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Abstract. Computer-aided diagnosis is often based on comparing a structure
of interest with prior models. Such comparison requires automatic techniques
in determining prior models from a set of examples and establishing local cor-
respondences between the structure and the model. In this paper we propose
a variational technique for solving the correspondence problem. The proposed
method integrates a powerful representation for shapes (implicit representations),
a state-of-the art criterion for global registration (mutual information) and an ef-
ficient technique to recover local correspondences (free form deformations) that
guarantees one-to-one mapping. The proposed registrationparadigm can register
open/close structures of arbitrary dimension. Local correspondences can then be
used to build compact representations for a structure of interest according to a set
of training examples. The registration and statistical modeling of Systolic Left
Ventricle in Ultrasonic images demonstrate the potential of the proposed tech-
nique.

1 Introduction
Organ modeling is a critical component of medical image analysis. To this end, one
would like to recover a compact representation that can capture the variation of the
structure of interest across individuals. Building such representations requires estab-
lishing correspondences across the set of training examples. Such objective can be ei-
ther based in a pure geometric space (shape) or in the visual space (intensity properties)
or in a joint space. Quite often, correspondences are user-determined, which is a non-
efficient and time consuming process. Once correspondenceshave been established,
the modeling can take place according to various statistical methods leading to compact
representations that can be used for detection, segmentation, tracking, etc. of structures
of interest.

Shape/Image registration [7] is an evolving research activity in medical imaging
[11]. One can define the registration problem as follows: recover a transformation be-
tween a source and a target shape that results in meaningful correspondences between
their basic elements. Such definition involves three aspects.

The selection of an appropriate representation for the structures of interest. Cloud of
points, parametric (concrete) structures (e.g. B-splines), compact representations (e.g.
medial axis), etc. are often considered as a feature space when solving the registration
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problem. Compact representations are appropriate when seeking global registration and
quite in-efficient when seeking for local correspondences.Concrete structures are con-
sidered to be a good option for local registration. Their limitations are related with the
selection of the representation, the number of basic components and the ability to de-
scribe open and multi-component structures. Space coordinates (cloud of points) are
simple but rather inconsistent representations that do notprovide sufficient support in
estimating the local geometric characteristics.

The transformation can be either global or local. Global registration techniques aim
to recover a linear motion model that is applicable to the entire structure of interest.
Such techniques are a compromise between robustness, low complexity and acceptable
registration performance. Medical image analysis is a domain where accurate corre-
spondences are required. Local registration techniques focus on recovering an element-
based flow that creates correspondences in the pixel level. These techniques aim to
solve an ill-posed problems since the number of constraintsis inferior to the number of
unknown variables.

Last, but not least, given a feature space and a selection of the form of transforma-
tion one should define an appropriate mathematical framework to recover the optimal
registration parameters. Stochastic, variational, graph-based optimization functions are
examples with known strengths and limitations.

In this paper we propose an hierarchical registration method for establishing local
correspondences that can deal with the ill-poseness of the local registration problem.
We represent the structures of interest (shapes) in a higherdimension using an im-
plicit representation that is derived from the powerful space of distance transforms.
Global registration for an arbitrary motion model is obtained using the mutual informa-
tion criterion [2, 12]. Local deformations are considered to be a complementary (to the
global motion model) registration field. In order to preserve one-to-one correspondence,
a slight variance of the B-Spline based free form deformation model (FFD) [10] is used
to perform local registration, by incrementally deforminga control lattice overlaid on
the structure of interest. The task of generating a compact representation using a prin-
cipal component analysis technique [3] from a set of training examples is considered to
demonstrate the potentials of the proposed registration algorithm.

2 Distance Transforms, Mutual Information & Rigid Registration

The definition of the feature space is a critical component ofthe registration process.
The use of point clouds [1], deformable models [13], fourierdescriptors are some al-
ternatives. Such representations are powerful enough to capture a certain number of
local deformations. However, one can claim that a significant number of components
is required to cope with important shape deformations in these representations, and
their extension to describe structures of higher dimensionthan curves and surfaces is in
most of the cases not trivial. More advanced techniques are based on implicit geometric
characteristics of a structure of interest, like the curvature, medial axes, normals , etc. or
combination of them. The estimation of such implicit properties is a difficult task that
often requires the parameterization of the structure.

