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Abstract. Computer-aided diagnosis is often based on comparing atsteu
of interest with prior models. Such comparison require®matic techniques
in determining prior models from a set of examples and eistsibg local cor-
respondences between the structure and the model. In thexr pee propose
a variational technique for solving the correspondencdlpro. The proposed
method integrates a powerful representation for shapedi¢itrepresentations),
a state-of-the art criterion for global registration (rmaltinformation) and an ef-
ficient technique to recover local correspondences (frea fieformations) that
guarantees one-to-one mapping. The proposed registgaiaaligm can register
open/close structures of arbitrary dimension. Local apoadences can then be
used to build compact representations for a structure efést according to a set
of training examples. The registration and statistical eliogy of Systolic Left
Ventricle in Ultrasonic images demonstrate the potentizhe proposed tech-
nique.

1 Introduction

Organ modeling is a critical component of medical image ysial To this end, one
would like to recover a compact representation that canucaghe variation of the
structure of interest across individuals. Building sucpresentations requires estab-
lishing correspondences across the set of training examplech objective can be ei-
ther based in a pure geometric space (shape) or in the vizae gintensity properties)
or in a joint space. Quite often, correspondences are wtersdined, which is a non-
efficient and time consuming process. Once corresponddraasbeen established,
the modeling can take place according to various statistiethods leading to compact
representations that can be used for detection, segnamtaticking, etc. of structures
of interest.

Shape/lmage registration [7] is an evolving research ig¢tim medical imaging
[11]. One can define the registration problem as followsovec a transformation be-
tween a source and a target shape that results in meanimgfabpondences between
their basic elements. Such definition involves three aspect

The selection of an appropriate representation for thestres of interest. Cloud of
points, parametric (concrete) structures (e.g. B-spjimaampact representations (e.g.
medial axis), etc. are often considered as a feature spaee sdiving the registration

* Due to the lack of space, a significant amount of prior literatelated with the registration
problem is omitted and only a small portion of results is show



problem. Compact representations are appropriate wh&mgeglobal registration and
quite in-efficient when seeking for local correspondenCescrete structures are con-
sidered to be a good option for local registration. Theiiitétions are related with the
selection of the representation, the number of basic coemisrand the ability to de-
scribe open and multi-component structures. Space cagtir(cloud of points) are
simple but rather inconsistent representations that dgramide sufficient support in
estimating the local geometric characteristics.

The transformation can be either global or local. Globaistegtion techniques aim
to recover a linear motion model that is applicable to thérerstructure of interest.
Such techniques are a compromise between robustness, opledty and acceptable
registration performance. Medical image analysis is a doméere accurate corre-
spondences are required. Local registration techniquesfon recovering an element-
based flow that creates correspondences in the pixel lehelsel techniques aim to
solve an ill-posed problems since the number of constraritderior to the number of
unknown variables.

Last, but not least, given a feature space and a selectidredbtm of transforma-
tion one should define an appropriate mathematical franietorecover the optimal
registration parameters. Stochastic, variational, gitzgged optimization functions are
examples with known strengths and limitations.

In this paper we propose an hierarchical registration mefboestablishing local
correspondences that can deal with the ill-poseness obtta tegistration problem.
We represent the structures of interest (shapes) in a hidjhegnsion using an im-
plicit representation that is derived from the powerful @paf distance transforms.
Global registration for an arbitrary motion model is obtirusing the mutual informa-
tion criterion [2,12]. Local deformations are considerethé a complementary (to the
global motion model) registration field. In order to pregeowne-to-one correspondence,
a slight variance of the B-Spline based free form deforrmatiedel (FFD) [10] is used
to perform local registration, by incrementally deform@gontrol lattice overlaid on
the structure of interest. The task of generating a commgeesentation using a prin-
cipal component analysis technique [3] from a set of trajriramples is considered to
demonstrate the potentials of the proposed registratgorighm.

