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Abstract

The hand with its pose and gesture is not easy to track with cameras. It
is mostly because of a high number of degrees of freedom and a complex
shape. Our algorithm is based on three dimensional clouds of points issued
from stereovision in order to keep the depth information. The complex and
organic aspect of the hand is modeled by an articulated skeleton on which
metaballs are attached. We reduce the difficulty of the problem by adding
joint constraints to the model. The core of our program is an energy-based
minimization that fits the model at each frame using the distance between
the model and the clouds of points, the result at the previous frame is chosen
as an initial guess.
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Résumé

La position et la configuration d’une main en mouvement ne sont pas faciles
à retrouver pour un ordinateur équipé de caméras. Cela est en partie dû
au nombre élevé de degrés de liberté de cet objet ainsi que de sa forme
complexe. Nous avons basé notre méthode de suivi sur des nuages de points
en trois dimensions obtenus par stéréovision afin de conserver l’information
de profondeur. L’aspect complexe et organique de la main a été modélisé
par un squelette articulé habillé de metaballs. Quant à la difficulté liée au
grand nombre de degrés de liberté, nous nous sommes efforcés de la réduire en
rajoutant des contraintes articulatoires. La recherche de la position correcte
à partir de la position précédente estimée repose sur la minimisation d’une
énergie basée sur la distance entre le modèle de la main et le nuage de points
en trois dimensions.

Mots Clef

Vision par ordinateur, suivi de la main, modèle articulé, contraintes
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1 Introduction

Tracking human hand gestures has been an important subject of research
for years. All existing systems have their advantages and their drawbacks.
Systems involving gloves with sensors were the first ones to give results and
they are still the technology that provides best data and precision. But the
problem is that such solutions, even the wireless ones, are invasive because
gloves are not as thin as silk gloves and need to carry sensors.

Systems involving instrumented gloves such as the one shown in Fig.1
were the first to give useful results and are still the technology that provides
the most reliable data. However such gloves, including the wireless ones, are
cumbersome because they are not as thin as silk gloves and need to carry
sensors. By contrast, filming a subject using one or more cameras does not
disturb him. As a result, research teams trying to capture the most natural
gesture possible, focus on video-based solutions.

Figure 1: Nathaniel Lynch (Microsoft) wearing an invasive acquisition glove.

There are many different approaches to track human movements from
video cameras; in his survey [13], the author enumerated 130 of them and
more have been proposed since. In most cases, the hand is first roughly
located by finding a particular color in the image, be it skin color or the
color of gloves worn by the subject. Various techniques are then used to
recognize the hand position and/or gesture. The oldest ones are those using
one camera and comparing features of the picture to a set of pictures of the
hand. For example, W. T. Freeman controlled a TV set using 26 predefined
hand gestures [14] and N. Shimada [17] proposed something similar. This
approach works only when the set of predefined gestures is not too big and
these gestures differ sharply from one another. Another class of methods is
formed by those that track the movement of the hand to recognize dynamic
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gestures. The detected hand motion is usually sent to a Hidden Markov
Model procedure. T. Starner uses this to recognize sentences in sign language
composed of roughly 40 signs [15]. This technique is quite efficient but limited
since it cannot detect the difference between two gestures involving identical
global motion but a different hand shape. It is limited also by the fact that
using only one camera does not allow to easily measure motion in the depth
plane. Finally, the most complex class of methods includes those that rely
on 3-dimensional analysis. Most of them fit features of the projection of a
3-dimensional articulated model to image features, which tends to be easier
when using multiple-views and fitting 3D models to 3D data. The most
commonly used features are contours [2, 19, 18, 20, 21], shading [16] and
stereo [2, 4] as shown in Fig. 2.

Figure 2: Quentin Delamarre (INRIA).

The approach proposed here builds on these earlier ones. We use a multi-
camera approach to remove the ambiguities inherent to mono-camera sys-
tems due to the lack of depth perception. For each frame, we obtain a
3-dimensional cloud of points from stereovision and try to fit an articulated
hand model to it. We chose the articulated model solution instead of the
database one because we wanted to be able to recognize and follow every
kind of hand position without having to learn each possible hand position.

