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Abstract

Motion analysis in computer vision is a well studied problem with numerous ap-
plications. In particular, the tasks of optical flow estimation and tracking are of
increasing interest. In this paper, we propose a level set approach to address both
aspects of motion analysis. Our approach relies on the propagation of smooth in-
terfaces to perform tracking while using an incremental estimation of the motion
models. Implicit representations are used to represent moving objects, and capture
their motion parameters. Information from different sources like a boundary attrac-
tion term, a background subtraction component and a visual consistency constraint
are considered. The Euler-Lagrange equations within a gradient descent method
lead to a flow that deforms a set of initial curve towards the object boundaries as
well an incremental robust estimator of their apparent motion. Partial extension of
the proposed framework to address desne motion estimation and the case of moving
observer is also presented. Promising results demonstrate the performance of the
method.

Key words:
Tracking, Optical Flow, Level Set Method, Implicit Representations, Background
Subtraction, Constant Brightness Constraint, Robust Estimators, Affine Motion.

1 Introduction

Recent advances on the sensors side have made the use of computer vision tech-
niques quite attractive to a number of domains. Image and film restoration,

Preprint submitted to Elsevier Science 6 August 2004



video-based surveillance, medical imaging, post-production & cinematography,
visual inspection, etc. are application domains where tracking is of significant
interest. The task of tracking consists of recovering the position and the de-
formations of an object of interest in an image sequence. Object boundaries
are a suitable feature space for tracking.

Boundary-driven methods rely on the generation of a strength image that is
often equivalent with the extraction of prominent edges and their consistent
detection in time. Objects of interest are represented with parametric struc-
tures (curves) and tracking is performed by seeking the lowest potential of
a cost function that exploits image characteristics along the parametric rep-
resentation of the object [27,29,33]. Snakes [25], deformable templates [28]
and active shape/appearance models [14] are parametric techniques that were
successfully used to address tracking. Their main strength is robustness since
tracking within such an approach is equivalent with the recovery of (a small
number) the model parameters. On the other hand dealing with non-rigid ob-
jects, local deformations and changes of topology are issues that cannot be
addressed in an efficient manner from such methods.

Geometric flows - an alternative to the snake-driven models - have the ad-
vantage of being model-free methods and therefore can deal (to some extend)
with such limitations [6]. The constant brightness assumption [20,30] is also
a constraint heavily considered for tracking. Objects are represented using a
certain visual representation that is assumed to be constant in the temporal
domain [13]. Tracking is performed through a matching process according to a
similarity metric [4] on the visual representation space. To this end, given an
initial region of interest (moving object), one can seek for a region across time
with similar characteristics. Correlation is the simplest technique to tackle
such an objective while one can find in the literature more advanced math-
ematical formulations that aim to recover dense motion flow [34] using more
ellaborated matching criteria.

The use of parametric mechanisms like the Kalman filter [52] to describe object
trajectories is a more elaborated technique that integrates prediction capabil-
ities in the tracking process. Constraints imposed by the linearity of such a
method were addressed through the consideration of more advanced predic-
tion models like particle filters [22,53]. The prediction mechanism consists of
recovering a model that could eventually describe the object displacement over
time according to prior observations. Such a mechanism is used to provide an
initial guess on the position of the object at the next frame, which is then
optimally determined using to the characteristics of the observed image (new
observations). Upon convergence of the process, the tracking result is used to
improve the performance of the prediction model.

Optical flow estimation is a vital component of motion analysis. It consists
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of recovering the displacement of the object at the image plane from one
image to the next. Tracking algorithms that are based on the assumption
of global correspondence between the target features in the temporal domain
implicitly address motion estimation. The use of parametric models to describe
the motion of the object is the most frequent approach to implement such
a condition [36]. Such a consideration refers to a fair compromise between
low complexity and reasonable solution to the correspondence problem. Prior
art in the domain consists of motion models of increasing complexity; rigid,
similarity, affine, projective as well as quadratic models were considered in
the motion estimation process. While such a method fails to account for non-
planar objects, one can claim that approximate tracking could be an efficient
solution in various application domains (video-based surveillance).

Medical image analysis is an example where accurate tracking is a strict re-
quirement. Therefore the use of global parametric motion models is not a
plausible solution. Anatomical structures exhibit an important degree of lo-
cal deformations. Techniques focussing on the recovery of the dense motion
field are suitable to cope with objects undergoing notable local deformations.
Local motion estimates are equivalent with seeking for a smooth motion field
that provides pixel-wise intensity correspondences for the object region. The
constant brightness assumption [20,30] that valid for lambertian and non-
specular surfaces is a well explored constraint to perform such an estimation.
Such an approach has two important limitations; (i) the number of available
constraints is lesser compared to the number of variables to be recovered, (ii)
these techniques are computational expensive.