2 Distance Transforms, Mutual Information & Rigid Registration

The definition of the feature space is a critical componerihefregistration process.
The use of point clouds [1], deformable models [13], foudescriptors are some al-
ternatives. Such representations are powerful enoughptureaa certain number of
local deformations. However, one can claim that a significarmber of components
is required to cope with important shape deformations irs¢hepresentations, and
their extension to describe structures of higher dimentsian curves and surfaces isin
most of the cases not trivial. More advanced techniquesasgedon implicit geometric
characteristics of a structure of interest, like the curkatmedial axes, normals, etc. or
combination of them. The estimation of such implicit prdferis a difficult task that
often requires the parameterization of the structure.

We consider an implicit representation for the source aeddlget structures [8].
Euclidean distance transforms are a powerful selectiomtioegl a structure of interest
into a higher dimension. Leb : 2 — RT be a function that refers to a distance



Fig. 1. Rigid Registration for User-Determined Ground Truth (8}t from the Left Ventricle of
Ultrasonic Images (multiple views). (blue) target mearpghdred) registered source shape.

transform representation for a given shape

0, (z,y) €S
@S(xvy) - {D((x7y)78), (m,y) €N-S8

whereD((z,y), S) refers to the min distance between a pikely) in the embedding
space and the shape The signed distance function is a more powerful repretienta
and can be used to describe close structures. The use ofitngiresentations provides
additional support to the registration process since onddike to align the original
structures as well as their clones that are positioned eallgrin the image/volume
plane.

The selected shape representation is translation/rotat@riant. Scale variations
can be considered as a global illumination change in theespidistance transforms.
Therefore, registration under scale variations is egaivakith matching different modal-
ities that refer to the same structure of interest. The infidfon theoretic criterion, Mu-
tual Information, can address such matching objectiveesMutual information is an
invariant technique according to a monotonic transforamatif the two input random
variables. Such criterion is based on the global charatiesiof the structures of in-
terest. In order to facilitate the notation let us denabethe source representatidn,
asf, and (i) the target representati@rns asg. In the most general case, registration is
equivalentwith recovering the paramet@s= (6, 02, ..., f ) of a parametric transfor-
mationA such that the mutual information betwegn = f(£2) andg = g(A(©; £2))
is maximized for a given sample domdih

MI(XFo, X9%) = H [X12] + H [Xgé} —H [Xf”’gé}
whereH represents the differential entropy. Such quantity rearssa measure of un-

certainty, variability or complexity and consists of threemponents: (i) the entropy
of the model, (ii) the entropy of the projection of the mod&iey the transformation,



and (iii) the joint entropy between the model and the pragecthat encourages trans-
formations whergf explainsg. One can use the above criterion and an arbitrary trans-
formation (rigid, affine, homographic, quadratic) to penfioglobal registration that is
equivalent with minimizing:
fmgA
E(A(®)) = —MI(XT?, X9%) = f// pl98 (11,12)109L(l{;12)d11d12
R ple(li)p7= (12)

where (i)p/“ corresponds to the probability density fa ( [@p(£2)]), (ii) p9% corre-
sponds to density ip3 ( [@s(A(©; 2))] ), and (iii) p’*9% is the joint density. Such
framework can account for various global motion models. di@ls a continuous form
of the criterion, a non-parametric Gaussian Kernel demsitglel can be considered to
approximate the joint density, leading to the following eegsion:

P te) = i [ 60 = 160,12~ glA(@:x0))ax

where[G(l1 — f(x),l2 — g(A(®;x)))] represents a two dimensional zero-mean dif-
ferentiable Gaussian kernel. A similar approach can beidered in definings’2 (1;)
andpgé (I2) using a 1D Gaussian kernel. The calculus of variations wihedient de-
scent method [6] can be used to minimize the cost functiorrecaver the registration
parameterg,. Examples of such approach for rigid registration are gindirig. (1)].
Left Ventricle hand-drawn contours (40) from 2/4-chamhvéesy have been considered
and registered to the same target.

Medical imaging is an area where quite often global motiamoisa proper answer
when solving the registration [5]. Local deformations ammplementary component
to the global registration model. Dense local motion (waggdields) estimationis aniill-
posed problem since the number of variables to be recoveladjer than the number
of available constraints. Smoothness as well as other fooorstraints were employed
to cope with this limitation.

