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Abstract

Based on recent work on Stochastic Partial Differential Equations (SPDEs), this
paper presents a simple and well-founded method to implement the stochastic evo-
lution of a curve. First, we explain why great care should be taken when conside-
ring such an evolution in a Level Set framework. To guarantee the well-posedness
of the evolution and to make it independent of the implicit representation of the
initial curve, aStratonovichdifferential has to be introduced. To implement this
differential, a standardIto plus drift approximation is proposed to turn an im-
plicit scheme into an explicit one. Subsequently, we consider shape optimization
techniques, which are a common framework to address various applications in
Computer Vision, like segmentation, tracking, stereo vision etc. The objective of
our approach is to improve these methods through the introduction of stochastic
motion principles.

The extension we propose can deal with local minima and with complex cases
where the gradient of the objective function with respect to the shape is impossible
to derive exactly.

Finally, as an application, we focus on image segmentation methods, leading
to what we callStochastic Active Contours.





Résuḿe

Baśe sur des travaux récents sur leśequations aux d́erivées partielles stochastique
(SPDE), ce papier présente une approche simple et bien fondée pour l’impĺementation
d’évolutions stochastiques d’une courbe.

Dans un premier temps, nous expliquons pourquoi il faut faire attention en
consid́erant de telleśevolutions dans le cadre des Level Sets. Pour garantir le bien
fondé de l’́evolution et pour la rendre indépendante de la représentation implicite
de la courbe initiale, le calcul deStratonovichdoit être utiliśe. Pour impĺementer
cette diff́erentielle stochastique, une approximation standard Ito plus drift est pro-
pośee pour rendre un schéma autrement implicite explicite.

Par la suite, nous considérons des techniques d’optimisation de formes, qui
fournissent un cadre commun pour des problèmes varíes de la vision par ordi-
nateur, tels que la segmentation, le tracking, la stéŕeovision etc. Le but de notre
approche est d’aḿeliorer ces ḿethodes par l’introduction du modèle d’́evolution
aléatoire d’un contour.

L’extension que nous proposons peut gérer des minima locaux et des cas com-
plexes òu le gradient de la fonction objectif par rapportà la forme ne peut paŝetre
dérivé. Finalement, en tant qu’application de ce modèle d’́evolution, on s’int́eresse
à des ḿethodes de segmentation et l’on développe desContours Actifs Stochas-
tiques.
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1 Introduction

1.1 Why adding noise?

Shape optimization techniques are a common framework to address various ap-
plications in Computer Vision, like segmentation, tracking, stereo vision etc. The
objective of our approach is to improve these methods through the introduction
of stochastic motion principles. These problems are most of the time stated as
the minimization with respect to some hyper-surfaceΓ of RN of some objective
functionE(Γ). This is usually achieved using a gradient-descent method. Yet, in
complex cases,E does not have any computable gradient with respect toΓ (see
section (5.2)). In other cases, the minimization process gets stuck into some lo-
cal minimum, while no multi-resolution approach can be invoked2. To deal with
those two frequent problems, one can naturally turn to a stochastic optimization
approach. Even a simple Simulated Annealing method might be powerful enough
to escape from local minima and to cope with an approximation of the shape gra-
dient. Indeed, adding noise to the motion of a curve is a prerequisite to developing
this idea.

1.2 Context

We are interested in lettingΓ(t) evolve according to the equation

∂Γ

∂t
(t, p) = β(t, p)n(t, p) = η̇(t, p)n(t, p) (1)

wherep is some parameterization ofΓ, n the normal toΓ(t) at pointΓ(t, p) and
where the normal velocityβ depends on some stochastic perturbationη̇ - here, the
notationη̇, standing for the ”derivative” of the noiseη w.r.t. time, will become
clear further. The mean curvature motionβ = κ as well as many other problem
oriented choices ofβ and their implementation with the Level Sets method [28]
are well known. The novelty in our work is the implementation of the recently
proposed stochastic flow (1) (see [37]) and its application to Computer Vision.

Stochastic dynamics of interfaces have been widely discussed in later years in
the physics literature. The work in fields like front propagation or front transition
is aimed at modeling and studying the properties of a moving frontier between
two media that is subject to macroscopic constraints and random perturbations
(which are due to the bulk). The natural translation of this dynamic in mathemat-
ical language is done through Stochastic Partial Differential Equations (SPDEs).

2E.g., when using some statistical region model, a change in resolution may result in smoothing
out the difference between the statistics of the interior and the ones of the exterior.
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These equations were introduced by Walsh in [37] and their mathematical prop-
erties were studied using mostly partial differential equations tools. Nevertheless,
the problems researchers have to deal with are various and there is more than one
way to add a stochastic perturbation to a PDE. An up to date survey of the existing
models on stochastic motions by mean curvature can be found in [39]. It was only
in recent years that the notion of viscosity solution for a SPDE was developed by
Lions and Souganidis in a series of articles [19, 20, 22, 23]. Their notion of weak
viscosity solution is very attractive for numerical applications, since they define
the solution as a limit in a convenient space for a set of approximations. Since
their pioneering work, related work has been done by Yip [38] and by Katsoulakis
et al [16]. Another independent approach concerned with viscosity solutions of
stochastic partial differential equations is due to Buckdahn and Ma [4]. Their ap-
proach is not well suited for Level Sets evolutions, though, since they do not allow
certain functional dependencies that are common to all Level Sets evolutions.

1.3 What should not be done!

Mistake #1: Considering equation (1), one should be tempted to make the pertur-
bationη̇ depend on the parameterp, or, to make it intrinsic3, onσ, the arc length
parameter of the curve. Such an evolution, namely

∂Γ

∂t
(t, p) = η̇(t, σ(t, p))n(t, p)

is actually unstable, even ifη has some regularity with respect toσ and even if
σ is normalized with respect to the total length of the curve. Suppose the curve
develops a kink at some point. Then, its length will increase at that point and
that will lead to adding more noise around the point where the kink formed itself.
Consequently, that might lead to an unstable character of the evolution. That is
why we will consider the stochastic perturbation as a function of space and the
corresponding evolution:

∂Γ

∂t
(t, p) = η̇(t, Γ(t, p))n(t, p)

Our noise will be regular in space and white in time. Indeed, there is no reason
one would expect the random perturbations be correlated from one time step to
the other, but considering noise that is white in space may have disastrous effects
w.r.t. the regularity of the contours.
Mistake #2: A first simple choice forη is to suppose it constant in space and
to consider that each of the incrementsη̇(t) is an independent Gaussian random

3That is to say, depending on the curve itself but not on the choice of the parameterizationp.
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variable. Therefore,η(t) is a Brownian motionW :

∂Γ

∂t
= Ẇ (t)n(t, p) (2)

An error would be to believe that it should be implemented with the explicit
scheme:

Γ(t + ∆t, p) = Γ(t, p) + ∆tN(0,1)(t)n(t, p) (3)

whereN(0,1)(t) denotes a standard Gaussian random variable. This would be
incorrect, since the statistical properties of the curve would then depend upon
the discretization of the time grid. To see this, consider independent variables
xi ∼ N(0,1) and notice that the previous evolution at timeT would amount to∑n

i=1 xi∆t =
∑n

i=1
T
n
xi where∆t = T/n is the discretization step. Given the

independence of thexi, the previous sum is a Gaussian variableN(0, T
n

), thus de-
pending upon the discretization of the time interval[0, T ]. We will see that the
correct scheme involves

√
∆t instead of∆t (see equation (13)):

