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ABSTRACT

We propose to use approximations of shape metrics, such as the
Hausdorff distance, to define similarity measures between shapes.
Our approximations being continuous and differentiable, they pro-
vide an obvious way to warp a shape onto another by solving a Par-
tial Differential Equation (PDE), in effect a curve flow, obtained
from their first order variation. This first order variation defines
a normal deformation field for a given curve. We use the normal
deformation fields induced by several sample shape examples to
define their mean, their covariance ”operator”, and the principal
modes of variation. Our theory, which can be seen as a nonlinear
generalization of the linear approaches proposed by several au-
thors, is illustrated with numerous examples. Our approach being
based upon the use of distance functions is characterized by the
fact that it is intrinsic, i.e. independent of the shape parametriza-
tion.

1. INTRODUCTION

Learning shape models from examples, using them to recognize
new instances of the same class of shapes are fascinating problems
that have attracted the attention of many scientists for many years.
Central to this problem is the notion of a random shape which in
itself has occupied people for decades. Frechet [1] is probably one
of the first mathematicians to develop some interest for the analy-
sis of random shapes, i.e. curves. He was followed by Matheron
[2] who founded with Serra the French school of mathematical
morphology and by David Kendall [3, 4, 5] and his colleagues. In
addition, and independently, a rich body of theory and practice for
the statistical analysis of shapes has been developed by Bookstein
[6], Dryden and Mardia [7], Carne [8], Cootes, Taylor and col-
leagues [9]. Except for the mostly theoretical work of Frechet and
Matheron, the tools developed by these authors are very much tied
to the point-wise representation of the shapes they study: objects
are represented by a finite number of salient points or landmarks.
This is an important difference with our work which deals explic-
itly with curves as such, independently of their sampling or even
parameterization.

In effect, our work bears more resemblance with that of sev-
eral other authors. Like in Grenander’s theory of patterns [10, 11],
we consider shapes as points of an infinite dimensional manifold
but we do not model the variations of the shapes by the action
of Lie groups on this manifold, except in the case of such finite-
dimensional Lie groups as rigid displacements (translation and
rotation) or affine transformations (including scaling). For infi-
nite dimensional groups such as diffeomorphisms [12, 13] which
smoothly change the objects’ shapes previous authors have been
dependent upon the choice of parameterizations and origins of
coordinates [14, 15, 16, 17, 18]. For these authors, warping a

shape onto another requires the construction of families of diffeo-
morphisms that use these parameterizations. Our approach, based
upon the use of the distance functions, does not require the arbi-
trary choice of parameterizations and of origins. From our view-
point this is already very nice in two dimensions but becomes even
nicer in three dimensions and higher where finding parameteriza-
tions and tracking origins of coordinates can be a real problem:
this is not required in our case. Another piece of related work is
that of Soatto and Yezzi [19] who tackle the problem of jointly
extracting and characterizing the motion of a shape and its defor-
mation. In order to do this they find inspiration in the above work
on the use of diffeomorphisms and propose the use of a distance
between shapes (based on the set-symmetric difference). This dis-
tance poses a number of problems that we address in the same
section where we propose two other distances which we believe to
be more suitable.

Some of these authors have also tried to build a Riemannian
structure on the set of shapes, i.e. to go from an infinitesimal met-
ric structure to a global one. The infinitesimal structure is defined
by an inner product in the tangent space (the set of normal defor-
mation fields) and has to vary continuously from point to point,
i.e. from shape to shape. This is dealt with in the work of Trouvé
and Younes [14, 15, 13, 16] and, more recently, in the work of
Klassen and Srivastava [20], again at the cost of working with pa-
rameterizations. The problem with these approaches, beside that
of having to deal with parameterizations of the shapes, is that there
exist global metric structures on the set of shapes which are useful
and relevant to the problem of the comparison of shapes but that
do not derive from an infinitesimal structure.

Our approach can be seen as taking the problem from exactly
the opposite viewpoint from the previous one: we start with a
global metric on the set of shapes and build smooth functions (in
effect smooth approximations of these metrics) that are dissimilar-
ity measures, or energy functions; we then minimize these func-
tions using techniques of the calculus of variation by computing
their gradient and performing infinitesimal gradient descent.

In this article we revisit the problem of defining statistics on
sets of 2D shapes and propose a new approach by combining sev-
eral notions such as topologies on set of shapes, calculus of vari-
ations, and some measure theory. Our theory is intrinsic and gra-
ciously extends to higher dimensions.

2. SHAPES AND SHAPE TOPOLOGIES

To define fully the notion of a shape is beyond the scope of this
article in which we use a limited, i.e purelygeometric, definition.
Due to lack of place, we refer the reader to [21] for a more detailed
and rigorous report.

