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This paper deals with the registration of geometric shapes. Our primary contribution
is the use of a simple and robust shape representation (distance functions) for global-
to-local alignment. We propose a rigid-invariant variational framework that can deal
as well with local non-rigid transformations. To this end, the registration map consists
of a linear motion model and a local deformations field, incrementally recovered. In
order to demonstrate the performance of the selected representation a simple criterion
is considered, the sum of square differences. Empirical validation and promising results
were obtained on examples that exhibit large global motion as well as important local
deformations and arbitrary topological changes.

1. Introduction

Image registration [20,35] is a challenging application in computer vision and image
processing. It is encountered in many fields like remote sensing, biomedical imaging,
data indexing and retrieval (digital libraries), surveillance, post production (tracking,
stereo reconstruction from multiple views), etc. Many of these applications involve data
from multiple modalities (biomedical imaging) that provide complementary information.
However, in order to be properly used, an integration/combination /fusion step is required.

Various applications in computer vision require the extraction of specific structures of
interest, namely the segmentation of the visual information. Despite the fact that these
structures have similar origins, they can present certain degrees of variability [52]. One
can consider the cardiac example in biomedical imaging. The heart shape varies across
age, gender, ethnicities, etc. Additionally , the cardiac shape can be corrupted by cardio-
vascular diseases. In medical image analysis [15], there is a strong need in image and
shape alignment [13]. The outcome of this process can be used as a clinical tool.

Document Image Analysis and Pattern Recognition are also areas where shape registra-
tion and alignment are important. The writing patterns differ across individuals although
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they refer to the same basis of letters. One can claim that the recognition problem can
be appropriately solved if first shapes are aligned.

The problem of registering geometric shapes [3,55] is a complex issue in vision, graphics
and recently medical imaging. It has been studied in various forms during the last decade.
A general registration formulation can be stated as: given two shapes, an input D and a
target S, and a dissimilarity measure, find the best transformation that associates to any
point of D a corresponding point at & and minimizes the dissimilarity measure between
the transformed shape D and the target S. This dissimilarity can be defined either along
the contour (shape-based) or in the entire region (area-based) determined by the contour.

One can separate the shape registration problem [22,27] from the shape recognition
one. In the recognition scenario correspondences between the shapes can be considered
known. Then the objective is to find from a given set of examples the shape that provides
the lower dissimilarity measurement with the target [2,31,46,63]. Alternatively, methods
that do not require correspondence and are based on the comparison of some global shape
characteristics were also investigated for shape recognition. This paper does not focus on
the matching and the recognition of shapes but rather on the registration aspect.

Shape alignment and registration were considered under different views. Their classifi-
cation is not straightforward [37] although the use of the following criteria is a reasonable
selection: (i) Nature and Domain of Transformation and (ii) Optimization Procedure. A
critical component of the registration procedure is the underlying motion model (nature
of transformation) that is used to map the source shape to the target. The selection of the
motion transformation affects drastically the performance of the registration procedure.

1.1. Motion Model and Registration Domain

Rigid transformations [18] refer to translation, rotation and scale. They refer to a
compromise between low complexity and fairly acceptable matching between the different
structures. One can claim that their inability to deal with non-rigid shapes underlying
local deformations is a considerable limitation.

The affine transformation can account for a larger family of deformations [17]. Such
selection is very popular in object tracking and assumes that the moving objects (shapes)
are planar. Image and shape registration are two other areas where affine models were
considered with encouraging performance when images/shapes exhibit shearing. The use
of projective geometry was also considered to match shapes [4]. This methodology can
account, for perspective projections and rigid displacements jointly, and is suitable for
shapes that appear ”tilted”.

Curved or elastic registration methods [1,36,58] go beyond the assumption of planar
objects and can better account for local deformations. Deformable templates is a common
tool in image segmentation /registration [39]. The shape to be recovered is parameterized
using a set of basic functions and a set of control points. Segmentation/Registration is
obtained through an elastic method that best fits the model to the image characteristics
or to the target shape.

The selection of the registration model is also related with the transformation domain.
Global motion models [40] are assumed to be valid for the entire region/image to be
registered. On the other hand, local deformations refer to pixel-wise registration [8,26,17,
62] components.