Γ(t + ∆t, p) = Γ(t, p) +
√

∆tN(0,1)(t)n(t, p) (4)

The previous argument is actually a trivial example that shows the difference
between stochastic integration and Stieltjes integration. This is to say that our
modelization will have to obey rules of Stochastic Calculus relying on intrinsic
properties of Brownian motion. But we must also rely on the theory of viscosity
solutions, since it is a necessary ingredient in the Level Set framework - allowing
for rarefactions and shocks in evolutions and providing stable numerical schemes.
The theory we need must then fill the gap between Stochastic Calculus and viscos-
ity solutions. This is where the recent theory developed by Lions and Souganidis
comes into place.
Mistake #3: Let us now try to implement (2) in a Level Set framework, where
Γ(t) is the zero level set of some implicit functionu(t, x) driven by the evolution
∂u
∂t

= |Du|Ẇ (t). Actually, a more correct way to write this SPDE is:

du = |Du|dW (t) (5)

As pointed out in [21], this equation is not reasonable and suffers from:

• Non invariance:Let α(.) be some smooth increasing function withα(0) =
0. If u(t, x) is solution of (5) given some initial conditionu0(x), then
α(u(t, x)) is not solution of (5) with initial condition α(u0). Moreover,
the solution of (5) with initial conditionα(u0) has not the same zero level
set thanu(t, x): the evolution depends on the implicit representation of the
initial curve (see section2.2)!
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• Ill-posedness:Let us takeN = 1 for the sake of simplicity. The equation
du = uxdW + λuxxdt, obtained by adding the curvature termλuxx to (5),
reveals to be an inverse heat equation for0 < λ < 1/2

It turns out that the differential used in (5) is theIto differential, and that those two
difficulties are overcome introducing theStratonovich differential:

du = |Du|◦ dW (t) (6)

In the sequel, we briefly introduce the essential notions needed to understand
the difference between the Ito and the Stratonovich cases. Citing [19], we will
see that the notion of viscosity solution can be extended to the SPDE case. We
propose a effective implementation of (6), that we extend to the case when the
noise term depends on the space variable as well; then we investigate some geo-
metrical properties of the evolution that could guide the user toward correct noise
parameters. Subsequently, we explain how the stochastic motion can improve the
shape optimization based methods in Computer Vision. Finally, as an applica-
tion, we focus on image segmentation, leading to what we callStochastic Active
Contours.

2 Mathematics

2.1 Some Notions of Stochastic Calculus

This subsection is meant to offer the reader an intuition of the notion of Stochastic
Calculus and of the supplementary challenges it poses. Focusing on the definition
of the integral itself, we suppose the reader is familiar with the Brownian mo-
tion. We shall equally use the idea of a standard probability space, martingale,
quadratic variation. Rigorous and complete introductions of Stochastic Calcu-
lus can be found in [14], [12] or [18]. Let (Ω,F ,F t,P) be a standard proba-
bility space. We will consider thatW = (W1(t), . . . , Wm(t))t≥0 is a standard
m-dimensional Brownian motion issued from0. We are interested in finding an
appropriate way of introducing the notion of stochastic differential with respect
to the processW . To better understand the difficulty here, it is worth while men-
tioning that the paths of the Brownian motion are only1

2
-Holder continuous, so

they are nowhere differentiable. Hence, in order to give a meaning to what the
termdW (t) might mean, one can first define an integral with respect toW - the
stochastic integral. Once this integral is defined, the differential is obtained using
the integral defined. To keep the presentation as clear as possible, we suppose that
m = 1 and all our processes are real-valued. The considered approach for the
construction of such an integral is to define it as an isometry in the appropriate
functional space. Indeed, consider a square integrable processΦ = (Φ(t, ω))t≥0.
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Trying to define the stochastic integral
∫ T

0
Φ(t, ω)dW (t), one would start with

Riemann approximations

I∆(Φ)(T ) =
n−1∑
i=1

Φ(ti, ω) (W (ti+1)−W (ti)) (7)

with ∆ = {0 = t0 < t1 < · · · < tn = T} and hope to find a suitable space where
the above sum would converge when|∆| → 0. By proving some completeness
results, one can show that every square integrable continuous process is integrable
w.r.t. the Brownian motion and one can obtain theIto stochastic integral as the
unique, square integrable martingaleI(Φ) = (I(Φ)(t))t≥0 which is the limit of
(I∆(Φ)(t))t≥0 when |∆| → 0. The convergence happens in the pseudo-metric

‖X‖ =
∑∞

n=1

min(1,
√
E(X2

n))

2n .
The price to pay for the convergence of the Riemann sums is that it happens

in a process space, hence the limit, which is denoted as the stochastic integral∫ T

0
Φ(s)dW (s), does not hold a meaning path-wise, but only as a process. This

means that the set of eventsω ∈ Ω where the Riemann sums mentioned above do
not converge to the above introduced integral is of measure0. In the sequel, the
convergence suggested above can be extended to an arbitrary dimension. More-
over, the extension can be taken with respect to local continuous martingales. For
details, the reader is referred to one of the references above. Once this integral
is defined, it is imperative one is given some chain rule formula. This is where
the Ito lemma comes in. Consider a processX = (Xt)t≥0 andα : R → R a
function of classC2. Then the Ito formula states thatY = (α(X(t)))t≥0 verifies
the dynamics

dY (t) = α′(X(t))dt +
1

2
α′′d〈X,X〉(t) (8)

The main difference when compared to the regular chain rule is the appearance of
an extra term, also called Ito term,or drift , which involves the second derivative
of α and the quadratic form〈X, X〉, also known as the quadratic variation of the
processX. The quadratic variation is not zero whenX has some dependence upon
a stochastic process and can be computed in the following manner. Suppose that
X1(t) =

∫ t

0
f1(s)dW (s) + A1(t), wheref1 is some continuous square integrable

function andA1 : R → R is continuous and increasing. Suppose similarly that
X2(t) =

∫ t

0
f2(s)dW (s) + A2(t). Then

〈X1, X2〉(t) =

∫ t

0

f1(s)f2(s)ds

Note that〈X, X〉, depends solely on the stochastic part of the dynamics and is
independent of the bounded variation part. Whenf ≡ 0, then the classical chain
rule is obtained in (8).
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Now, using the Ito formula, a variation of the stochastic integral introduced
above can be obtained so that the classical chain rule is satisfied. Consider a
processX(t) = x + M(t) + B(t) whereM is a local continuous martingale4 and
B an increasing process. Consider equally another continuous processY (t) =
y + N(t) + C(t) whereN is a local continuous martingale andC an increasing
process. TheStratonovich integral of Y with respect toX is then given by the
formula ∫ t

0

Y (s) ◦ d X(s) =

∫ t

0

Y (s)dX(s) +
1

2
〈M, N〉(t) (9)

Suppose nowα is of classC3 and apply the Ito formula (8) to α′(X). Then

dα′(X(t)) = α′′(X(t))dW (t) +
1

2
α(3)(X(t))dt

and consequentlyd〈α′(X), X〉(t) = α′′(X(t))dt. Hence,

α(Xt) = α(X(0)) +

∫ t

0

α′(X(s)) ◦ d X(s) (10)

by noticing that the quadratic variation term that we obtained is equal to the Ito
term in equation (8).