Our goal is to track the hand by fitting a full 3-dimensional model to
incomplete and imperfect input data. The main problems we had to face
stem from the noisyness of our 3D data, occlusion and the complexity of our
articulated model with its 26 degrees of freedom. To accomplish this task
we defined a hierarchy of models that yield satisfactory tracking results by
simply minimizing in the least-squares sense the distance of our model to the
data.
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2 Data Acquisition

At the beginning of this project, we obtained our clouds of points from pre-
calibrated cameras made for stereovision: the Digiclops from the Pointgrey
company and their own API [25]. The advantage of this system is that it
directly outputs a cloud of points out of the box. It was simple and easy
but it lacked of control of adjustement and of the possibility to use our own
algorithms and filters. One of the biggest problems was that those cameras
have a fixed focus; fixed to clearly see a man several meters away but not
to clearly see a close hand. We therefore switched to our own stereovision
algorithm. We first tested it with synthetic sequences and known virtual ca-
meras calibration parameters and, then, with real cameras that we calibrated
ourselves.

Figure 3: network used to do synchronized multi-camera acquisition.

The acquisition system we use is based on several digital color cameras,
as shown in Fig. 3. They are synchronized together using an external signal
in order to grab frames at the same instant t. In order to be less limited
by computer bandwith, we chose to assign one computer to each camera, to
store frames in the memory of the computer during the acquisition and to
save all the pictures taken on a main computer when the sequence ends. To
remove one acquisition slowdown, we decided to grab raw data in real time
and then to process them to get the clouds of points offline.

2.1 Camera Calibration

Our data processing line contains several steps. The first one is the calibration
step. We use Intel OpenCV library [23] to detect the inner corners of a moving
grid shown in Fig. 4 in a 100 frames sequence and to calibrate the cameras
from the detected points.
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Figure 4: grid used for calibration.

For each camera, the calibration estimates those values:

• 5 parameters to build the intrinsic transformation matrix:

KK =




fc(1) alphac ∗ fc(1) cc(1) 0
0 fc(2) cc(2) 0
0 0 1 0




• 12 parameters defining the rotation and the translation matrix:

Rc =




R1 R2 R3 0
R4 R5 R6 0
R7 R8 R9 0
0 0 0 1




Tc =




1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1




Using those matrix, the projection of a 3D point X3D =




x3D

y3D

z3D

1




to a 2D point of the screen X2D =




x2D

y2D

k2D


 can be done using

X2D = KK.Rc.Tc.X3D. Without distortion, 2D coordinates on screen

are
(

x2D

k2D
, y2D

k2D

)
.
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• 5 distorsion parameters kc(1...5) that are used to compute the distorted

coordinates. Let X =

(
x
y

)
be the projected coordinates and Xd =

(
xd

yd

)
the distorted coordinates, then:

Xd =
(
1 + kc(1)r2 + kc(2)r4 + kc(5)r6

)
X + dx

with
r2 = x2 + y2

dx =

[
2kc(3)xy + kc(4)(r2 + 2x2)
kc(3)(r2 + 2y2) + 2kc(4)xy

]

The transformation from 3D coordinates to 2D coordinates is used by the
algorithm that creates the cloud of 3D points from a pair of 2D calibrated
images.

We use a correlation-based algorithm to compute disparity maps for
image-pairs [5, 11] and, when more than two cameras are used, we merge
the corresponding point clouds to create a denser result [11].

2.2 Color Reconstruction From Bayer Image

To keep most information from the cameras and to have the highest frame-
rate, we directly acquire raw images and rectify them later to color and
greyscale images. The problem was that in our raw images the color is coded
using a Bayer pattern, which means a 66% loss of information if compared
to an image where the red, green and blue components are known for each
pixel. We chose not to use neither hardware Bayer reconstruction filter nor
simple formulae to compute the color of each pixel. The reasons are that the
hardware filter is slow and prevent realtime data acquisition and that the
software filters either draw some regular saw patterns that may be stronger
than the texture along horizontal or vertical lines or output some blurred
or color distorted images. We prefered to create our own anisothropic color
reconstruction filter which produces sharp images with less visible Bayer
pattern.