Local registration domains are suitable for objects that undergo local deformations.
Correspondences are obtained through an image/volume defined registration flow that
varies across pixels. Dependencies across small neighborhoods are introduced to ensure
the regularity of the registration map and to solve the ill-posed inference problem. These
methods exhibit strong sensitivity to noise and fail to deal with large motions unless
properly initialized. One can claim that their ability to deal with non-rigid motion makes
them quite attractive.

Opposite to the local registration methods, global transformations are valid for the
entire shape. Correspondences between the target D and the source S are obtained by
applying the same (parametric) transformation. Robustness is the key characteristic of
these methods. The estimation of the registration parameters can be done reliably due to
the important number (region pixels) of measurements available for solving the inference
problem. On the other hand, such methods perform poorly if the assumptions related
with the registration problem (form of the transformation) are not satisfied (non-rigid
motion).

Neither the selection of the transformation, nor the domain are sufficient enough to
determine the registration map. These two components have to be integrated in an
optimization framework by means of selecting a dissimilarity measure that involves the
source and the target shape, the motion model and the registration domain.

1.2. Optimization Procedure

The selection of a mathematical framework by means of finding an optimum of some
functional defined on the parameter space is a key component of the registration proce-
dure. These functionals attempt to quantify the similarity or the dis-similarity between
the two shapes. Variational frameworks [7,14,27,32], stochastic principles [23,57], graph-
driven techniques [24] are mathematical spaces that were considered.

The optimization procedure is strongly related with the mathematical framework. To-
wards this end, the use gradient-descent methods is a common selection in variational
settings [25]. Geometric hashing, deterministic relaxation algorithms like the iterative
closest point, iterative conditional modes, etc. can also be found in the literature.

One can also consider the feature space to perform additional grouping of the (shape)
registration methods. The use of gray level features, global histograms, image curvature
etc. can result to promising results. In particular medial axes/skeletons [63], shocks
[29,48], local curvature [12], etc. have outer-perform in shape registration.

In this paper [43] we propose a variational framework [60] for rigid/non-rigid shape
alignment [53]. The use of 2D structures is considered for the validation of the method that
can be extended to any arbitrary dimension. Our approach consists of two contributions;
(i) the selection of a powerful feature space, (ii) the integration of global linear registration
models (rigid, affine, etc.) and local deformations.

The structures of interest (2D shapes) are considered in a higher dimension (surfaces)
and represented using signed Euclidean distance transforms [44]. Such selection is very
common to track moving interfaces through level set methods [41,42]. It creates an
augmented registration space that consists of shape clones coherently positioned in the
image plane. Registration is then equivalent with seeking mutual correspondences between
the source, the target shape and their clones.



A variational framework that integrates global motion with local deformations is used
for the estimation of the registration parameters. This framework is defined at the distance
transform space and aims at finding the best transformation between the distance-driven
representations of the source and the target. The sum of squared differences between these
representations is considered as optimization criterion to demonstrate the potentials of
the method. To deal with more complex cases that involve shape with uncertainties, a
more elaborated technique (registration and prior learning) is also presented. The ob-
jective function considers a linear parametric model and a pixel-wise deformation field
resulting in a non-rigid registration paradigm. Both registration components are recov-
ered simultaneously through a gradient descent method. The proposed method performs
global-to-local registration where local deformations are used to overcome the limitations
of the global linear model. Encouraging experimental results using 2D shapes were ob-
tained.

Distance transforms [44] and level set representations [42] were considered for image
registration /segmentation in the past either as a feature [9,14,19,21,30,?, 49,56,61] or
as an optimization space [33,51]. In [30] the Euclidean distance was considered to be
the feature space. Then 2D/3D objects are to be registered using linear (rigid, affine)
transformations to a prior shape model. This model refers to a collection of points that can
be obtained through uniform sampling. Distance maps from edges were also considered
for image alignment [21]. These methods focus on global transformations and cannot
deal with local deformations and important scale variations. Level set representations
can be related with our method when distance maps are used as embedding functions
[9,14,56,61]. For example, in [9] a local-registration is recovered by seeking pixel-wise
the lowest cost geodesic path between the source and the target. A different approach
was considered in [56] where registration is recovered through a curve evolution approach.
Distance transforms were also considered for accelerating the optimization procedure. For
example, in [51] the key contribution is a motion model defining a parameterized volume
transformation with variable resolution (increasing in the proximity of the shape).