We consider an implicit representation for the source and the target structures [8].
Euclidean distance transforms are a powerful selection to embed a structure of interest
into a higher dimension. LetΦ : Ω → R+ be a function that refers to a distance



Fig. 1. Rigid Registration for User-Determined Ground Truth (Systole) from the Left Ventricle of
Ultrasonic Images (multiple views). (blue) target mean shape, (red) registered source shape.

transform representation for a given shapeS:

ΦS(x, y) =

{

0, (x, y) ∈ S

D((x, y),S), (x, y) ∈ Ω − S

whereD((x, y),S) refers to the min distance between a pixel(x, y) in the embedding
space and the shapeS. The signed distance function is a more powerful representation
and can be used to describe close structures. The use of implicit representations provides
additional support to the registration process since one would like to align the original
structures as well as their clones that are positioned coherently in the image/volume
plane.

The selected shape representation is translation/rotation invariant. Scale variations
can be considered as a global illumination change in the space of distance transforms.
Therefore, registration under scale variations is equivalent with matching different modal-
ities that refer to the same structure of interest. The information theoretic criterion, Mu-
tual Information, can address such matching objective, since Mutual information is an
invariant technique according to a monotonic transformation of the two input random
variables. Such criterion is based on the global characteristics of the structures of in-
terest. In order to facilitate the notation let us denote: (i) the source representationΦD

asf , and (ii) the target representationΦS asg. In the most general case, registration is
equivalent with recovering the parametersΘ = (θ1, θ2, ..., θN ) of a parametric transfor-
mationA such that the mutual information betweenfΩ = f(Ω) andgA

Ω = g
(

A(Θ; Ω)
)

is maximized for a given sample domainΩ;

MI(XfΩ , XgA

Ω ) = H
[

XfΩ

]

+ H
[

XgA

Ω

]

−H
[

XfΩ,gA

Ω

]

whereH represents the differential entropy. Such quantity represents a measure of un-
certainty, variability or complexity and consists of threecomponents: (i) the entropy
of the model, (ii) the entropy of the projection of the model given the transformation,



and (iii) the joint entropy between the model and the projection that encourages trans-
formations wheref explainsg. One can use the above criterion and an arbitrary trans-
formation (rigid, affine, homographic, quadratic) to perform global registration that is
equivalent with minimizing:

E(A(Θ)) = −MI(XfΩ , XgA

Ω ) = −

∫∫

R2

pfΩ ,gA

Ω (l1, l2)log
pfΩ ,gA

Ω (l1, l2)

pfΩ (l1)pgA

Ω (l2)
dl1dl2

where (i)pfΩ corresponds to the probability density infΩ

(

[ΦD(Ω)]
)

, (ii) pgA

Ω corre-

sponds to density ingA
Ω

(

[ΦS(A(Θ; Ω))]
)

, and (iii) pfΩ ,gA

Ω is the joint density. Such
framework can account for various global motion models. Towards a continuous form
of the criterion, a non-parametric Gaussian Kernel densitymodel can be considered to
approximate the joint density, leading to the following expression:

pfΩ ,gA

Ω (l1, l2) =
1

V (Ω)

∫∫

Ω

G(l1 − f(x), l2 − g(A(Θ;x)))dx

where[G(l1 − f(x), l2 − g(A(Θ;x)))] represents a two dimensional zero-mean dif-
ferentiable Gaussian kernel. A similar approach can be considered in definingpfΩ (l1)

andpgA

Ω (l2) using a 1D Gaussian kernel. The calculus of variations with agradient de-
scent method [6] can be used to minimize the cost function andrecover the registration
parametersθi. Examples of such approach for rigid registration are givenin [Fig. (1)].
Left Ventricle hand-drawn contours (40) from 2/4-chambersview have been considered
and registered to the same target.

Medical imaging is an area where quite often global motion isnot a proper answer
when solving the registration [5]. Local deformations are acomplementary component
to the global registration model. Dense local motion (warping fields) estimation is an ill-
posed problem since the number of variables to be recovered is larger than the number
of available constraints. Smoothness as well as other form of constraints were employed
to cope with this limitation.