We conclude this section by the approximation of the stochastic integral men-
tioned above. For the Ito integral, we saw that, if∆ = {0 = t0 < t1 < · · · < tn =
T}, then

lim
|∆|→0

n−1∑
i=0

Y (ti)(X(ti+1)−X(ti)) =

∫ T

0

Y (s)dX(s)

For the Stratonovich case, it can be proved that we have the two equally useful
limits:

lim
|∆|→0

n−1∑
i=0

Y (ti) + Y (ti+1)

2
(X(ti+1)−X(ti)) =

∫ T

0

Y (s) ◦ d X(s) (11)

lim
|∆|→0

n−1∑
i=0

Y

(
ti + ti+1

2

)
(X(ti+1)−X(ti)) =

∫ T

0

Y (s) ◦ d X(s) (12)

As an example that is meant to emphasize the difference between the two integrals
previously introduced, consider as before a Brownian motionW andλ ∈ [0, 1].
Let ∆ = {a = t0 < t1 < · · · < tn = b}, ∆Wi = W (ti+1) −W (ti) and consider

4typically, this would be some Ito stochastic integralM(t) =
∫ t

0
ΦdW
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φλ(ti) = (1− λ)W (ti) + λW (ti+1). It can be proved that

∫ b

a

W (s) ◦ d W (s) = lim
|∆|→0

φ
1
2 (ti)∆Wi =

1

2

[
W 2(b)−W 2(a)

]

∫ b

a

W (s) d W (s) = lim
|∆|→0

φ0(ti)∆Wi =
1

2

[
W 2(b)−W 2(a)

]− 1

2
(b− a)

Note also that one should be careful when simulating∆Wi (see section1.3):

∆Wi ∼ N(0,ti+1−ti) ∼
√

ti+1 − tiN(0,1) (13)

2.2 Proposed Model for the Stochastic Curve Evolution

In applications, the stochastic term will add to a deterministic forceF (D2u,Du, x, t)
(one of the simplest examples, analyzed in detail in [40], is concerned with the
coupled evolutiond u = κ|Du| d t + Ẇ |Du| d t). Hence, a naive way to write
down the coupled evolution is

du = F |Du|dt + Ẇ |Du|dt

The above equation will have a meaning if written as

du = F |Du|dt + |Du|dW (t) (14)

Concentrating on the stochastic part again, we remark that we made an implicit
choice by considering the Ito integral in the above formula, but we could have
decided to go for the Stratonovich integral. So what is the difference between
the two integrals from a Level Sets point of view? Let us consider the following
invariance property that is required when working within a Level Sets framework:
consider just a random evolution of the type

du = |Du|dW (t) with u(0, ·) = u0 (15)

whereW is a one-dimensional Brownian motion. Then this evolution codes for
the corresponding contour evolution

∂Γ

∂t
= Ẇn with Γ(0) = Γ0 (16)

whereẆ is Gaussian white noise andΓ0 is the zero-level ofu0. The idea behind
the Level Sets evolution framework is to have all the level sets of the implicit
function given by (15) evolve according to the same dynamics (16). A smooth
change of scale of a function satisfying (15) that leaves the zero-level unchanged



8 Stochastic Motion and Level Sets

should not influence the dynamics of the level sets contour - since the correspond-
ing contour evolution (16) is not affected by this change of scale. Consider then a
functionα : R→ R such thatα′ > 0 andα(0) = 0 and the initial value problem

du = |Du|dW (t) with u(0, ·) = u0(·) (17)

If we consideru the solution of (17), then v = α(u) should verify the same
dynamics, but with a different initial condition

dv = |Dv|dW (t) with v(0, ·) = α(u0(·))

as is the case in the deterministic framework. Nevertheless, one can apply the Ito
rule to the dynamics (15) and see that

dv = dα(u) = α′(u)du = |Dv|dW (t) +
1

2
α′′(u)|Du|2dt

and the assertion is not verified due to the additional Ito term. Hence, the problem
(15) is ill-posed from a Level Sets point of view:for a given initial curve Γ(0),
the choice of the initial implicit function u0 modifies the solution of the equa-
tion! . However, as observed by Lions and Souganidis, this invariance condition
is verified if one replaces the Ito integral with the Stratonovich integral, since the
latter does not include any additional term anymore. Hence, theright way to in-
sert stochastic evolutions in the Level Sets framework is through the Stratonovich
integral. We rewrite (15) accordingly

du = |Du| ◦ dW (t) with u(0, ·) = u0(·) (18)

Then, if we considerv = α(u) (hence the corresponding initial condition will be
α(u0)) the dynamics verified byv are

d v = α′(u) ◦ d u = α′(u)|Du| ◦ d W (t) = |Dv| ◦ d W (t)

and the invariance property is verified this time. Now, given the previous ingredi-
ent, the proposed random curve evolution model is given by

du = Fdt + |Du| ◦ dW (t) (19)

Here, we used the Stratonovich integral, as opposed to (14).
A second example that suggests that the Stratonovich integration should be

used when working with stochastic partial differential equations (rather than the
Ito integral) is concerned with the1-dimensional perturbed heat equation

d u = ux d W (t) + λuxx d t (20)
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whereλ ≥ 0. Using the Ito formula again, if we letv(t, x) = u(t, x−W (t)), then
v will verify

d v = d u− ux ◦ d W (t) = ux d W (t) + λuxx d t− ux d W (t)− 1

2
uxx d t

=

(
λ− 1

2

)
vxx d t (21)

and this reduces to an inverse heat equation forλ < 1
2
, which is ill-posed from a

stability point of view. If, instead of considering the Ito integral in equation (20),
we consider the Stratonovich integral,

d u = ux ◦ d W (t) + λuxx d t (22)

then again, by lettingv(t, x) = u(t, x−W (t)), v will verify

d v = d u− ux ◦ d W (t) = ux ◦ d W (t) + λuxx d t− ux ◦ d W (t)

= λvxx d t

which is a stable equation for allλ ≥ 0.
What is the difference between the evolution (19) and a classical Level Sets

evolution such asdu = Fdt? Since the stochastic term only depends upon|Du|
and the time parameter, all the points of the contour will have an extra random
force which will be the same on the entire contour at each time step. This type
of perturbation is indeed very important from a theoretical point of view, but we
would like something more flexible in our applications. Typically, we would be
interested in having white noise in both the time and spatial parameters. Never-
theless, white noise in space appears to add a lot of technical difficulties to the
problem and the return on investment is quite small, since most of our models
will evolve on discrete grid spaces. That is why we have opted for colored spatial
noise, that is typically given by

W (t, x) =
m∑

i=1

φi(x)Wi(t)

whereφi : RN → R are smooth functions with compact support. Note that
other choices of colored spatial noise are possible. The final evolution model we
propose is thus

du = F |Du|dt + |Du|
m∑

i=1

φi(x) ◦ dWi(t) (23)
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As a simplification, in practice we choose the functions with the same profile,
but centered around a number of pointsxi, that we callnoise sources. Thus, our
typical choice is

φi(x) = φ(x− xi)

whereφ is some convenient regular function.