The reminder of this paper is organized as follows. In Section 2 we introduce a shape
representation based on distance transforms and prove that such selection is invariant
to translation and rotation. Global registration using the SSD criterion is considered
in Section 3 while local deformations are introduced in Section 4. Supervised learning
and non-rigid registration are briefly presented in Section 5. Conclusions and discussion
appear in Section 6.

2. Shape Representation

A crucial component in the procedure of registering arbitrary shapes is the under-
lying shape representation [29] since it can significantly affect the performance of the
selected registration algorithm. The use of point-based snake models [28], deformable
models/templates [5], active shapes [11], Fourier descriptors, medial axis, level set rep-
resentations [6,38] are some alternatives to represent shapes as well as their variations.
Although, these representations are powerful enough to capture a certain number of local
deformations, they require a large number of parameters to deal with important shape
deformations. Also, their extension to describe structures of higher dimension than curves



and surfaces is not trivial. Based on these remarks and given the assumption that we
would like to obtain a global-to-local registration, we will consider the use of Euclidean
distance maps to represent shapes. One can claim that such selection can deal with local
deformations and is invariant to translation and rotation.

In order to facilitate the introduction of the method, we consider the 2D case and let
® : O — R" be a Lipschitz function that refers to a distance transform representation
for a given shape S. By definition 2 is bounded since it refers to the image domain. The
shape defines a bi-modal partition; its convex hull Rs and the background. Given these
definitions the following representation is considered:

0, (x,y) €S
Ds(z,y) = { +ED((z,v),S) > 0, (z,y) € Rs (1)
_ED(('Tay)aS) <0, ('/an) € [Q_RS]

where ED((z,y),S) refers to the min Euclidean distance between the grid location (z, y)
and the shape S. This is a level set representation [42] of & where {S;(z,y) € Q :
®s(z,y) = 0}. The fast marching algorithm [47,54] or other techniques [30,50] can be
used for the construction of these representations. Distance transforms can provide a
convenient feature space when the corresponding objective function is optimized using a
gradient descent method. One can prove that the gradient is a unit vector in the direction
of the vector distance function. Sufficient conditions for convergence of gradient descent
methods require continuous first derivatives. The considered representation satisfies these
conditions in several ways.

Furthermore it can be easily proven that this representation [®s] is invariant to trans-
lation and rotation. Let us consider a shape D that is obtained after rotating S by an 6
angle and translating by a vector (Tx, Ty).

z cos 6 sin 6 T Ty
A(x’y):<g>zs(—sin0 cosﬁ) (y)+(TY> 2)

Then, if we consider a pixel (z,y) with distance d from the interface D, the following
relation holds:

d = ED((z,y), D) = ming ep {\/(u "2+ (v— y)2} (3)

The use of the inverse transformation between D and S for (z,y) leads to the following

equation:
( x cos(—0) +y sin(—0) — )
—x sin(—0) +y cos(—0) —

(
_ a\ u cos(—0) +v sin(—0) — Tx)
5= {(@) B (—u sin(—6) + v cos(—0) — TY) () € D}

8>
N——
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Thus, the distance between ( and the interface S is given by

ED((,9),8) = mines { V(i - )+ (0 )}

{

{ (u—= cos(—9) + (v —1y) Sin(_e))Q}
i )

{

= mln(u v)eD

= ming, e ¢(u—x (v—y)Q} = D((z,4), D)

We have shown that the selected representation is invariant to rotation and translation.
On the other hand when the transformation exhibits a scale component s then the selected
shape representations are not invariant. One can easily show that the following relation
holds between the level set representations of S and D under a scale transformation s:

s ED((z,y), D) = ED((2,9),S) = 8 ®p(z,y) = ®s (&, 9) (6)

The interpretation of this condition is rather simple. If correspondences are known be-
tween the source and the target, then the corresponding distances are proportional to the
scale factor.