In our context we define a shape to be a regular bounded subset
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of R2. Since we are driven by image applications we also assume
that all our shapes are contained in a hold-all regular open bounded
subset ofR2 which we denote byD. We noteΩ any shape, i.e. any
regular bounded subset ofD, andΓ or ∂Ω its boundary, a smooth
curve ofR2. To be independent of any particular parameteriza-
tion of the shape, we represent a shape by its distance function:
dΩ(x) = infy∈Ω | y − x |= infy∈Ω d(x, y) (see [21] for other
ways of representing a shape).

The next question we want to address is that of the definition
of the similarity between two shapes. This question is closely con-
nected to that of metrics of sets of shapes which in turn touches
that of what is known as shape topologies. Among the possible
choices discussed in [21], we will only use here the well-known
Hausdorff metric

ρH(Ω1, Ω2) = max

�
sup

x∈Ω2

dΩ1(x), sup
x∈Ω1

dΩ2(x)

�
(1)

3. APPROXIMATIONS OF SHAPE TOPOLOGIES

The problem of continuously deforming a shape so that it turns
into another is central to this paper. It can be seen as an instance
of the warping problem: given two shapesΩ1 andΩ2, how do I
warpΩ1 ontoΩ2? The applications in the field of medical image
processing and analysis are immense (see for example [22, 23]).

We assume that we are given a functionE : S × S → R+,
called the energy, which is smooth for one of the shape topologies
of interest. This energy can also be thought of as a measure of the
dissimilarity between the two shapes. Using the Euler-Lagrange
equation, we can derive a gradient∇E(Γ, Γ2) of E(Γ, Γ2) (see
[21]). Smoothly deforming a curveΓ1 onto a curveΓ2 can be
stated as finding a family of shapesΓ(t), t ≥ 0, solution of the
following PDE

Γt = −∇E(Γ, Γ2)n Γ(0) = Γ1 (2)

wheren(p) the unit normal at the pointΓ(p) of Γ.
The problem we are faced with is that the Hausdorff distance

between two shapes is not differentiable despite the fact that it is a
very good candidate for an energy functionE. The goal here is to
provide a smooth approximation of this distance, i.e. an approxi-
mation that admits a gradient.

Let Γ be a given shape. We denote by〈f〉Γ the average off
along the curveΓ. For real positive integrable functionsf , and
for any one to one functionϕ from R+ or R+∗ we define theϕ-
average off alongΓ as

〈f〉ϕΓ = ϕ−1

�
1

|Γ|
Z

Γ

ϕ(f(x)) dΓ(x)

�
(3)

The discrete version of this is also useful: letai, i = 1, . . . , n be
n positive numbers, we define theirϕ-mean by:

〈a1, · · · , an〉ϕ = ϕ−1

 
1

n

nX
i=1

ϕ(ai)

!
, (4)

The key idea is to use theses means to approximate extrema.
For instance, consider a continuous strictly monotonously decreas-
ing functionϕ : R+ → R+∗ anda ∈ R+∗. We have (see [21]):

dΓ(y) = lim
a→+∞

ϕ−1

 �
1

|Γ|
Z

Γ

ϕa(d(y, x)) dΓ(x)

� 1
a

!
.

Using this idea extensively, we finally get the following:

Definition 1 Let ρ̃ be defined by

ρ̃H(Γ, Γ′) =


〈d(·, ·)〉ϕa

Γ′
�pb

Γ
,

〈d(·, ·)〉ϕa

Γ

�pb

Γ′
�pc (5)

wherepa is the power function (pa(x) = xa). ρ̃ is an approxima-
tion of the Hausdorff distance (see [21])

This approximation has many ”nice” properties, the most im-
portant being:

Proposition 1 The approximatioñρH(Γ, Γ0) is differentiable with
respect toΓ. Its gradient at any pointy of Γ is proportional to
α(y)κ(y) + β(y) whereκ(y) is the curvature ofΓ at pointy (see
[21] for the values ofα andβ).

4. “HAUSDORFF WARPING”

In this section we show a number of examples of solving equation
(2) with the gradient mentioned in proposition (1). Starting from
Γ1, we follow this gradient and smoothly converge to the curve
Γ2 (see [21] for discussion and justification). We call the resulting
warping technique theHausdorffwarping.

A simple example is shown in figure 1. We have borrowed
the next example from the database of fish silhouettes collected by
the researchers of the University of Surrey at the VSSP center. A
few steps of the result of warping one of these silhouettes onto an-
other are shown in figure 2. Another interesting example is shown
in figures 3 and 4. In both cases the two shapes can be described
as the union of a large horizontal rectangle and a small vertical
one. In the first case, the two vertical rectangles being really close,
the behaviour of the warping algorithm is the expected one: it just
translates one vertical rectangle horizontally until it coincides with
the other. In the second case, the two vertical rectangles being fur-
ther away, the warping algorithm prefers to ”deflate” one of them
(on the right) and to grow another one from scratch on the left.
This is also a rather ”natural” behaviour.