The Bayer pattern is a technique used to have color pictures from grey-
scale sensors. It consists in putting a red, green or blue transparent filter
in front of each pixel of the greyscale sensors (this is done by the camera
manufacturer, not by the user). The advantage of this technique is that a
color camera cost roughtly the same price as a greyscale camera. But the
drawback are the missing color pixels that needs to be reconstructed. Since
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our eyes are more sensitives to the green componant, the Bayer pattern used
twice more green pixels than red or blue one. A typical Bayer mosaic looks
like this :




R G R G R G
G B G B G B
R G R G R G
G B G B G B
R G R G R G
G B G B G B




Figure 5: Typical Bayer mosaic.

which can be seen as:



R . R . R .
. . . . . .
R . R . R .
. . . . . .
R . R . R .
. . . . . .




+




. . . . . .

. B . B . B

. . . . . .

. B . B . B

. . . . . .

. B . B . B




+




. G . G . G
G . G . G .
. G . G . G
G . G . G .
. G . G . G
G . G . G .




Two third of the values are missing. The easy way to compute the color of
a pixel is to compute for missing component a linear interpolation of all the
known values in a 8-neighborhood. It is simple but creates some artefact in
the green channel in case of strong horizontal or vertical gradient (because of
the diagonal alignment of green sensors) as seen in Fig. 6. And this appears
strongly in the final image because the green channel has the heighest weight
when converting a color image to a greyscale one using:

Grey = 0.299×Red + 0.587×Green + 0.114×Blue

This artefact can be bigger than the texture and can create correlation errors
since the matching algorithm may prefer to align two artefacts instead of two
real textures. To remove it while keeping sharp images we replace the linear
interpolation of the green component by a more complex interpolation.

To compute intensity at point P we first estimate the direction of the
isolevel line from the computing of finite differentiate of the four neighbours


P1 P2

P
P3 P4


:

∆x =
(P2 − P1) + (P4 − P3)

2
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Raw Bayer data Simple interpolation Our interpolation method

Figure 6: Reconstructing of a color image from Bayer mosaic using different
interpolation algorithms

∆y =
(P3 − P1) + (P4 − P2)

2

The orientation of the isometric line is (−∆y, ∆x). This line cuts the square
made of the four pixels in two points (P ′ and P ′′). The intensity value of
those points is estimated as a barycentric mean of the value of each extremity
of the segment. The intensity value of point P is a barycentric mean of the
two intersections points. In Fig. 7, P ′ is a mean between P1 and P2, P ′′ is a
mean between P2 and P4 and the value of P is a mean between P ′ and P ′′;
in this example the value of P should be close to P2.

Figure 7: Interpolation of intensity value.

Two examples with drawing of the estimation of the isometric line are
shown in Fig. 8.

Using this technique gives better results than a simpler of Fig. 6 and since
it can give intensity value for pixels located on non discrete coordinates, we
use it. This is usefull since the rectification algorithm and the distortion
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example 1 example 2

Figure 8: Interpolation of central value using local gradient

formulae needs pixel color at real coordinates.
Then we compute disparity on greyscale rectified images and filter them

[12, 5]. We keep a trace of the color of each pixel for filtering purpose.
Using this method, we obtain good quality clouds, due to both the good
resolution of the input pictures, at least 700 × 500, and the quality of the
Bayer reconstruction.

2.3 Filtering the Points Composing the Cloud

Then to clean the cloud of points, we used several filters.
The use of the position of the hand on the previous frame allows a first

filtering of the cloud by removing every point that is too far from a probable
current position. In practice, points that are more far than a distance dmax

from the hand position at the previous frame are removed. dmax is set by the
user and even with a big value (around ten centimeters), it works and removes
a lot of points from the background. Most of remaining points belong to the
hand.

Another filtering technique [10] is used to remove the last useless points:
a color filter. The (R, G,B) color is projected to a two dimensional space
(r, g) using: {

r = R
R+G+B

g = G
R+G+B

The zone corresponding to the color of the skin is the inner of an ellipse, as
shown in Fig. 9. The parameters of this ellipse (global size, ratio between
axis and general orientation) are computed from color histograms get from
manually segmented images taken under similar lighting condition (two ima-
ges are enough). The threshold of the filter can be set by changing the global
size of the ellipse.

Those two filters let us remove most of the points that does not correspond
to the hand. They are not able to correct the error in depth that we had
mostly using the Digiclops cameras. The depth error was solved using better
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Figure 9: zone corresponding to skin color in (r, g) space and application of
this filter on an image.

cameras.

camera 1 camera 2 cloud of points

Figure 10: filtered cloud obtained from two calibrated pictures.