3. Global Registration

Registration is equivalent with finding a point-wise transformation between the current
D and the target shape & that minimizes a given dissimilarity measure. Distance trans-
form representations refer to a higher dimension space than the original one (2D shapes)
and increase the problem/solution potentials. One can seek for a transformation A that
creates pixel-wise intensity correspondences between the source ®p and the target shape
&g representation. We have proved that distance transforms representations [®p, ®g|
are invariant to translation and rotation while we are able to predict the effect of scale
variations. These conditions can lead to the following constraint;

(s,0,T)

Ay cos sin 6 x x
Alz,y) = (AY>:S<—sin9 cos@) (y)—i_(;,) (™)

V(X, y) €N [S QD(X7 y) = (I’S (A(Xa Y))]

Exploiting this constraint, we consider registration in a global optimization framework
that involves all pixels in the image plane. The sum of squared differences, the optimiza-
tion of the correlation ratio, the maximization of the mutual information, etc. can be
used as as similarity measure between the source and the target representation. In order
to introduce and demonstrate the potentials of the selected shape representation and our
method, we consider a simple well known and widely used criterion; the sum of square
differences.

To this end, we assume a global rigid deformation between S and D that involves three
parameters [A = (s,6, T)]; a rotation angle , and translation vector T = (T, Ty) and a
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scale factor s. Then, the following objective function can be used to recover the optimal
registration parameters;

(S’ 0’ T) = (S(I)D(x: y) - (PS(A(x’ y)))2 dS2 (8)

The initial positions of the source & and the target D can produce distance map repre-
sentations that are not equally defined in a fixed image image plane. To deal with this
technical limitation as well to decrease computational complexity we consider the areas
defined by two equal-distance contours (inwards, outwards) from the input shapes.

D S D s 2 9)

where is a binary function given by

with the following interpretation: pixels (isophotes), within a range of distance from the
shapes to be registered are considered in the optimization process. Using the proposed
formulation we were able to convert a geometry driven point-correspondence problem into
an image-registration application where space as well feature-based (intensity) correspon-
dences are considered.
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A gradient descent method can be used to recover the optimal registration parameters;

d—TX - 2 ((D’D, (DS)—:L' (S(D'D - @S(A))
d )
7T =2 (@, @S)—ys (s®p — Ps(A))
d
d—0=2 (Pp, Ps)( Ps A) (s®p — Ps(A))
\ ds Py —xsinf + ycos 6
=2 dp, O —, dp — Ds(A
(®p, s)S( o y) _cosf — ysind (s®p — Ps(A))
d
d_S =2 (q)p, (I)S)((I)'D + &g A) (Sq)p — Cbs(A))
s Ps xcosf 4 ysind
=2 dp, O d —, = dp — Ps(A
\ (®p, s)( D+< o y) (—xsin0+ycose>>(s p — Ps(A))

(10)

The performance of the proposed module under various initial conditions is shown in
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Figure 3. Empirical evaluation of the cost function: (i.1) Unknown translation [z,y],
(.2) Unknown transaltion [z]| and rotation, (ii.1) Unknown translation [z] and scale, (ii.2)
Unknown scale and rotation.

[Figure (1,2)]. Given the rigid-invariant registration criterion, one can claim that the
method is suitable for rigid objects. The use of robust estimators can be considered
to deal with objects that undergo local deformations. To this end, a dominant rigid
registration component is assumed. It can be efficiently recovered because of the small
number of outliers due to the use of distance maps that downgrade the importance of
local deformations.

The experimental results demonstrate promising potentials of the proposed framework.
However, an more deep empirical validation is required. The form of the cost function is a
good indicator regarding the efficiency /stability of the framework. Non-convex optimiza-
tion criteria (like the one consider in this paper) suffer from the initial conditions. In our
approach, we have considered a very strong feature space, the signed distance transforms
and therefore one would expect that the performance of the method will be satisfactory.

In order to perform a study on this performance, we can constrain the unknown pa-
rameter space in two dimensions. We have considered the examples shown in [Figure (1)].
Then, from the 4-dimensional parameter space we have studied the following cases:

Scale and rotation are known, translation is to be recovered [Figure(3.(i.1))],

Translation in z and scale are known, translation in y and rotation are to be recov-
ered [Figure (3.(i.2))],

Translation in x and rotation are known, translation in y and scale are to be recov-
ered [Figure (3.(ii.1))],



10

Translation in z and translation in y are known, rotation and scale are to be recov-
ered [Figure (3.(ii.2))].