To conclude, model-based tracking techniques can be very efficient when deal-
ing with a small degree of deformations [24] while complexity becomes an issue
when objects undergo significant structural changes. The case of non-rigid ob-
jects and even further the ones that involve changes of topology are examples
where the use of non-parametric (model-free) methods could be beneficial.
Similar scepticism arises when considering the use of optical flow. Paramet-
ric models can cope in an efficient and robust manner with certain objects.
On the other hand the complete recovery of a dense displacement field is
problematic even if beneficial for the cases of non-rigid or heavily deformed
objects. It is a natural conclusion that upon ideal conditions non-parametric
object representations are to be combined with dense motion estimation. Such
an approach though could suffer from stability due to the ill-poseness of the
motion estimation problem.

In this paper, we propose the use of a model-free approach for tracking that
recovers motion through parametric models. Such a framework could cope with
important local deformations while being robust to the presence of noise and
preserving the constant brightness assumption in a global manner. Our method
represents objects using implicit representations [38]. The level set method
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[38] is a well-known technique for tracking moving interfaces, a problem that
arises in numerous concepts of computer vision [37]. Our approach is based
on the geodesic active region model [40] a variational framework to cope with
frame partition problems in computer vision. Such a concept is based on the
propagation of regular curves to perform image partition under the influence of
boundary-based and region-driven terms. The use of implicit representations
within such a framework leads to an intrinsic, implicit and parameter free
approach that can cope with topological changes.

Towards introducing a new concept while taking advantage of prior art in
tracking, the proposed method consists of a boundary detection, a grouping
criterion, a background subtraction and a visual consistency module. Edge-
driven object detection is a standard technique to image segmentation, object
extraction and tracking. Region-based object extraction aims at separating
the intensity properties of the object from a static background. To this end,
continuous density functions are used to describe the global appearance char-
acteristics of the moving targets and discriminate them from the static part
of scene. Background subtraction is an efficient module to change detection.
In the case of static camera - an assumption initially considered in this pa-
per - the essence of these methods is to build a model that can account for
the static properties of the scene. Such a concept can be used in the form of
a region-component to detect and track object boundaries from either sides
[45]. The use of the constant brightness assumption for moving objects couples
tracking with the motion estimation problem. To this end, we propose a vi-
sual consistency term that represents motion displacement with linear models
(affine). The estimation of such models depends on the position of the object
(tracking), while better estimation of the optical flow improves the position of
the object to be tracked. These components are integrated within a variational
level-set framework.

Prior art in the domain consists of the use of the level set method for seg-
mentation of temporal sequences, and the estimation of the motion field
[6,10,23,32,39,47,57]. In [10] dense optical flow was determined only at the
object boundaries and used to perform tracking from one image to the next.
Such an approach suffers from robustness since object boundaries often re-
fer to depth discontinuities where motion estimation is most challenging. In
[42,47] an approach that integrates background subtraction within edge-driven
tracking is proposed. While promising results are reported, the method does
not address estimation of the displacement field. In [6] a geometric flow is
introduced that aims at deforming the appearance of an image region towards
its corresponding in the next image. The speed of this flow is then projected
to the contour space to perform tracking. Similar to [42,47] such a method
does not address motion estimation. Last, but not least in [57] tracking is con-
sidered within segmentation of consecutive frames where the propagation of
an implicit surface in several time instances according to some motion models
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is used to revocer the object projections over time.

Opposite to that, recent techniques [23,32,39] address to some extent motion
estimation. In [23] global displacement is recovered through the calculation
of the object’s centroid, while local motion is then determined through the
constant brightness assumption of the object iso-photes. In [39] motion esti-
mation and tracking are addressed in two separate steps. Motion estimates
are used within a prediction mechanism within a region-driven tracker. Last,
but not least in [32] explicit motion estimation is replaced with a local search
step for the best visual correspondences. The result of such step reflects the
speed of the flow that performs tracking within a level set formulation. One
can also refer to more recent approaches like [15,19,58].

The reminder of this paper is organized as follows; in section 2 introduce
the geodesic active region model, the corresponding level set variant and some
notation. Motion estimation and tracking are addressed in section 3 while some
preliminary ideas for the case of moving observer are presented in section 4.
Discussion is part of section 5.

2 Implicit Representations

Evolving interfaces (curves) according to some flow is a popular technique
[25] to address object extraction. The flow that governs the propagation is
either recovered through the minimization of an objective function [48], or
defined according to the application context (geometric flows [9,31]). Snake-
based segmentation approaches often refer to the propagation of curves from
an initial position towards the desired image characteristics. Such flows consist
of internal and external terms.