2.3 Stochastic Viscosity Solutions

The theory developed earlier needs some sort of convergence results. As men-
tioned before, the proper type of solutions need to be used, so that the previous
results from the Level Sets theory apply here. The notion of stochastic viscosity
solution for fully nonlinear, second-order, possibly degenerate, stochastic partial
differential equations such as the ones considered previously is put forward in a
series of articles: [19], [20], [22] and [23]. Their theory is meant to apply pre-
cisely to equations such as (23), with F = F (D2u,Du, x, t). So far, a limit of
their theory, which stands even today as an open question, is that they do not treat
equations where the noise depends upon the space parameter (they only treat the
caseφi ≡ 1, with our previous notation). However, experimental data suggests
that their theory applies in cases like ours as well (see section3). Precisely, con-
sider the equations

du = F (D2u,Du, x, t)dt + ε|Du| ◦ dW (t) with u(·, 0) = u0(·) (24)

du = F (D2u,Du, x, t)dt + |Du|ξ̇α(t) with u(·, 0) = uα(·) (25)

whereε ≥ 0 andξα is a family of smooth functionsξα : R+ → R. Then we can
cite the following theorem, summarizing their results:

Theorem 1 The following hold a.s. inω:

1. There exists a unique solution to(24).

2. Let{ξα(t)}t≥0 and{ηβ(t)}β>0 be two families of smooth functions such that
asα andβ → 0, ξα andηβ converge toW uniformly on any compact int
and a.s. inω. Let {uα}α>0 and{vβ}β>0 in BUC(R+×RN)5 be the solu-
tions of (25). If limα,β→0 ‖uα(·, 0)−vβ(·, 0)‖C(RN ) = 0, then, for allT > 0,
limα,β→0 ‖uα − vβ‖C([0,T ]×RN ) = 0. In particular, any smooth approxima-
tions ofW produce solutions converging to the unique function stochastic
viscosity solution of(24).

5bounded uniformly continuous
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3. Asε → 0, the solutionuε of (24) converges inC(R+×RN) to the solution
of (24) with ε = 0.

Consequently, their resultallows us to simulate the solutions of such equations
and be sure that the result of our computer simulation is what we expect it
to be. Further more, we mention that according to Lions, the convergence takes
place inC(R+×RN), which means that the numerical solutions we develop will
be continuous and that they will be converge uniformly almost surely inω ∈ Ω.

We end this theoretical part with an example by Souganidis on the explicit
solution of the equation

du = |Du|η̇dt with u(0, x) = |x| (26)

whereη : R+ → R is a function of classC1 such thatη(0) = 0. The explicit
solution of this equation is given by

u(t, x) = max

[
(|x|+ η(t))+ , max

s∈[0,t]
(η(s))+

]

where(x)+ = max(0, x); then, one can see that uniform convergence ofη → W
is sufficient to obtain the solution of the associated SPDE. Moreover, this simple
case allows one to see that the random pathη has a different effect on the solution
that depends mainly on its sign. Indeed, as it can be observed from formula (26),
there is a quantitative difference between the behavior of the solution depending
on whetherη̇ > 0 or η̇ < 0. This can be better understood watching a sample
evolution in figure (1). Moreover, numerical artifacts will develop due to very
frequent changes of sign ofη̇, since the use ofη is only for heuristic purpose (the
Brownian motion is nowhere differentiable). As a result, the regular reinitializa-
tion of the implicit function – a standard technique of the Level Set framework –
is indispensable in the stochastic case.

2.4 Numerical scheme

The main problem when implementing Stratonovich evolutions is that they amount
often to implementing implicit numerical schemes. Consider again the simple
evolutiond u = |Du| ◦ d W (t). According to the approximating scheme (11), the
direct way of simulating such a process is through the following implicit scheme:

ui+1 = ui +
1

2
(|Dui|+ |Dui+1|) ∆Wi

To avoid working with an implicit scheme, notice that the schema presented for the
simulation of the Ito integral is an explicit one and use the fact that the Stratonovich
integral is equal to the Ito integral plus an additional drift. Consider the evolution

du = H(Du, x) ◦ dW (t) (27)
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u(x)

x

T = 0 T = T1 > 0

ξ̇ > 0 u(x)

x

T = T2 > T1

ξ̇ < 0 u(x)

x

T = T3 > T2

u(x)

x

ξ̇ > 0

Figure 1: Examples of a typical evolution following the dynamics of equation
(26). The extremely frequent changes of sign of the increments will produce sin-
gularities that might lead to numerical artifacts. Hence, from an implementation
point of view, some regularreinitializationof u is advisable.

where we have compacted the notation used previously. HereH(p, x) is a function
fromRN ×R with real values. The typical example isH(p, x) = |p|φ(x), where,
φ is some convenient regular function which is smooth enough. Such an evolution
is equivalent, according to the definition of the Stratonovich integral, with the Ito
evolution given by

d u = H(Du, x) d W (t) +
1

2
d〈H(Du, x), W 〉(t) (28)

To compute the drift, we start by rewriting the above dynamics in an integral form

u(t, x) = u0(x) +

∫ t

0

H(Du(s, x), x) ◦ dW (s)

We can then derive with respect to the spatial parameterx and obtain

Du(t, x) = Du0(x)+

∫ t

0

[
D2u(s, x)DpH(Du(s, x), x) + DxH(Du(s, x), x)

] ◦ dW (s)

whereDpH (resp. DxH) denotes the gradients ofH w.r.t. p (resp. x). Then,
applying the Ito rule, we have

H(Du(t, x), x) = H(Du0(x), x)+

∫ t

0

[
DpH · (D2uDpH) + DpH ·DxH

] ◦ dW (s)
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Finally, if we consider the simplifying notationA[u] = A(u, u), whenA is some
quadratic form, then the drift from equation (28) can be written as

1

2
〈H(Du, x), W 〉(t) =

1

2

∫ t

0

(D2u(s, x) [DpH(Du(s, x), x)]

+ DpH(Du(s, x), x) ·DxH(Du(s, x), x))ds

WhenH = |p|φ(x), the previous formula becomes

〈H(Du, x), W 〉(t) =

∫ t

0

[
φ2(x)D2u(s, x)

[
Du(s, x)

|Du(s, x)|
]

+ φ(x) Dφ(x) ·Du(s, x)

]
ds

We can remark that the second order term in the above formula is a smoothing
term. It can also be written

D2u

[
Du

|Du|
]

= ∆u− |Du| div

(
Du

|Du|
)

= ∆u− |Du|κ

whereκ denotes the mean curvature of the level set at pointx. One can be alarmed
by the presence of−|Du|κ. Nevertheless, the overall term is positive, sinceD2u
is a semi-positive definite matrix.

The above calculation remains valid if the dynamics depends on more than
one Brownian motion. In conclusion, to simulate an evolution of the type

du = Fdt + |Du|
m∑

i=1

φi(x) ◦ dWi(t) (29)

we use

du =Fdt + |Du|
m∑

i=1

φi(x)dWi(t) (30)

+
1

2

(
(

m∑
i=1

φ2
i (x))D2u

[
Du

|Du|
]

+ (
m∑

i=1

φi(x)Dφi(x)) ·Du

)
dt

or, in the general case when the stochastic Hamiltonian is given byH(p, x):

du = Fdt + H(Du, x)dW (t) +
1

2

(
D2u [DpH] + DpH ·DxH

)
dt
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3 Validation

In this section, we test our scheme and investigate some simple geometrical prop-
erties the evolution that could guide the user toward a correct choice of noise.