An empirical evaluation test is considered where we have quantize the search space using
uniform sampling rule (100 elements) for all unknown parameters in each case. Transla-
tion in (z,y) were in the range of [—50,50] [—50,50], scale in [0 75,1 25] and rotation in
——,— . Then, one can estimate the cost function in the space of two unknown param-
eters, by considering all possible combinations derived from the sampling strategy (the
other two parameters are fixed). The resulting functional as shown in [Figure (3)] has
some nice properties; it is smooth and exhibits a single global minimum. The cost function
[Figure (3)] has a convex form for all combinations that involve two unknown registration
variables. This limited validation cannot be used to prove convexity of objective function
when the registration problem is considered in its full dimensionality (four variables of
rigid transformation). However, the form of this function in a reduced variable space is a
good indicator for a well-behaved optimization criterion with smooth properties.
Rigid-based registration can be an acceptable solution to a large number of image
processing and computer vision applications. Medical imaging is an area where non-
rigid motion is a common problem. The ability of creating pixel-wise correspondences
between physiological structures either for comparison purposes, or for clinical studies is
an important priority in the medical imaging community.

. Global to ocal Registration

Local deformations are desirable registration components. Many objects undergo rigid
and non-rigid motion simultaneously. Due to the lack of information the complete recovery
of the local deformation field is an ill-posed problem. The use of regularization terms is
a common practice to overcome this limitation. However, proper initial conditions is a
strong requirement to convergence for these methods. Dealing with large-scale motion is
also a limitation of pixel-wise registration techniques.

The framework proposed up to now can account for global linear transformations lead-
ing to promising results. The proper handling of non-rigid objects (shapes) and local
deformations is still an issue. Such challenge can be met by incorporating to the method
the notion of local deformations. One can assume that the observed shape to be registered
is a rigid/affine/etc. transformation A of the target plus some local deformations ( , )
[non-rigid object parts];

(s,0,T)

( (zy), (z,9): (z,y) €Q (11)
V(x.y) €Q: [s®p(x,y) =Ps(A+ (. ))]

The local deformation field ( (z,y), (z,y)) is defined in the image plane and has values
only for the non-rigid parts of the shape to be registered. This hypothesis can lead to a
two-fold registration criterion that involves a global motion model and a local deformation
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field:
(5,0, T,(, )= (Bp, Bs) (5Bp — Ps(A))” dS

(12)
+(1-) (@0, Bs) (5@p — Es(A+(, )))° dQ

where is a constant that balancing the contributions of the two terms (global motion, lo-
cal deformations). The interpretation of this criterion is rather simple; registration errors
caused by the use of the rigid transformation are corrected using the local deformation
field. The form of this criterion guarantees (modulo the selection of ) primary the es-
timation of the rigid motion parameters and then the recovery of the local deformation
field.

Some results on the performance of this additional term are shown in [Figure (4)]. Same
initial conditions as the ones used for the validation of the rigid registration component
[Figure (2.a)] are considered. One can see the local corrections due to the pixel-wise
deformation field on the bottom left (right foot) and on the top-right part of the object
(left hand).

Local deformations increase significantly the complexity of the method. A simple way
to decrease this complexity is to constrain the search space. The local deformation field
is to be computed only in the vicinity of the source shape. The proposed framework
estimates the global motion model as well as the local deformation field in an augmented
shape driven space, where correspondence is established for the original shapes as well as
their clones. The use of this space improves performance of the registration process. At
the same time, the role of the local registration field is to deal with local deformations
and non-rigid parts. One can assume that the registration solution provide by the rigid
motion is close to the optimal solution. Therefore, local deformations are to be computed
in a small band defined in the vicinity of the shape. To this end, we can modify the
proposed cost function as follows;

(5,0, T,(, )= (Bp, Bs) (5Bp — Ps(A)? d§

(13)
+ (1-) (Pp, Bs) (30p — Bs(A +(, ) dO

where  >> 5. Such modification of the objective function decreases significantly the
computational requirements of the method without altering the performance. Spatial
derivatives can be computed once at the beginning of the process to further increase the
convergence rate.

.1. Smoothness onstraints
Real objects undergoing shape transformations refer to some physical entities. The
components of these entities are connected elements and have to exhibit similar transfor-
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Figure 4. ba- - a d d e sra s he d ere sbe s
{s=063 §=5994 Tyx=-1397, T, =—-1409}

mations. Smoothness of the pixel-wise motion field is a natural registration assumption.
Local deformations cannot be independent in the pixel level and therefore this condition
has to be imposed during the recovery of the local deformation field.