3 Complete Hand Model

3.1 Articulated Skeleton

We based the creation of our articulated hand model on the work of Q. De-
lamarre et O. Faugeras[2] and J. Rehg et T. Kanade[3]. When no constraint
is applied this model has 26 degrees of freedom. The validation of the model
has been done using the creation of an application that shows the hand model
displaying each 26 lettres of the French Sign Langage, as shown in Fig. 11.

3.2 Ellipsoids and Metaballs

The volume of the hand is given by metaballs: they are fixed to the bones of
the skeleton and merge together to form the fingers and the palm. A total
of 16 ellipsoids are used: one for the palm and three for each finger. It is
possible to attach more ellipsoids to the skeleton in order to have a better
model.
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”C” ”E” ”R” ”T” ”I” ”S”

Figure 11: examples of positions taken by our model

The surface of the hand is seen as an isosurface of the sum of potential
functions [7]. We chose the distance to the ellipsoid as the potential function
and the isosurface where the value of the function is 1. The global potential
function can be written as

d (X, α) = − log

(
nbEllipsoids∑

e=1

exp−diste(X,α)

)

where d(X,α) is the signed distance between the point X and the surface of
the hand whose position parameters are defined by the vector α. diste(X,α)
is the signed distance between the point X and the surface of the ellipse e
from the hand model.

Using metaballs, and by this way estimating the distance to the model by
a non trivial function, creates a model which has a smoother, more realistic
and more organical aspect than if we decided to estimate the distance to the
model by the distance to the closest ellipsoid, as shown in Fig. 12.

To prevent fingers to fusion, which is a classic artefact when merging
metaballs, the distance fonction d is actually computed as the sum of the
distance to some selected ellipsoids[1]. The selection of the ellipsoids used
depends on the position of the point X: this is the closest ellipsoid and every
ellipsoid that is directly linked to this one by a bone of the skeleton.

metaballs ellipsoids

Figure 12: surface of the model depending of chosen distance estimation
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3.3 Distance to an Ellipsoid

Computing the distance between a point and the surface of an ellipsoid is not
simple. This value has to be estimated. The main difficulty is that although
the intersection between the segment linking the point P and the center of
the ellipsoid is easily computable (I on the scheme 13), this is not the point
on the surface that is the closest to the point P . The point on the surface that
minimizes this distance is the point named D on the scheme. The coordinates
of this point are not computable using simple usual functions.

Figure 13: distance PD approximated by distance PI.

A first simplification consists in a deformation of the object
{pointP, ellipsoid} to transform the ellipsoid into a sphere and the point P
into a point P ′. Then the distance between the point P ′ and the sphere is
easily computable and can be used as a first approximation of the distance
between the point P and the surface of the ellipsoid. This distance is named
d1(x, y) on Fig. 14.

This estimation of the distance decreases faster in the direction of the
smallest axe of the ellipsoid than in the direction of the biggest. In order
to have a constant decrease of the estimation of distance at least along the
three axis, we use another distance estimation of PI, as suggested in [1].
To simplifiate the formulae, here is the case of a two-dimensional ellipse,
centered on O and whose axis are aligned along Ox and Oy.

Let M =

[
1
W

0
0 1

H

]
the matrix that transforms the ellipse (W,H) into

a circle of radius 1. The point I is the intersection of (OP ) and the ellipse.
Let I ′ and P ′ the images of I and P after applying this transformation. The
image of O is still O. We obtain that I ′ is the intersection between the line
(OP ′) and the unitarian circle.

I ′ =
1

|P ′|
(

x
W
y
H

)

Coordinates of I can then be computed.

I = M−1.I ′ =
1

|P ′|
(

x
y

)
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The signed distance IP can be obtained easily and the final result is:

d2(x, y) =
√

x2 + y2.


1− 1√(

x
W

)2
+

(
y
H

)2




Even if this distance is still an approximation, it is a good compromise bet-
ween a near perfect estimation of the distance to an ellipsoid and an easy
but totally incorrect estimation. This function is differentiable and we use
those differentiates in the minimization algorithm.