In the proposed framework, a global motion model (τ ) is recovered using the mu-
tual information criterion. One can use such model to transform the source shapeD
to a new shapêD = τ(D) that is the projection ofD to S. Then, local registration is
equivalent with recovering a pixel-wise deformation field that creates visual correspon-
dences between the implicit representation [ΦS ] of the target shapeS and the implicit
representation [Φ

D̂
] of the transformed source shapeD̂.

3 Free-Form Deformations & Local Registration
Such deformation fieldL(Θ;x) can be recovered either using standard optical flow
constraints or through the use of warping techniques like the free form deformations
method [9], which is a popular approach in graphics, animation and rendering [4].
Opposite to optical flow techniques, FFD techniques supportsmoothness constraints,
exhibit robustness to noise and are suitable for modeling large and small non-rigid de-
formations. Furthermore, under certain conditions, it cansupport a dense registration
paradigm that is continuous and guarantees a one-to-one mapping.

The essence of FFD is to deform an object by manipulating a regular control lattice
P overlaid on its volumetric embedding space. We consider an Incremental Cubic B-
spline Free Form Deformation (FFD) to model the local transformationL. To this end,
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Fig. 2. Local Non-rigid registration using Incremental FFD. (1) initial undeformed grid overlaid
on global rigid registration result (blue - mean reference shape), (2) deformed grid to map the
reference shape to various training shapes. Each column corresponds to a different trial.

dense registration is achieved by evolving a control latticeP according to a deformation
improvement [δP ]. The inference problem is solved with respect to - the parameters of
FFD - the control lattice coordinates.

Let us consider a regular lattice of control points

Pm,n = (P x
m,n, P y

m,n); m = 1, ..., M, n = 1, ..., N

overlaid to a structure

Γc = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y }

in the embedding space that encloses the source structure. Let us denote the initial
configuration of the control lattice asP 0, and the deforming control lattice asP = P 0+
δP . Under these assumptions, the incremental FFD parameters are the deformations of
the control points in both directions(x, y);

Θ = {(δP x
m,n, δP y

m,n)}; (m, n) ∈ [1, M ]× [1, N ]

The motion of a pixelx = (x, y) given the deformation of the control lattice fromP 0

to P , is defined in terms of a tensor product of Cubic B-spline:

L(Θ;x) = x + δL(Θ;x) =

3
∑

k=0

3
∑

l=0

Bk(u)Bl(v)(P 0
i+k,j+l + δPi+k,j+l)

wherek = b x
X

· Mc − 1, l = b y
Y
· Nc − 1. The terms of the deformation component

refer to (i) δPi+l,j+l, (k, l) ∈ [0, 3] × [0, 3] consists of the deformations of pixelx’s
(sixteen) adjacent control points, (ii)δL(x) is the incremental deformation at pixelx,
and (iii)Bk(u) is thekth basis function of a Cubic B-spline (Bl(v) is similarly defined).

Local registration now is equivalent with finding the best lattice P configuration
such that the overlaid structures coincide. Since structures correspond to distance trans-
forms of globally aligned shapes, the Sum of Squared Differences (SSD) can be con-
sidered as the data-driven term to recover the deformation fieldL(Θ;x));

Edata(Θ) =

∫∫

Ω

(

Φ
D̂

(x) − ΦS(L(Θ;x))
)2

dx



Fig. 3. Examples of establishing correspondences using Incremental FFD. (red) Global registra-
tion result, (blue) target mean shape, (dark lines) correspondences for a fixed set of points on the
mean shape & (green) the projection of mean shape on each training shape.

The use of such technique to model the local deformation registration component
introduces in an implicit form some smoothness constraint that can deal with a limited
level of deformation. In order to further preserve the regularity of the recovered regis-
tration flow, one can consider an additional smoothness termon the deformation field
δL. We consider a computationally efficient smoothness term:

Esmoothness(Θ) =

∫∫

Ω

(

∣

∣
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∣

∣

∣

2
)

dx

Such smoothness term is based on a classic error norm that hascertain known limita-
tions. One can replace this smoothness component with more elaborated norms. Within
the proposed framework, an implicit smoothness constraintis also imposed by the
Spline FFD. Therefore there is not need for introducing complex and computationally
expensive regularization components.