The use of penalty terms to introduce this condition is a common technique when
solving the inference problem. Terms that account for smoothness on the field ( , ) can
be considered in various forms. We adopt the simplest form of this constraint?:

(s,6,T,(, )= (®p, Bs) (sPp — Bs(A))* dQ
+ (1-) (Pp, Ps) (sBp — Ds(A+(, )))* dO (14)
+ (1= )(1-) (Pp,®s) *4+ *+ 2+ * dQ
where ( , , , ) are the spatial derivatives of the local deformation field and is

a constant that balances the trend between the quality of local correspondences and
smoothness of the deformation field. The objective function was gradually constructed
and therefore its interpretation is evident. The first term aims at finding pixel-wise
intensity (level set representation) correspondences according to a global motion model
(rigid transformation). The second term, aims at correcting the correspondences in the
pixel level using a local deformation field on top of the existing global model, while the
third term constrains these deformations to be locally smooth.

Using a gradient descent method, we can recover the following partial differential equa-

Comple and more efficient terms can be found in the literature and can also be considered.
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tions for the estimation of registration parameters;

( d A
e (o 3)
[ (®p,%s) (8Pp—Ds(A))+  (Pp,Ps) (1— )(sPp—Ps(A+(, )))]
[ (®p,Ds5) (3Pp—2s(A))+ (0, ®s) (1— )(sPp —Ps(A+(, )))]
{ dis =2 ((b’D + &g A)

[ (P, ®s) (sPp—s(A)+ (P, Rs) (1— ) (sPp—Ps(A+(, )))]

oo )= )0 4+ )+

2 (1= ) @s(A+(, )(sPo—as(A+(, )
S o=a- - )0+ )+
L 20— ) @A+ ()P - Bs(A+(, )

(15)

The selection of the parameter is a crucial component of the algorithm since it con-
trols global-to-local factor. Moreover, according to this parameter the construction of
the local deformation field is delayed until the parameters of the global rigid model are
properly estimated. An alternative to this coupling between global and local registration
components is a two stage approach that involves the estimation of the global model first,
and then the local estimates of the deformation field. However, such selection can be
sensitive to the initial conditions, noise and outliers. Moreover, it involves the use of
time measures to control the gradient descend method and cannot be done automatically.
One can claim that the proposed framework shares the same limitation. A simple way
to overcome this constraint is to penalize the formation of a rich local deformation field
using its magnitude:

(5,0, T,( , )= (Bp, D) (5Bp — Ds(A))?) dQ
+ (1-) (®p, Bs) (sPp — Ps(A+(, )))?) dQ (16)
+ (1-)1-) (Bp,®s) 2+ 24+ 24+ 2 4+ 24 % 4O

The benefit of using such term will be the decrease of the importance of the local de-
formation field. At the same time such term will introduce additional complexity to the
model. In order to evaluate the registration performance of the method with respect to
the parameter, we have conducted several experiments in a quantized space. Modulo
its selection, the individual estimates of the global model and the local deformation mea-
sures were different. However, their additive joint estimates (final registration) remain
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(3)
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the same leading to the same overall performance. This is clearly shown in [Figure (5)]
where the following extreme cases have been considered for demonstration purposes:

A global rigid transformation [ =1 0, Figure (5.1)],

A global-to-local rigid transformation with local deformations [ =05, = 035,
Figure (5.2)],

A local (pixel-wise registration) model [ =00, =05, Figure (5.3)].

Registration performance of the proposed framework was optimal/same in all cases. The
selected representation preserves strong registration power since even the complete pixel-
wise local deformation field can be properly recovered in the cases of large displacements.
It is important to note though that the use of a local deformation field introduce uncer-
tainty on the registration process. The registered shape can differ from the original one
and be an open structure.

. Global to local Registration ith ncertainties

A step forward to be done is to deal with the registration problem in more complex
scenarios, where the target is not a shape (collection of points that is converted to a
distance function image), but a shape model [16] with local degrees of variability.
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.1. Shape Model
A stochastic framework with two unknown variables can be considered:

The shape image, ®s(z,v),
The local degrees (variability) of shape deformations s(z,y).