3.1 One Gaussian noise

Let us begin with the simple case of a Gaussian noise constant in space. We thus
considerdu = |Du|◦ dW (t) and implement:

du = |Du|dW (t) +
1

2
D2u(t, x)

[
Du(t, x)

|Du(t, x)|
]

We use a standard WENO3 scheme [13] in space with step∆x and a first order
explicit scheme in time with step∆t and verify the convergence of the approxima-
tion when the space step and/or the time step tend to zero. Again, please remind
the use of

√
∆t:

u(t + ∆t, x) = u(t, x) + |Du(t, x)|
√

∆tN(0,1)(t) +
1

2
D2u(t, x)

[
Du(t, x)

|Du(t, x)|
]

Because of the stochastic character of the evolution, one can only compare the
different approximations through some statistical quantity6. For a given initial
condition and a given final timeT , the variance of the area of the interior of the
final curveprovides a simple and meaningful way to compare two approximations.
We approximate the area of the interior region by an approximating Heavyside
integral over the image:

Aε =

∫

D

Hε(u(x)) d x

with Hε an approximation of the Heaviside function, given by

Hε(x) =





1 si x > ε

0 si x < −ε
1
2

[
1 + x

ε
+ 1

π
sin

(
πx
ε

)]
pour |x| ≤ ε

We preferred this approximation of the Heavyside function for its local character,
that gives a low error level for the implicit representations we consider. The left
part of figure2 shows, for different values of∆x, the convergence of this variance
when1/∆t increases. As a reminder to avoid a naive mistake, we also imple-
mented the evolution with∆t instead of

√
∆t and verify that the variance of the

area tends to zero!
6Actually, for a given time step∆t, we might fix the eventω and compare the approxima-

tions for different∆x but with the same Brownian. We also successfully used such a path-wise
comparison when testing the invariance property of our scheme.
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Figure 2:One Gaussian source. Left: convergence of the variance of the area at a
given timeT when∆t tends to 0 (plus the erroneous case when using (3)). Right:
invariance of Stratonovich w.r.t. the choice of the initial implicit function.

As a test of the invariance of the Stratonovich differential, we compare, for a
given initial curveΓ(0), the mean of the area of the curve at a given final time
T for different choices of the initial implicit functionu(0) (namely the signed
distance functiondΓ(0) to Γ(0) andα(dΓ(0)) with α(x) = ex − 1). The right part
of figure2 shows, for different values ofT and different initial curves, the relative
difference between the means of the final area for the initial conditionsdΓ(0) and
for α(dΓ(0)) in both the Ito and the Stratonovich cases . Note how the Stratonovich
scheme is much more invariant with respect to the choice ofu(0).
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Figure 3:Left: Linear dependency between the final time and the variance of the
area (one Gaussian). Right: invariance of Stratonovich wrt to the choice of the
implicit function (several Gaussian sources).
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Let us consider now the following simple example: the initial contour is a
circle and we choose the signed distance to the contour to be our implicit evolution
initialization. Then, the stochastic term that will influence the evolution will result
in a random force (uniform on the entire contour) that modifies the radius of the
circle. Of course, the drift will tend to come into play as well, but let us neglect it
for a few moments. It is then easy to see the area of region of interest will be of
the form

π × (r + η)2

wherer is the initial radius andη is the stochastic perturbation. If we consider this
evolution at a timet (with t small), thenη ∼ N (0, t). Hence, the area difference
between timest and0 is given by

2πrη + πη2

One cand thus see the first term is a first order term that contains the length of the
initial contour. It is then easy to see the law of the area difference (neglecting the
influence of the drift term) is given by a gaussian random variable with mean0
and variance

t (2πr)2 + t2 π2

which is a second-order polynomial in the time parameter. When adding back
the drift term (or when considering more complicated evolutions) the mean will
modify, but the first-order term should follow the same type of dynamics.

3.2 Several Gaussian noise sources

Having the whole curve shrink or grow at the same time is not very useful. We
will use a spatially dependent noise although the viscosity solution result is still
an open question in this case. For a given numberm of random sources, we im-
plement the evolution (29) with F = 0 using the scheme (30). Them sources
are equally distributed on a grid{xi} andφi(x) = φ(x − xi) whereφ is such
that φi(xj) = δij andφi decreases smoothly fromxi to its neighbors. In prac-
tice, although not derivable inxi, the classical multi-linear interpolation functions
are sufficient. Note also that

∑m
i=1 φi(x)dWi(t) is no more of variance1 for all

x, so that the stochastic motion would be weaker between two sources. Using

φi(x)/
(∑m

j=1 φ2
j(x)

) 1
2

instead ofφi(x) recovers a constant variance1.

The drift will have a spatial derivative term (see (30)). Like figure 2 for
one noise, the right part of figure3 shows, for different values ofm, how the
Stratonovich scheme makes the evolution invariant with respect to the choice of
u(0).
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Figure 4: Different number of Gaussian noise sources. Top row: starting from
the initial curve (top left), three time steps of the evolution with a large number
of Gaussian sources. Middle row: from the same initial curve, four time steps of
the evolution with a spatially smoother noise (small number of sources). Bottom
row: a 3D example starting from the cortex of a monkey.



18 Stochastic Motion and Level Sets

With more than one source of noise, the points of the curve do not move at the
same speed anymore, leading to the desired stochastic global deformation. As one
should expect, with a large number of sources, the deformation is very noisy but
the contributions of the sources tend to annihilate one each other. Thus, the curve
does not move very far from its initial position. On the contrary, with a medium
number of sources, the deformation is smoother but with ampler motions (see
figure4). Depending on his/her own application, the user might want to choose
the optimal number of sources. As a first attempt to quantify the phenomenon, we
measure how long it takes to the curve to move away from its initial position. For
a given distanceδ, we call theexpected exit timethe quantityT (δ) = E(inf{t :
∃x ∈ Γ(t), d(x, Γ(0)) ≥ δ}) whereE denotes the expectation. For a Brownian
motion, the expected exit time from a ball is a quadratic function of the radius
of the ball. In our case, such a result would be certainly hard to prove. Yet, our
experiments show a similar relationshipT (δ) ≈ α(m)δ2: (see the left part of
figure 3.2). This useful relationship indicates clearly how long the user have to
wait to see his/her curve getting away from its initial position. The right part of
figure 3.2 plots α as a function of the number of sources. As expected, a large
number of sourcesm induces a larger exit time, thus a largerα. Surprisingly,
the smallest values ofm give also a largeα. We do not have any satisfactory
explanation for this phenomenon... Anyway, these are only some very first step
toward the understanding of the geometric properties of this kind of stochastic
motion and many other quantities would be of great interest: the variations of the
curvature, the time to get the curve split, etc.

We end this section with another heuristic for the variance of the area in the
case when several noise sources come into play. For a given initial curve, the
variance of the area of the curve at timeT can be approximated the following
way. When working with a process that followsd u = |Du| ◦ d W (t) with the
initial conditionu0, if we suppose that|Du0| ≡ 1, then one can consider the first
order approximationu(t, x)−u0(x) =

∑m
i=1 φi(x)Wi(t) Hence, a very simplistic

approximation of the area difference for a short time delta is given by

Aε(t)− Aε(0) =

∫

D

(Hε(u(t, x))−Hε(u(0, x))) d x

∼
∫

D

δε(u(0, x))

[
m∑

i=1

φi(x)Wi(t)

]
d x

=
m∑

i=1

Wi(t)

∫

D

δε(u(0, x))φi(x) d x
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Considering this first order approximation amounts to

V ar(Aε(t)− Aε(0)) = t

[
m∑

i=1

(∫

D

δε(u(0, x))φi(x) d x

)2
]

One can see that whenm = 1 andφ ≡ 1, this formula becomes

V ar(Aε(t)− Aε(0)) = t

(∫

D

δε(u(0, x)) d x

)2

and the last term on the right-hand side is exactly the length of the initial contour.
We recover thus the result we noticed in the last section when working with one
noise source.
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Figure 5:Several Gaussian sources. Left: Quadratic relation between the distance
δ and the expected exit time from the band of thicknessδ. Right: variation of the
exit time w.r.t. the number of sources.