The good compromise of the distance is especially true outside the ellip-
soid. In the inner region, d2 has some isometric lines quite different from
those of the real distance (the real distance has lines in forme of ’0’, d2 has
lines in form of ’8’). We decided to approximate the ellipsoid by a sphere
when computing the inner distance, without applying the correction we used
outside to have better values along the axis. We just use a simple affine trans-
formation in order that the approximation of the signed distance is 0 near
the surface and −r at the center (with r = the half-length of the smallest of
the three axis).

Finally we use:

d3(x, y) =





(√(
x
W

)2
+

(
y
H

)2 − 1

)
.r inside

d2(x, y) outside

real distance. d1(x, y)

d2(x, y) d3(x, y)

Figure 14: approximated distances.

Even if we use an approximation of the distance to the surface of the
ellipsoid, the final result is satisfying as shown in Fig. 14. Morover, the fact
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of using a function differentiable on most points of the space to approximate
this distance allow us to obtain analytically for each point of the space its
distance to the surface of the hand and the differentiates of this distance with
respect to each parameter of the model. As in [4], this result allows us to use
the Levenberg-Marquardt [22] minimization algorithm in order to find the
best parameters that minimize the distance between the cloud of points and
our hand model.

3.4 Constraints

In order to force our algorithm to search solutions in a space of realistic
positions of the hand, we add some constraints to the articulations of the
model.

The first kind of constraints is of type min/max and set limits to each
parameter independently of each other. A each step of the Levenberg-
Marquardt algorithm, the values of each parameter is tested and if it is
out its restricted interval, it is reprojected to the closest valid value. Those
constraints are simple to define and to test and allow a great increase of the
goodess of the output of the algorithm.

The second kind of contraints are here to set the value of one parameter
from the value of another parameter. They are essentially used for the last
articulation of each finger where the value of bending is set as two third of the
value of the articulation just above, as shown in Fig. 15. This constraint that
can be found in [2] is commonly used in the world of hand tracking methods
using articulated model. This allows to reduce the number of degrees of
freedom from 26 to 21.

θf1 = 2
3
.θf2

Figure 15: constraint on the last articulation.

We tried to add the same kind of constraint on the abduction 3 values of
the four fingers. The abduction values are linked together using this equation:

[
c0 c1 c2 c3

]t
.α =

[
A0 A1 A2 A3

]

where A0, A1, A2, A3 are the abduction values of the index finger, the middle
finger, the ring finger and the little finger and c0, c1, c2 and c3 are constants

3the abduction is the ability the spread the fingers.
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that are peculiar for each person and needs to be mesured before the tra-
cking. This constraint allows to replace four abduction values by an unique
parameter α. This doesn’t seem to be used yet by any other research team.
The first tests we did don’t show clearly if this constraint is valid or not.
Sometimes it is, sometimes it isn’t. It seems that it works only when the
dimensions and lengths of the model exactly correspond to the acquired hand.
This is not always the case until we work on a good system of automatic
model calibration.

When used, this constraint reduces the number of parameters of the model
by 3 and sets its final number to 18 (6 degrees for the global position in space
and 3 parameters for the thumb and 9 parameters for the four other fingers).

A third kind of constraint would be some min/max one whose boundaries
min and max are not fixed but depends on the value of other parameters.
It could be used to model the fact that the abduction interval depends on
the bending of the finger (there is not abduction possible when the finger is
bended with a value higher than 90 degrees)

3.5 Simplified Hand Models

When there is not enough data to fit the whole model of the hand because
of noise, illumination problem or a big occlusion, we can use the simplified
models of Fig. 16:

1. The simplest is made of one single ellipsoid. It has six degrees of free-
dom, 3 translation and 3 rotation, and those six parameters can be
estimated even when the cloud of points is not precise enough for a 26
degrees of freedom model. In use, it appears that the three parameters
corresponding to the center of the ellipsoid are found but not always
the three one corresponding to the orientation of the hand. This liberty
of orientation taken by the model is due to the poor similarity between
this model and a real hand.

2. We solve this problem by using a slightly more complex model of the
hand depicted by Fig. 16. Composed of three ellipsoids and looking
like a glove, this model is simple enough to have a reduced number of
degrees of freedom (9 degrees) and to have big enough ellipsoids in order
not to be influenced by zone of lack of data in the cloud of points, which
usually correspond to some fingers that the reconstruction algorithm is
not able to reconstruct. We performed some successful tests with this
model and they show that it can track the hand on sequences where
the complex model is lost by the poor quality of the clouds of points.
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6 degrees of freedom 9 degrees of freedom

Figure 16: the two simple models (drawn without metaballs)

The calibration of the dimensions and lengths of the model is currently
manually done. Our long term objective is to do it automatically from pic-
tures of the acquired hand.

