaging artifact
which causes a bright horizontal smear in the image near
the medial cerebral arteries. The manual method must
include this smear in the resulting segmentation in order
to also include thinner vessels whose intensity is as high
as that of the smear. Since CURVES operates on intensity
gradients, it is able to capture many of the thinner vessels
without mislabeling much of this smear. Color images
which more clearly illustrate the comparison are available at
http://www.ai.mit.edu/people/liana/3dcurves/multiview.html.
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Figure 8. Data, CURVES segmentations, manual segmentations, overlays. Discussion in text.