Similar models in a difference context were proposed in [58]. This model refers to a dis-
tance function [®s(z,y)] that is associated with some variability measurements [ s(z,y)]

0, (x,y) €S
®s(z,y) = { +ED((z,y),8) > 0, (z,y) € Rs (17)
-ED((z,9),8) <0, (z,y) €[Q—Rs|

Then, for a given pixel location (z,y) and a given value the conditional probability of
having this value at the location in § is given by:

1 -

=— 18

st =— o) (18)

The construction of such model can be done through a training phase. One can assume

that  contours/shapes of the target are available. Global registration of the training

examples to common pose provides  distance transforms representations (one for each

training sample) [® ]. A sample - arbitrary selected - shape from the training set can

be used as common pose [®g]. Such selection can introduce some bias to the model
construction.

Several techniques can be used to extract an appropriate and compact representation
given  set of registered training examples. Principal component analysis on the space
of distance transforms requires a significant number of examples in order to be accurate
[34]. We consider a variational framework for the estimation of the most appropriate rep-
resentation that aims at maximizing the local joint densities between the model (®g, &)
and the registered training samples:

(@5, s)=— log * (% (z,y)) dudy

)

u : Og(z,y)i=1, V(z,y) €

(19)

Additionally, it is natural to enforce spatial coherence on the variability estimates by
adding a smoothness term. Since the constant term ( 2 ) does not affect the minimiza-
tion procedure, the following functional is used:
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where [ ] balances the contribution between the data attraction and regularity of the
variability field.

The constrained optimization of this functional can be done using Lagrange multipliers
and a gradient descent method. However, given the form of constraints (involvement of
first and second order derivatives), we cannot obtain a closed form solution and prove that
the conditions which guarantee the validity of Lagrange theorem are satisfied. Moreover,
the number of unknown variables of the system is too high ( 2) and the system is quite
unstable especially when there is large variability among training samples. A possible
way to overcome this limitation (that is currently investigated) refers to the use of an
augmented Lagrangian function, but even in that case the proof of validity and the initial
conditions are open issues.

An alternative selection refers to a two step optimization process. During the first step,
we obtain the ”optimal” solution according to the data driven terms, while during the
second step we find the ”optimal” projection of this solution at the manifold of acceptable
solutions (distance functions). Similar techniques have been considered in the past to deal
with computer vision constrained optimization problems. Thus, the unknown variables
are obtained by minimizing the previously defined data-driven objective function that
preserves some regularity conditions:

o= (2%
d 22
) (21)
d 1 (P — dg) 2 2
— 5= —— (1) s+ s
d S S T x Yy

while the projection/correction to the manifold space of accepted solutions (Euclidean
distance maps) is done using a a partial differential equation that does not require average
shape extraction and was proposed in [50]:

d
d—@gzsgn (I)S (1— (I)S)

where @ is the initial representation (data driven). These two steps alternate until the
system reaches a steady-state solution. Upon convergence of the system, we will obtain a
distance map/transform representation model that optimally expresses the properties of
the training set using degrees of variability that are constrained to be locally smooth. As
far as the initial conditions of the system are concerned, we use the Euclidean distance
map of the reference sample.

.2. Stochastic Registration

Given this model, a more challenging and promising approach is to register a given
shape D by maximizing the joint density between the model and the input shape. If we
assume that the conditional densities of the model are independent across pixels, then the

The use of the data dri en term will modif the e ol ing representation without respecting the constraint
of being a distance function.
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optimization criterion is equivalent with the maximization of:

(5,6,T,(, )Pp,Ps, s) = s()y8®p)+ (1= ) s 4(,)(sPp)

that is combined with the regularization term, leading to the following minimization
criterion:

(S’O’T’( ) )): ((I)D,(DS) (log( S(A))+ ((DD2_§‘ASA()A‘)) )dQ

(Pp —®s(A+(, )
+(1-) (@5, 25) (log< s+ M+ 2, ) an
+ (1= )1-) (s®p,®s) 2+ 2+ 2+ % dQ

A gradient descent method can be used for the minimization of the defined functional.
The obtained motion equations are similar to the ones obtained using the Sum of Squared
Differences. Furthermore, they can account for the variability of the shape model. As a
consequence, the contribution of pixel locations with high variability are less significant
than the ones with high confidence in the prior model.

onclusions

In this paper, we have proposed a novel/simple framework based on variational princi-
ples for global to local shape registration. The proposed framework makes use of Euclidean
distance maps as feature space. Variational principles lead to a scale/rotation/translation
invariant paradigm for shape registration. The extension of the method to deal with higher
dimensions as well as with open structures are currently investigated. Encouraging [Fig-
ure (6,8,7,9,10)] experimental results were obtained using all variations of the proposed
formulation.