4 Searching for the best fit

The tracking of the hand is currently done frame by frame, the initial position
used by the algorithm at frame n is the final position found at frame n− 1.
Currently the initial position of the sequence is manually set. The algorithm
used to minimize the cost function of the distance between the model and the
cloud of points is the Levenberg-Marquardt algorithm[22]. It can minimize
functions that can be written this form:

F (α) =
n∑

i=1

(
f (i, α)− yi

σi

)2

Our first idea was to set f (i, α) = d3 (Xi, α) where i travels through the
n points of the cloud, yi = 0, σi = 1 and α is the vector containing the
parameters of the model. The use of this tracking method is the result of
a collaboration between Odyssee (INRIA/ENPC/ENS) and CVlab (EPFL)
and extends the work of [9]. F (α) is seen as an energy to minimize.

E1 (α) =
n∑

i=1

(
d3 (Xi, α)

1

)2

F1 (α) = E1 (α)

We decided to modify this energy to prevent some parts of the model
to stay in empty zones. We discretize the surface of the model using the
Marching Cubes algorithm [6] (it is done at the beginning of the minimiza-
tion, then each point is fixed to its closest bone), we precompute a discrete
approximation of the distance of any voxel in a zone near the hand to the
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cloud of points using the Danielsson’s algorithm[8], we add this as a second
term of the energy to minimize and finally write it this form:

E2 (α) =

n2∑
j=1

(
f2 (j, α)− yj

σj

)2

F2 (α) = KE1 (α) + (1−K)E2 (α)

Where n2 is the number of points of the discretized model, yj = 0, σj = 1,
f2(j, α) is an estimation of the distance between the point j of the model
and the closest point of the cloud and K is a value set by the user to balance
both energy. As shown in Fig. 17, E1 and E2 are both needed to do a good
fitting. If only one of those energy is used, it may happen cases where energy
is low but fitting is incorrect as seen in Fig. 17.

Position of model→
↓ cloud of points

E1: LOW

E2: LOW

E1: LOW
(but wrong fitting!)

E2: HIGH

E1: HIGH

E2: LOW
(but wrong fitting!)

E1: LOW

E2: LOW

Figure 17: E1 and E2 corresponding to particular configurations of hand and
cloud.

Sometimes the algorithm doesn’t find the right solution. One of the reason
why the algorithm does not give the expected result is that it sticked in a
local minimum. A situation of local minimum that we face frequently is when
one finger of the model is fitted with a different finger in the cloud of point.
A solution to go out of this minimum is to relaunch a serie of minimization
from two new positions obtained from the current solution. Fig. 18 shows
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one with all fingers shifted in one direction, one with all fingers shifted in the
other direction.

Figure 18: local minima.

This method prove to give good results but can unintentionally push the
tracking towards a bad position if the cloud of point is not good enough. In
practice this solve more problems than it gives errors.

5 Experimental Results

5.1 Display of the results

To display the surface of our model defined as an implicit distance function,
we use the Marching Cubes algorithm [6]. We discretize the space around the
hand into a regular grid then we compute the value of the implicit distance
function at each node of the grid and finally we use the Marching Cubes
algorithm to compute the surface and display it using a simple OpenGL[24]
based viewer

The main drawback of this method is the computing time of distance
function at each node of the grid. It cannot be used in a software that needs
to display the model in real time.

A faster solution consists in drawing directly the ellipsoids used by the
metaballs. The result is less nice, smooth and realistic but is enough to show
the position of the hand. This fast method is used when manually setting
the initial parameters of the hand for first frame and when displaying the
tracking animation in real time.

The display based on the Marching Cubes algorithm is used to visualize
the result of the tracking with precision. What is shown is exactly what the
minimization algorithm sees.

5.2 Tests on Sequences

Our algorithm was tested on three kinds of sequences.
The first one, depicted by Fig. 19, are real sequences taken by the Digi-

clops at a 320 × 240 resolution that are not so good because the Digiclops
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image camera 1. image camera 2.