4 Applications to Computer Vision

Many Computer Vision problems consist in recovering a certain surface or region
through a shape optimization framework [6, 11, 29]. These methods suffer from
being sometimes stuck in local minima. The dynamics presented earlier, coupled
with a decision mechanism, can be used to overcome this problem. As a first
step toward more sophisticated genetic methods, we turned our attention to the
Simulated Annealing algorithm. Based on the work of Metropolis et al. [27],
Simulated Annealing was first mentioned by Kirkpatrick in [17] as a nice applica-
tion of statistical physics to optimization problems. Its purpose is to introduce a
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probabilistic decision mechanism for finding global minima in higher dimension.
First, we would like to briefly comment upon the previous works oriented toward
the use of genetic programming in Computer Vision.

4.1 Comparison with previous work Computer Vision

In a lot of cases, the stochastic theory is used to help researchers develop an in-
tuition of the macroscopic dynamics at a microscopic level. This is the case in
[2, 35], where an algorithm for stochastic approximations to a curve shorten-
ing flow is built. Another example is given by [34], where the authors develop
a model of anisotropic diffusion using the information gained by analyzing the
stochastic differential equation associated to a linearized version of the geometric
heat equation. Note that one should not confuse these stochastic simulations of a
deterministic motion with our use of stochastic motion. In other cases, stochas-
tics are actively used in selection algorithms meant to overcome some classical
dynamics difficulties. In [32] Storvik used Simulated Annealing combined with
a Bayesian dynamics and developed applications in medical imagery. He used a
node-oriented representation technique for the contour representation. Thus, his
algorithm can only detect simply connected domains in an image. Moreover, self-
intersections are not allowed, due to the complications they would involve. More
recently, Ballerini et al developed in [1] an interesting application to medical im-
age segmentation using a genetic algorithm,genetic snakes. They used a model
that they fit using a number of control points. Their application cannot, therefore,
be extended to a more general framework.

Please note that the main ingredient of our work is not the Simulated Anneal-
ing part, but rather the implementation of the stochastic motion and its use in
shape optimization problems. It is obvious that the stochastic approach adds to
the power and flexibility of the Level Sets technique into a very powerful tool. We
can thus use this mechanism through skillfully applied controls, while continu-
ing to allow for topological changes and weak regularity assumptions. Simulated
Annealing is used in our experiments. In the future, more evolved genetic pro-
gramming selection techniques might be considered, but it is encouraging that
such simple ingredients added to the Level Sets framework provide good practical
results. Sketchily, one can see the same difference between our method and the
previous ones, than between geodesic active contours and the pioneering snakes
[15] .

4.2 Principle

Given some Computer Vision problem in a variational framework where we have
to find the regionΓ that minimizes an energyE(Γ) = E(u), we use the following
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simple Simulated Annealing decision scheme:

1. Start from some initial guessu0

2. computeun+1 from un using some dynamics, e.g.du = |Du|∑m
i=1 φi(x) ◦

dWi(t)

3. compute the energyE(un+1)

4. acceptun+1:

• if E(un+1) < E(un)

• otherwise, acceptun+1 with probabilityexp
(
−E(un+1)−E(un)

T (n)

)

5. loop back to step 2, until some stopping condition is fulfilled

as a decreasing temperature. Its choice is not obvious. If the temperature de-
creases too fast, the process may get stuck in a local minimum; on the con-
trary, decreasing too slowly may be postpone convergence. A classical choice
is T (n) = T0/

√
n. The classical way to solve the previous minimization problem

is to use a gradient descent method. The Euler-Lagrange equation is computed,
leading to some evolution∂Γ/∂t = βcn, or equivalently, in the Level Set frame-
work, to∂u/∂t = βc|Du|. We will actually use the classical motion as heuristics
that drive the evolution faster toward a minimum, and replace the dynamics of
step 2, by

du = βc|Du|dt + |Du|
m∑

i=1

φi(x) ◦ dWi(t) (31)

As often with genetic algorithms, the proof of the convergence of this algorithm
toward a global minimum is still an open problem. However, practical simulations
indicate that the above algorithm is more likely to overcome local minima than
the classical approach. This is our main motivation, since local minima are the
major problem of classical approaches. Note also, as already mentioned, that our
framework can be used in cases when the shape gradient is too complex from a
mathematical or computational point of view, or even impossible to compute.

5 Stochastic Active Contours

Our scheme could be used in the Geodesic Active Contours framework [6] where
segmentation is based upon gradient intensity variations. Yet, a multiscale ap-
proach is often used successfully in that context to overcome the local minimum
problem. Other segmentation schemes [29] use a region model (eg. texture, statis-
tics) that is less adapted to multiscale. We will first focus on one such case, namely
the single Gaussian statistics model in [31].
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5.1 Single Gaussian model

In their unsupervised segmentation framework [31], the authors model each re-
gion of a gray-valued or color imageI by a single Gaussian distribution of un-
known meanµi and varianceΣi. The case of two regions segmentation turns into
minimizing the following energy:

E(Γ, µ1, Σ1, µ2, Σ2) =

∫

Ω1

e1(x) +

∫

Ω2

e2(x) + νlength(Γ)

whereΩ1 is the region insideΓ, Γ2 the outside, andei(x) = − log pµiΣi
(I(x)) with

pµiΣi
(I(x)) = C|Σi|−1/2e−(I(x)−µi)

T Σ−1
i (I(x)−µi)/2 being the conditional probabil-

ity density function of a given valueI(x) with respect to the hypothesis(µi, Σi).
The parameters(µi, Σi), estimated from the pixel actually inside and outsideΓ,
are functions ofΓ. Thus, the energy is a function ofΓ only: E(Γ, µ1, Σ1, µ2, Σ2) =
E(Γ). Its Euler-Lagrange equation is not obvious, but finally simplifies into the
minimization dynamics

βc = e2(x)− e1(x) + ν div

(
D u

|D u|
)

The authors successfully segment two regions, even when they have the same
mean but only different variances. However, the evolution could easily be stuck
into some local minimum while a multiscale approach might modify the statistics
so that no segmentation would be possible anymore. As demonstrated figure6, a
simple Simulated Annealing scheme with dynamics (31) overcomes this problem.
Figure7 shows the same phenomenon on a real image. Note that this image was
successfully segmented by the authors of [29]. Yet, they used an adapted model
of texture. Here, the Stochastic Active Contours framework succeeds in making a
simple unsupervised single Gaussian model recover the correct regions.