In the proposed framework, a global motion modélié recovered using the mu-
tual information criterion. One can use such model to tramsfthe source shap®
to a new shap® = (D) that is the projection oD to S. Then, local registration is
equivalent with recovering a pixel-wise deformation fidldticreates visual correspon-
dences between the implicit representatiég] of the target shap& and the implicit
representationdt 5] of the transformed source shape

3 Free-Form Deformations & Local Registration

Such deformation field.(®; x) can be recovered either using standard optical flow
constraints or through the use of warping techniques likeftee form deformations
method [9], which is a popular approach in graphics, aniomatnd rendering [4].
Opposite to optical flow technigues, FFD techniques supgpadothness constraints,
exhibit robustness to noise and are suitable for modelirgggland small non-rigid de-
formations. Furthermore, under certain conditions, it sapport a dense registration
paradigm that is continuous and guarantees a one-to-ongingap

The essence of FFD is to deform an object by manipulating @aegontrol lattice
P overlaid on its volumetric embedding space. We considemaremental Cubic B-
spline Free Form Deformation (FFD) to model the local transftionL. To this end,
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Fig. 2. Local Non-rigid registration using Incremental FFD. (lifiad undeformed grid overlaid
on global rigid registration result (blue - mean referencepe), (2) deformed grid to map the
reference shape to various training shapes. Each columespands to a different trial.

dense registration is achieved by evolving a control latf@ccording to a deformation
improvement§ P]. The inference problem is solved with respect to - the patans of
FFD - the control lattice coordinates.

Let us consider a regular lattice of control points

Pom= (P, P’ )im=1,..M n=1,.,N

m,n’ m,n
overlaid to a structure
Lo={x}={zyl<s<X,1<y<Y}

in the embedding space that encloses the source structetreisLdenote the initial
configuration of the control lattice &%, and the deforming control lattice &= P°+

4 P. Under these assumptions, the incremental FFD parameetiseadeformations of
the control points in both directior{g, y);

© = {(6P7;fz rw(SP'}r!z n)}' (man) € [LM] X [LN]

The motion of a pixek = (x,y) given the deformation of the control lattice froR?
to P, is defined in terms of a tensor product of Cubic B-spline:

3 3
L(®;x) =x + 0L(©;x) = Y Y Bi(u) Py g1 + 0Py jri)
k=0 [=0

wherek = |- M| —1, 1= |[¢ - N] — 1. The terms of the deformation component
refer to (i) 6 Pit1,j+1, (K, l) [0, 3] x [0, 3] consists of the deformations of pixels
(sixteen) adjacent control points, (iL(x) is the incremental deformation at pixe)
and (iii) By (u) is thek*" basis function of a Cubic B-splind{(v) is similarly defined).

Local registration now is equivalent with finding the bedgtita P configuration
such that the overlaid structures coincide. Since strastaorrespond to distance trans-
forms of globally aligned shapes, the Sum of Squared Diffees (SSD) can be con-
sidered as the data-driven term to recover the deformagtth£i(®; x));

Eiata(©®) = //Q (@5(x) — Bs(L(O;%))) dx

~



Fig. 3. Examples of establishing correspondences using IncrainERD. (red) Global registra-
tion result, (blue) target mean shape, (dark lines) coordgnces for a fixed set of points on the
mean shape & (green) the projection of mean shape on eanmgahape.

The use of such technique to model the local deformatiorstiegion component
introduces in an implicit form some smoothness constragat tan deal with a limited
level of deformation. In order to further preserve the ragty of the recovered regis-
tration flow, one can consider an additional smoothness tertie deformation field
0 L. We consider a computationally efficient smoothness term:

2
) dx

Ermootimess(©) = //Q (H 251(8:)

Such smoothness term is based on a classic error norm thaettas known limita-
tions. One can replace this smoothness component with rradyerated norms. Within
the proposed framework, an implicit smoothness constiairiso imposed by the
Spline FFD. Therefore there is not need for introducing clempnd computationally
expensive regularization components.