Figure 19: images extracted from the Digiclops.

seems to have been used in less than ideal conditions. The tracking of the
hand using the full articulated model is a failure. The main cause is the
cloud of points that is far to represent the reality (some zone of the hand
doesn’t have any 3D points and some points have a depth that is more than
several centimeters wrong). The tracking of the movement with a simplified
hand model which has 9 degrees of freedom and four fingers gathered in one
ellipsoid, as shown in Fig. 16 gives better results.

image camera 1. image camera 2.

Figure 20: images extracted from the synthesis sequence.

The other kind of sequence is a synthetic sequence whose resolution is
768 × 576, such as the one of Fig. 20. It was generated by the software
Poser [26] and represents an articulated moving hand viewed from two close
points of view (this sequence was given by the MOVI group from Inria Greno-
ble [1]). To obtain the clouds of points, we applied the same stereovision
algorithm on this sequence than the one we are using on real sequences. The
advantage of this sequence is to have no background, no blur, no noise nor
distortion and a perfect calibration of the cameras. It allows us to test our
algorithm on perfect data. As shown in Fig. 23, the tracking using the fully
articulated model works quite good as long as there is no big occlusion.

The third one is the real sequence of Fig. 21, whose resolution is 780 ×
582 with a good framerate of around 30 frames per second. Despite partial
occlusions during the sequence, the tracking of Fig. 22 is correct. It is not
as perfect as the synthetic sequence because of not 100% perfect calibration
of the cameras and because of little noise on pictures but the result is more
than satisfying. We can conclude that our method works on bad quality data
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image camera 1. image camera 2.

Figure 21: images extracted from the real sequence.

with a simplified model and on good quality data with the complex model.

The computing time used by the algorithm for a full model and dense
clouds of points (a mean of 10.000 points) and around 100 Levenberg-Mar-
quardt iterations per frame is 10s per image on an Intel processor 2.4GHz.
This is not a very long time and it could be reduced by using less points (at
least 50%) and less iterations (around 20 instead of 100).

We began to work on the number of points. The choice of which points
to keep is yet arbitrary and we think of keeping a fixed number of points per
voxel in order to have a more uniform repartition of the points. Reducing
the difficulty of the problem will give an higher framerate but it does not
seems to be able to be realtime in a close future. Expected performance are
around half a second per frame.

6 Conclusion

We present in this report an hand tracking method based on an articulated
model and 3-dimensional clouds of points computed from several cameras. In
order to simplify this problem we filter the clouds of points (with colors and
distance to the camera and to previous position of the hand) and constraint
the model parameters (minimal and maximal value, linear dependency bet-
ween several parameters). The improvement of the quality of the result
thanks to the add of constraints is clearly visible. And the use of a good
approximation of the distance instead of the simple one we used in the past
gives noticable better results.

However, the results are not perfect, particularly when the cloud of points
is not dense enough in the region of fingers. To improve results we consider
several possibilities.

First, the search for a certain continuity from a frame to the next one (by
filtering or smoothing) would prevent any jump during not so good tracked
frame. It should allow a better estimation of the position of part of the hand
when they are partially occulted. We are conscient that the drawback of such
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a method is that it can be lost in case of rough inversion of direction of one
finger during its occultation.

We are thinking to include the forearm in the model and in the tracking
procedure in order to fix the wrist position and to prevent some sliding and
some rotation of the model.

We could add some articular constraints in our model of the hand.
And finally we could use more the informations contained in the 2D ima-

ges from the cameras. Currently they are only used to build the clouds
of points and to filter the points using their skin color. It could be done
by adding in the minimization algorithm the information on the distance
between the contours of the model and the contours on the image as we did
in [9].

The problem of the initial position is still open. We consider to ask the
user to have a fixed position at the beginning of the sequence. We suggest
an easy position such as an open hand, palm toward the camera.
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Zhengyou Zhang, Pascal Fua, Eric Théron, Laurent Moll, Berry Gérard,
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input image cloud of points tracked model
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Figure 22: Tracking on a sequence with a fully articulated hand model (frame
t = 0, 9, 18, 27, 36, 45, 54, 63, 72 and 81).
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input image tracked model
and cloud of points

Figure 23: Tracking on a sequence with a fully articulated hand model (frame
t = 0, 20, 40, 60 and 80). On the left, input images, on the right, the cloud
of point is red, the articulated model is grey.
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