5.2 Gaussian mixtures

As an illustration of the case when the Euler-Lagrange equation cannot be com-
puted, we extend the previous method to region statistics modeled by a mixture
of Gaussian distributions of parametersΘi = (π1

i , µ
1
i , Σ

1
i , ..., π

ni
i , µni

i , Σni
i ). with∑

j πj
i = 1. The conditional probability density function of a given valueI(x)

becomes:

pΘi
(I(x)) =

ni∑
j=1

πjpµj
i Σ

j
i
(I(x))

The number of Gaussian distributions can be given, estimated at the initial time
step, or dynamically evaluated using a Minimum Description Length criterion[30]
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Figure 6: Segmentation of two regions modeled by two unknown Gaussian dis-
tributions (same mean, different variances). Top row: the initial curve, the final
state of the classical approach stuck in a local minimum, and the final state of
our method. Bottom row: evolution of the energy (dashed: deterministic method,
solid: our method)
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Figure 7: Segmentation of two regions modeled by two unknown Gaussian dis-
tributions. Top row: the initial curve, the final time step of the classical method,
again stuck in a local minimum and the final step of our method. Bottom row:
evolution of the energy (dashed: deterministic method, solid: our method)

or the Minimal Message Length method [36]. A large literature is dedicated to the
problem of estimatingΘi from input samples. We have used the original K-Means
algorithm pioneered by MacQueen [24], although we have tested extensions like
the Fuzzy-K-Means [3, 8], the K-Harmonic-Means [41], and the Expectation-
Maximization algorithm (EM), first proposed in [9]. The latter solves iteratively

Θ̂i = argmax
Θi

∫

x∈Ωi

log pΘi
(I (x)) dx

(Please refer to appendix for details and references).
Our segmentation problem still consists in minimizing the same energy, with

nowei(x) = − log pΘi
(I(x)). Unfortunately, we now have to deal with a complex

dependency ofΘi with respect toΓ. In fact, the learning algorithm acts as a “black
box” implementingΓ → Θi(Γ). As a consequence, the Euler-Lagrange equation
of the energyE(Γ, Θ1(Γ), Θ2(Γ)) = E(Γ) cannot be computed. A deterministic
contour evolution driven byβc = e2−e1+νκ may get stuck just becauseβcn is not
the exact gradient. Yet, the Stochastic Active Contours can still be used, withβc

as heuristics. As a simple illustration of this, let us consider the synthetic example
of figure8. The region to segment is a square. The square and the background are
each modeled by a mixture of two equally weighted Gaussian distributions:Θi =
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Figure 8:A case where the gradient is not correct (see text). Top row, from left
to right: initial position, final position with the classical method (the model is not
correctly recovered - see percentages in the hexagons), leading to rounded cor-
ners), final position with our method (the model is correctly recovered). Bottom
left: evolution of the energy in both cases. Bottom right: energy for a translation
of the curve that goes through the correct segmentation.
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(1
2
, µ1

i , Σ, 1
2
, µ2

i , Σ). As an initial guess, we shift the square toward the bottom-
right corner. Although a bit of the background is inΩ1, Θ1 is correctly estimated.
Yet, for some reason, the K-Means algorithm estimatesΘ2 approximatively by
(1− ε,

µ1
2+µ2

2

2
, Σ′, ε, µ1

1+µ2
1

2
, Σ′′). During its convergence, the deterministic method

keeps such an incorrectΘ2 and finally gets stuck at a roughly correct place but
with an incorrect model, leaving some interior pixels outside (especially in the
corners, because of the smoothing term of the energy). The colored hexagons
below the images indicate the means and variances of the mixtures components
and their respective weights. See also how the energy increases in the end! On
the contrary, our method does not rely completely on the incorrect gradient only
and finally”discovers” the correct model, leading to a somehow better fit. Notice
the energy level drop-down when the K-Means algorithm ejects the interior pixels
as negligible and shifts to the correct model. The last graph of figure8 is a plot
of the energy when the initial square ismanuallytranslated from the bottom-right
corner to the upper-left one, going through the correct position. It clearly shows
that the heuristic gradient by itself gets stuck in a local minimum , whereas our
method comes much closer to the desired minimum.

6 Results

Even when the deterministic scheme converge more or less, our method shows
a better ability to overcome local minima: figure9 shows howΓ can be stuck
leading to a dramatic evolution toward completely false regions. Finally, figure
10 shows some more examples on other real images. Animations corresponding
to all the presented examples can be downloaded at

7 Conclusion

Based on recent work on Stochastic Partial Differential Equations by Lions and
Souganidis, we have presented a simple and well-founded method to implement
the stochastic motion of a surface in a Level Set framework. This method is used
as the key point of a stochastic extension to standard shape optimization meth-
ods in Computer Vision. In the particular case of segmentation, we introduced
theStochastic Active Contours, a natural extension of the well-known active con-
tours. Our method overcomes the local minima problem and can also be used
when the Euler-Lagrange equation of the energy is out of reach. This extension
is not time consuming: the only computational effort is computing the energy .
Convincing results are presented with the segmentation of regions modeled by
unknown statistics, namely single Gaussian distributions or mixtures of Gaussian
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Figure 9:Segmentation of two regions modeled by two unknown Gaussian mix-
tures. Top row: the initial curve, the final state of the deterministic method, stuck
in a local minimum and the final state of our method. Bottom row: evolution of
the energy.
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Figure 10:Segmentation of two regions modeled by two unknown Gaussian mix-
tures. Left column: the initial states. Right column: the corresponding final states
of our method.



CERTIS R.R. 04-01 29

distributions. The way is now open for applying our principle to other Computer
Vision problems but also in different fields where shape optimization problems
arise, like in theoretical chemistry [5].

A Appendix A: Data Mining and Unsupervised Learn-
ing Survey

This part presents a survey of well known data mining algorithms (K-Means and
EM algorithms) in case of fitting Gaussian Mixture Model (GMM) on a given data
set. In our case, the data set’s samples are pixels of a segmented regions.

Firstly, we will discuss of the K-Means algorithm and some extensions and, in
a second part, of the EM algorithm.

K-Means algorithm is much more fast than EM and is often used in critical
running time applications and in initialization step of EM algorithm.

However our segmentation scheme is based on minimizing:

E (Γ, Θ (Γ)) =

∫

Ω

−logpΘ(Γ) (I (x)) + νlength (Γ)

So the gradient is:

∂E (Γ, Θ (Γ))

∂Γ
=

∂E

∂Γ
(Γ, Θ (Γ)) +

∂E

∂Θ
(Γ, Θ (Γ))

∂Θ

∂Γ
(Γ) (32)

Since the second term of the gradient is too complex, we completely neglect it
and use only the first term as a heuristic in a simulate annealing framework. Then
using EM algorithm is more adapted than K-Means since it attempts at each time
step to find the parameterΘ by a log-likelihood optimization such that the GMM
fits best the region data set. If the EM algorithm manages to achieve the log-
likelihood optimization, then∂Θ

∂Γ
(Γ) = 0, so the second term vanishes in equation

(32). And the heuristic gradient we use in our simulate annealing, is now the
correct gradient.

A.1 K-Means and co.

K-Means is historically the first efficient and fast algorithm for data clustering
problem [24], due to its computational low cost. Since, some extensions, improv-
ing robustness and classification, have been provided like Fuzzy-K-Means [3] and
[8].

In the next sections, we will first elaborate on the K-Means algorithm and then
we will elaborate on some of its extensions (concentrating on the Fuzzy-K-Means
algorithm).
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A.1.1 K-Means

This method providesK partitions of a data setX. Each sample of the data set,
here pixel, is assigned with a class in order to minimize the within-class sum
square errors functional:

KM (X) =
N∑

i=1

min
j=1..K

d (xi, cj)
2

wherexi ∈ X, cj is the center ofjth class andd is the distance betweenxi andcj.
Different distances can be used like Manhattan, Euclidian or Mahalanobis dis-

tance. Each distance has its own advantages and disadvantages. Manhattan dis-
tance (L1 distance), is more robust to outliers although its unit sphere is a cube
unlike Euclidian distance (L2 distance) which has a more natural unit sphere.
Mahalanobis distance - the distance associated to〈 , 〉Σ whereΣ is the covariance
matrix of the considered class - takes into account much more information from
data set (covariance matrix) but using Mahalanobis distance makes K-Means al-
gorithm mush more numerically instable.

Unlike Mahalanobis distance, when working with L1 or L2 distances, one has
to deal with another problem: clusters (or classes) will have approximately the
same size. However Mahalanobis is computationally costly and L2 distance is a
good compromise between speed and clustering quality.