The Data-driven term and the smoothness constraints tenmn@a be integrated
to recover the local deformation component of the registna&ind solving the corre-
spondence problentZ(©) = Eqqta(®) + aFsmoothness (@), Wherea is the constant
balancing the contribution of the two terms. The calculusafations and a gradient
descent method can be used to optimize such objective &m&j. The performance of
the proposed framework on the Systolic Left Ventricle detéasdemonstrated in [Fig.
(2)] (FFD grid deformations) and [Fig. (2),(3)] (estabkghlocal correspondences).

2 N H(%Lé?;x)

4 Building Compact Representations

Let us now assume the existencenofiround truth exampleg;—;. ,, in a training set

for a structure of interest[Fig. (1)]. Registering thesaraples to a common pose and
establishing local correspondences is required prior e&timg a compact statistical
representation. Then Principle Component Analysis (PGH) loe applied to capture
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Fig. 4. Principle Component Analysis modeling for the systolictl\éntricle shapes in Ultra-
sonic images using the established local corresponde@desging modes of variation from
—Qﬂ)\l) to Qﬂ)\l): (2) first, (2) second, (3) third; (a)-(e) 10-points basedeip(f)-(j) 80-
points based model.

the statistics of the corresponding elements across timntgeexamples. PCA refers to
a linear transformation of variables that retains - for @gimumber of operators - the
largest amount of variation within the training data, adbog to:¢ = ¢ + 2046, UG,
where¢ is the mean shapey is the number of retained modes of variatiéf, are
these modes (eigenvectors), dndare linear weight factors within the allowable range
defined by the eigenvalues.

The most critical part of such analysis process is the reptation of the train-
ing examples using the same number of elements. Each elamoersponds to the
same location on the standard atlas of the structure ofdstefSimplistic approaches
on establishing local correspondences are based on unfémual-distance) sampling,
parametric approximation of the training set using the saomaber of basic compo-
nents, etc. However, these methods require explicit paeaimation of the shapes, find-
ing at least one pair of correspondence between landmankspoi finding the corre-
spondence between parameterization schemes, which aliffialllt problems that do
not have straightforwardly extensible solutions in hamglistructures of high dimen-
sionality and those with complex topology (e.g. multi-garEurthermore, without the
support of dense optimal local registration, the resulingespondences from these
methods are often non-intuitive and prone to noise.

The proposed global-to-local registration framework capecwith the above lim-
itations. To this end, first all contours are registered oghme target. Such selection
introduces bias on the modeling phase. To overcome thigaliion, we apply an it-
erative schema where the mean shape approximated as inn[&ecased as target to
perform registration. Once global registration is comgadetocal correspondences be-
tween the reference shape and the examples of the trairtiagesestablished using the
free-form deformation approach. Then according to therddslimensionality of the
model, one can sample the reference shape, use the one-tlense local deformation
field to recover the corresponding positions within theniray set, and to extract the
compact representation for the set of training examplegyURBCA [Fig. (4)]. Thereis a



compromise between the model complexity (number of eleg)emtd the accuracy of
the compact statistical representation.

5 Discussion

In this paper we have proposed a novel variational techrimpesstablishing local corre-
spondences between shapes. Registration has been apatdaelm hierarchical man-
ner. First, a rigid motion model has been determined betweetarget and the source
and then a dense registration field was recovered, supptargen the global motion
model. Shapes were considered in a higher dimension, tlve gihdistance transforms.
Such space when combined with mutual information results gowerful registration
paradigm. The use of free-form deformations was considiereecover the local reg-
istration component in the space of distance transforntirigdao one-to-one mapping
between the source and the target. Principal componenysaasaltas considered for
modeling of the registered set of training examples. Th@@sed framework is com-
pletely automatic and efficient, it can be used for handliexyVarge training datasets of
anatomical structures in arbitrary dimension (2D or 3D)e tbhmpact statistical repre-
sentations (prior models) thus built can be used in a simitamner to the Active Shape
Models (ASM) for model search in image segmentation andingcapplications.
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