The efficiency of the proposed formulation is demonstrated using a simple optimiza-
tion criterion, the sum of squared differences. Therefore, based on the experimental
validation one can conclude that the selected shape representation has strong registra-
tion/discrimination power. Moreover, it can deal with occlusions and local deformations.

In order to validate our approach, we have considered cases with partial occlusions,
local deformations and random (generated) motion between the source and the target
shape. These shapes were part of the same family [Figure (7,8,9)]. Random global
transformations have been applied to the source shape using a 4-D variable defined in the
registration space (s, 6, Tx, Tx):

6el—,-],
s€[08,1 2],

(Tx, Ty) € [-30,30] [—30,30],
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Figure 6. d e sra rr d be s - - - ahr
rresp ds ad ere s re he are s hesa e ere a d s are
s dered rea h asea dsh d ere s ab d e sra es

For all examples we have ran 100 trials using a random generation process for the parame-
ters of the rigid transformation. In all cases the source and the target were different. The
obtained results are shown in [Figure (7,8,9)]. Each column corresponds to a different
trial. The first row of the trial (a) refers to the initial condition and the second row (b) to
the final registration result. A small portion of the initial conditions (100) is presented for
demonstration purposes in [Figure (7,8,9)]. The performance of the registration method
(registration ratio) is also given for each case. Ground truth is available within the val-
idation process. Therefore, the method performance (registration ration) is defined as
the number of successful recoveries for registration parameters divide by the number of
trials. We can observe that when strong local deformations are not present the proposed
framework converges to the same (global) minimum for all trials under different initial
conditions [Figure (7,8)].

One can assume given the experimental results that the proposed objective function
defined in the Euclidean distance space is smooth and continuous. As a consequence, a
gradient descent method can converge to the global minimum. It is interesting to note
that even in the case of heavily partial deformed shapes [Figure (9)] the objective function
seems to exhibit a similar behavior. For example, when fingers are progressively removed
from the "hand” subject, the method converges always to one of the (three) local minima
(one global).

Although the experimental results are satisfactory, one can predict reduced performance
when symmetric shapes are to be registered. Symmetries will create similar distance



19

(i)
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transform representations that can cause convergence to local minima.

The computational cost of our approach depends on several factors. Initial conditions,
size of the target and the source and coupling between the global model and the local
deformations are the main parameters involved in this procedure. The use of classical
numerical methods is a significant drawback due to the requirement of significantly small
time step to guarantee stability. One can consider the use of more elaborated techniques
(under investigation) that will lead to a real time approach regarding the global motion
model.

.1. uture Directions

However, several issues remain open. The acceleration of the method to perform real
time registration is a natural direction [59]. Moreover, the integration of image/intensity
features into the shape registration algorithm can further improve the performance of the
proposed framework. An hybrid approach that makes primarily use of the shape infor-
mation and secondly of the image features can be a valuable element to the segmentation
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of medical structures where the global shape variability is not discriminant.

The use of more suitable mathematical frameworks is also an interesting direction to
be considered. One can consider stochastic criteria that are invariant to scale variations.
Mutual information [10,57] refers to a statistical framework that exhibits this property.
Scale variations refer to global intensity illumination changes in the distance space and
can be naturally dealt with this optimization process.

The main assumption that was done to introduce our framework refers to the existence
of the shapes to be registered. In many cases, this assumption cannot be satisfied due
to the difficulty of solving the segmentation problem. The selection of the segmentation
algorithm can drastically affect the registration procedure due to the variations of the
shape extraction result. Therefore, a joint optimization approach has to be investigated
where both problems segmentation and registration are considered simultaneously. This
problem will be the main focus of our future research activities.

Last, but not least, the extension of the method to image and volume registration is a
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challenging perspective. A reliable solution as the one proposed in the paper for shape
registration can be of great interest to various domain of imaging, vision and graphics
and can be obtained by solving the registration problem in a feature space analogous to
the one consider in this paper.
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