A detailed description of K-Means algorithms can be found in [10] pages 526-
527. There are many ways to choose initial centers, like choosing them randomly
or uniformly in the data setX or in the data space. It does not exist a unique
way to initialize K-Means, many ideas have been proposed in that way to en-
hance robustness of K-Means algorithm. Although K-Means is very sensitive to
initialization step and in most case, random initialization is the best choice.

Sensitivity wrt. the initial data is an unwanted feature of the K-Means algo-
rithm. A modified version of the algorithm, namedFuzzy K-Means, was proposed
by deGruijter and McBratney in order to improve robustness.

A.1.2 Fuzzy-K-Means and other extensions

The basic idea was simple: if K-Means makes hard partitioning of data space,
why don’t try a soft partitioning ? In fact, in K-Means, a data’s sample assigned
to a class can’t influence another class. Fuzzy-K-Means lets each sample of the
data set interfere withall the classes. (see figure12)

The energy to minimize is now:

FKM (X) =
N∑

i=1

K∑
j=1

mijd (xi, cj)
2
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Figure 11:On the left, in red, result of the classification by K-Means and, in black,
the borders of the partition. On the right, the true solution.

where:
K∑

j=1

mij = 1

N∑
i=1

mij > 0

mij is calledmembership coefficientand it influences the impact ofxi on cj. It
is computed through a new parameter,φ, which represents the fuzziness of the
partition. Whenφ = 1, Fuzzy K-Means does the same thing as K-Means. The
greaterφ is, the more groups overlap.
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Figure 12:On the left, the representation of themembership functionin case of
Hard partitionning (K-Means). On the right, themembership functionin case of
Soft partitionning (Fuzzy K-Means withφ>1).

mij =
d (xi, cj)

2/(φ−1)

K∑
m=1

d (xi, cm)2/(φ−1)

(33)
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andcj is updated using:

cj =

N∑
i=1

mijxi

N∑
i=1

mij

(34)

The Fuzzy-K-Means algorithm could be found in [10] pages 528-529.

A.1.3 Conclusion

K-Means algorithm is quite sensitive to initialization and does not often classify
correctly a synthetic data set built from a gaussian mixture distribution. Fuzzy-K-
Means is more robust and less sensitive to initial conditions than K-Means algo-
rithm. But K-Means and Fuzzy-K-Means are Centers-based classifier algorithm
and they are very mush alike. Both of them suffer from common disadvantages,
in particular the fact that clusters have approximately the same size.

A.2 Expectation Maximization: EM algorithm

The Expectation-Maximization algorithm (EM) is a parameter estimation algo-
rithm based on likelihood maximization. Here we noteΘ all the parameters of
the model and denote byp (x|Θ) the density function. Ifχ denotes the data set,
likelihood is defined by:

L (Θ|χ) = p (χ|Θ) =
∏
x∈χ

p (x|Θ) (35)

EM deals with incomplete data observation. We denote byX the observed
data,Y the missing data andZ = (X, Y ) the complete data.

EM is a two step algorithm. During the first step, called E-Step, it finds the
expected value oflog L (Θ|Z) = log L (Θ|X, Y ) = log p (X, Y |Θ) wrt. Y , i.e.
calculate:

Q (Θ, Θ′) = E [log p (X,Y |Θ) |X, Θ′ ] (36)

The second step, the Maximization Step (M-Step) maximizesQ (Θ, Θ′) wrt.
Θ and solves the equation:

Θ̂ = argmin
Θ

Q (Θ, Θ′) (37)

EM consists in applying iteratively E-Step and M-Step until convergence (i.e.
until the log-likelihood delta between two iterations drops below a given thresh-
old).
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A.2.1 EM and Gaussian Mixture Model

Here we use a Gaussian Mixture Model:

p (x|Θ) =
K∑

i=1

πiGµi,Σi
(x) (38)

So the log-likelihood for the incomplete data is:

log (L (Θ|X)) = log
N∏

i=1

p (xi|Θ) =
N∑

i=1

log

(
K∑

j=1

πjGµj ,Σj
(xi)

)

And the log-likelihood for the complete data is:

log (L (Θ|X, Y )) = log
N∏

i=1

p (xi, yi|Θ) (39)

=
N∑

i=1

log

(
K∑

j=1

δyi
(j) πjGµj ,Σj

(xi)

)
(40)

=
N∑

i=1

log
(
πyi

Gµyi ,Σyi
(xi)

)
(41)

whereyi, the missing data, is such thatGµyi ,Σyi
is the gaussian from whichxi is a

realization.

By using Bayes’ rule, we find that E-Step consists in:

p (yi|xi, Θ
′) =

π′yi
Gµ′yi,Σ

′
yi

(xi)

K∑
j=1

π′jGµ′j ,Σ′j (xi)

(42)
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and by derivating M-Step consists in:

πnew
m =

1

N

N∑
i=1

p (m|xi, Θ
′) (43)

µnew
m =

N∑
i=1

p (m|xi, Θ
′) xi

N∑
i=1

p (m|xi, Θ
′)

(44)

Σnew
m =

N∑
i=1

p (m|xi, Θ
′) (xi − µnew

i ) (xi − µnew
i )T

N∑
i=1

p (m|xi, Θ
′)

(45)

(46)

As it was said in previous section, EM algorithm consists in iterating E-Step fol-
lowed by M-Step until convergence. It can be prove that one iteration of EM
always increase the likelihoodL (Θ|χ) in [26] and [25].

Figure 13:On the left, in red, best result of K-Means over 20 shots and, in blue,
the the true solution. On the right, in red, best result of EM over 20 shots and, in
blue, the the true solution.

EM algorithm provides better results and is more robust to initialization than
K-Means or Fuzzy-K-Means (see figure13).

A.2.2 EM and Extensions

Like K-Means, extensions of EM algorithm have been proposed to improved con-
vergence speed or robustness. Stochastic EM (SEM) is one of the most used ex-
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tensions of EM [7]. However to avoid Minima loci, Split and Merge EM (SMEM)
improves greatly the robustness of the algorithm but it is computationally costly
and works well on large data sets [33]. Color images of 256 pixels by side is not
sufficient since pixels live in 3D color space.

A.3 Unsupervised Learning ?

The classic model of GMM isn’t totally unsupervised. In fact the number of gaus-
sians has to be set by the user. To provide a totally user-friendly algorithm, we
have tested a MDL based criterion [30]. Minimum Description Length criterion
allows us to compare the log-likelihood of two GMM who don’t have the same
number of underlying meaningful distributions. The MDL criterion is defined by:

MDL (K) =
K

2

[
1 + d +

d (d + 1)

2

]
log N

whereK is the number of gaussians,d the space dimension andN the number of
data samples. We introduce a criterion to compare two GMM:

J (Θ, K) = −
N∑

i=1

log p (xi|Θ) + MDL (K)

wherep is a GMM ofK gaussians defined as (38), Θ represents all the parameters
(πi, µi, Σi) of the GMM. Nevertheless when using MDL, one will have an extra
parameter to calibrateKmax which represents the maximum number of gaussians
in GMM.

As MDL(K) does not depend onΘ, minimizing J(Θ, K) consists inKmax

runs of EM algorithm to minimize the first part ofJ wrt. Θ with K fixed and then
choosing the couple(θK , K) that minimizeJ over allK ∈ {1..Kmax}.

However if this method provides a better fitted model, it isKmax times more
long that a simple EM algorithm and needs large data set.
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