Fig. 1. Hausdorff warping of the shape in dotted line onto the one
in continuous line.

Fig. 2. Hausdorff warping of a fish onto another.

As a last example, we show in figure 5 that, indeed, our warp-
ing is not bothered by open curves.



Fig. 3. Hausdorff warping of boxes (i): A translation-like be-
haviour.

Fig. 4. Hausdorff warping of boxes (ii): A different behaviour: a
detail disappears while another one appears.

5. MEAN, COVARIANCE AND MODES OF VARIATION

We have now developed the tools for defining several concepts
relevant to a theory of stochastic shapes as well as providing the
means for their effective computation. The first obvious concept is
that of the mean of a set of shapes.

Definition 2 GivenΓ1, · · · , ΓN , N shapes, we define theirmean
as any shapêΓ that minimizes the functionµ : S → R+ defined
byµ(Γ, Γ1, · · · , ΓN ) = 1

N

P
i=1,··· ,N E(Γ, Γi)

An algorithm for computing approximations to a mean readily
follows from the previous section: start from an initial shape and
solve the PDE:Γt = −∇µ(Γ, Γ1, · · · , ΓN )n. We show some
examples in figures 6 and 7.

We can now define the covariance ofN shapes and their modes
of variation (see [21] for justifications).

Definition 3 GivenN shapesΓi, we noteβi the normal veloc-
ity fields of the gradients of the functionsΓ → d̃H(Γ, Γi) and
β̂ = 1

N

PN
i=1 βi their mean. Thecovarianceoperator of theseN

shapes for their mean̂Γ is the linear continuous operator ofL2(Γ̂)

defined byΛ(β) =
P

i=1,N < β, βi − β̂ >Γ̂ (βi − β̂),

Definition 4 Let Λ̂ be theN × N symmetric semi positive def-
inite matrix Λ̂ defined byΛ̂ij =< βi − β̂, βj − β̂ >Γ̂. Let
p ≤ N be its rank,σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

p > 0 its positive
eigenvalues andu1, · · · ,uN the corresponding eigenvectors. Let
uij be theith coordinate of the vectoruj and vj be defined by
vj = 1

σj

PN
i=1 uij(βi − β̂). The velocitiesvk, k = 1, · · · , p can

be interpreted asmodes of variationof the shapes and theσ2
k ’s as

variances for these modes. Looking at how the shape varies for
thekth mode is equivalent to solving the PDEsΓt = ±vk(Γ)n

with Γ(0, .) = Γ̂(.).

Examples of theses modes for the cases of the fingers and of the
ten fishes is shown in figure 8.

6. IMPLEMENTATION

The Hausdorff distance was approximated with(a, b, c) = (4, 4, 2).
For closed curves, we used a level set method [24] to implement

Fig. 5. Hausdorff warping of an open curve onto another one.

Fig. 6. Examples of means of two curves.

the evolutionΓt = βn. While β is only known on the curveΓ it-
self, a “narrow banded” velocity extension scheme like in [25] was
required. Figure 9 shows a typical “level set” behaviour where a
curve splits while evolving toward another one. For open curves, a
straight Lagrangian approach and polygonal approximations were
used as a first step toward more refined methods like the ones de-
scribed in [26].

7. CONCLUSION

We have presented in section 1 the similarities and dissimilarities
of our work with that of others. We would like to add to this pre-
sentation the fact that ours is an attempt to generalize to a nonlinear
setting the work that has been done in a linear one by such people
as Cootes, Taylor and their collaborators [9] and by Leventon who,
like us, proposed to use distance functions to represent shapes in a
statistical framework but did it sort of the wrong way by assuming
that the set of distance functions was a linear manifold [27] which
of course it is not. Our work shows that dropping the incorrect
linearity assumption is possible at reasonable costs, both theoreti-
cal and computational. Comparison of results obtained in the two
frameworks is a matter of future work.

In this respect we would also like to emphasize that in our
framework the process of linear averaging shape representations
has been more or less replaced by the linear averaging of the nor-
mal deformation fields which are tangent vectors to the manifold

Fig. 7. The mean of ten fishes (only eight shown).



Fig. 8. The first mode of variation in the finger case and the first
two ones for the ten sample shapes and their mean shown in figure
7 .

Fig. 9. Splitting while Hausdorff warping curves.

of all shapes (see the definition of the covariance operator in sec-
tion 5 and in [21]) and by solving a PDE based on these normal
deformation fields (see the definition of a mean) and of the defor-
mation modes.

Another advantage of our viewpoint is that it apparently ex-
tends graciously to higher dimensions thanks to the fact that we do
not rely on parameterizations of the shapes and work intrinsically.
This is clearly also worth pursuing in future work.
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