The Data-driven term and the smoothness constraints term can now be integrated
to recover the local deformation component of the registration and solving the corre-
spondence problem:E(Θ) = Edata(Θ) + αEsmoothness(Θ), whereα is the constant
balancing the contribution of the two terms. The calculus ofvariations and a gradient
descent method can be used to optimize such objective function [6]. The performance of
the proposed framework on the Systolic Left Ventricle dataset is demonstrated in [Fig.
(2)] (FFD grid deformations) and [Fig. (2),(3)] (established local correspondences).

4 Building Compact Representations

Let us now assume the existence ofn ground truth examplesφi=1...n in a training set
for a structure of interest[Fig. (1)]. Registering these examples to a common pose and
establishing local correspondences is required prior of creating a compact statistical
representation. Then Principle Component Analysis (PCA) can be applied to capture
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Fig. 4. Principle Component Analysis modeling for the systolic Left Ventricle shapes in Ultra-
sonic images using the established local correspondences.Changing modes of variation from
−2
√

(λ1) to 2
√

(λ1): (1) first, (2) second, (3) third; (a)-(e) 10-points based model, (f)-(j) 80-
points based model.

the statistics of the corresponding elements across the training examples. PCA refers to
a linear transformation of variables that retains - for a given numbern of operators - the
largest amount of variation within the training data, according to:φ = φ + Σm

j=1bj Uj,

whereφ is the mean shape,m is the number of retained modes of variation,Uj are
these modes (eigenvectors), andbj are linear weight factors within the allowable range
defined by the eigenvalues.

The most critical part of such analysis process is the representation of the train-
ing examples using the same number of elements. Each elementcorresponds to the
same location on the standard atlas of the structure of interest. Simplistic approaches
on establishing local correspondences are based on uniform(equal-distance) sampling,
parametric approximation of the training set using the samenumber of basic compo-
nents, etc. However, these methods require explicit parameterization of the shapes, find-
ing at least one pair of correspondence between landmark points or finding the corre-
spondence between parameterization schemes, which are alldifficult problems that do
not have straightforwardly extensible solutions in handling structures of high dimen-
sionality and those with complex topology (e.g. multi-parts). Furthermore, without the
support of dense optimal local registration, the resultingcorrespondences from these
methods are often non-intuitive and prone to noise.

The proposed global-to-local registration framework can cope with the above lim-
itations. To this end, first all contours are registered to the same target. Such selection
introduces bias on the modeling phase. To overcome this limitation, we apply an it-
erative schema where the mean shape approximated as in [8] can be used as target to
perform registration. Once global registration is completed, local correspondences be-
tween the reference shape and the examples of the training set are established using the
free-form deformation approach. Then according to the desired dimensionality of the
model, one can sample the reference shape, use the one-to-one dense local deformation
field to recover the corresponding positions within the training set, and to extract the
compact representation for the set of training examples using PCA [Fig. (4)]. There is a



compromise between the model complexity (number of elements) and the accuracy of
the compact statistical representation.

5 Discussion
In this paper we have proposed a novel variational techniquefor establishing local corre-
spondences between shapes. Registration has been approached in an hierarchical man-
ner. First, a rigid motion model has been determined betweenthe target and the source
and then a dense registration field was recovered, supplementary to the global motion
model. Shapes were considered in a higher dimension, the space of distance transforms.
Such space when combined with mutual information results toa powerful registration
paradigm. The use of free-form deformations was consideredto recover the local reg-
istration component in the space of distance transforms leading to one-to-one mapping
between the source and the target. Principal component analysis was considered for
modeling of the registered set of training examples. The proposed framework is com-
pletely automatic and efficient, it can be used for handling very large training datasets of
anatomical structures in arbitrary dimension (2D or 3D). The compact statistical repre-
sentations (prior models) thus built can be used in a similarmanner to the Active Shape
Models (ASM) for model search in image segmentation and tracking applications.
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