Level Set Methods

In order to introduce the level set representations, one can consider a para-
metric curve

∂R(c) : [0, 1] → R×R
that evolves according to a given motion equation in the normal direction N 1 :

d

dτ
∂R(c) = F(∂R(c)) N

where F is a scalar function on the local properties of the curve (e.g. curva-
ture).

1 The tangential component of the flow does affect only the internal parameteriza-
tion of the curve.
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One can implement this flow using a Lagrangian approach. The contour is
represented in discrete form using a selection of control points and the curve
position is updated by solving the above equations for each control point. Such
technique -in the most general case - cannot change the topology of the evolv-
ing curve. The estimation of the local geometric characteristics of the curve
within such framework is quite challenging. Consequently re-parameterization
of the evolving curve is often required.

The level set method [38] - initially introduced in the area of fluid dynamics
[17,18] - is an emerging technique to cope with various applications in imaging,
vision and graphics [37]. Such methods rely on representing the evolving curve
with the zero-level of an surface φ : [x, y, φ(x, y)]:

φ(∂R(c)) = 0

Such representation is implicit, intrinsic and parameter free. Driven from the
above condition, we can evolve the surface in such a way that the zero-level
yields always to the deforming curve. Taking the derivatives of φ with respect
to time, one can obtain the flow guiding the propagation of φ:

d

dτ
φ+ F |∇φ| = 0

Thus, we have established a connection between the family of evolving curves
∂R and the family of evolving surfaces φ. Such propagation schema can ac-
count for topological changes and provides natural support on the estimation
of the local geometric properties of the curve. Techniques related with the in-
troduction of the level set method in imaging and vision were initially reported
in [9,31] and then spread across various applications [37]. Such tool was con-
sidered as an efficient numerical approximation technique to implement curve
propagation according to various flows.

Geodesic Active Region

The Geodesic Active Region [48] refers to a variational framework able to
deal with frame partition problems in imaging and vision. It was initially
introduced in [44] for supervised texture segmentation, exploited in [43] to
motion estimation and tracking and extended in [46] to deal with the task of
un-supervised image segmentation. In order to facilitate the introduction of
the model, the bi-modal case will be considered. To this end, the following
definitions/assumptions regarding a priori knowledge required to introduce
such model are considered;

• Let I be the input image composed of two classes (hA, hB),
• Let P(R) = {RA,RB = Ω − RA} be a partition of the image domain Ω

into two non-overlapping regions,
• Let ∂R be the boundaries of this partition.
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• Let us assume prior knowledge on the partition position, namely the den-
sity function pC that measures the likelihood of a given pixel being at the
boundaries,

• Let us assume prior knowledge on the expected region properties of hA, hB

namely the densities pr(), pB() that correspond to the conditional likelihood
of a given intensity coming from the (hA, hB) hypotheses.

Recovering the optimal partition is equivalent with accurately extracting the
boundaries between RA and RB. This can be done using the geodesic active
contour model [11,26], thus minimizing

E(∂R) =
∫ 1

0
g

⎛
⎜⎝ pC(I(∂R(c)))︸ ︷︷ ︸

boundary probability

⎞
⎟⎠

︸ ︷︷ ︸
boundary attraction

∣∣∣∂Ṙ(c)
∣∣∣︸ ︷︷ ︸

regularity

dc

where ∂R is a parameterization of the partition boundaries in a planar form
and g is a positive, monotonicaly decreasing function with minimal values at
the image locations with the desired features (high gradient).

The visual properties of the hA, hB hypotheses are additional cues to perform
segmentation. To this end, one would like to recover a consistent frame par-
tition between the observed data, the associated hypotheses and their expected
properties. One can consider the posterior probability as criterion to derive
such partition; Let [pS(P(R)|I)] be the posterior partition density function
with respect to P(R) given the input image I. This density function can be
written according to the Bayes rules as follows:

pS(P(R)|I) =
p(I|P(R))

p(I)
p(P(R))

where

• p(I|P(R)) is the posterior segmentation probability for the image I, given
the partition P(R),

• p(P(R)) is the probability of the partition P(R) among the space of all
possible partitions of the image domain,

• and p(I) is the probability of having as input the image I among the space
of all possible images.

If we assume that all the partitions are equally probable
[
p(P(R)) = 1

Z

]
(Z

is the number of possible partitions), then one can ignore the constant terms
p(I), p(P(R)) and we can rewrite the density function as:

pS(P(R)|I) = p(I|{RA,RB})

7



Besides, one can further consider no correlation between the region labeling
where the region probabilities depend on the observation set within the region.
Such assumption can further simplify the form of the posterior probability;

pS(P(R)|I) = p([I|RA] ∩ [I|RB]) = p(I|RA) p(I|RB)

where p(I|RA) is the a posterior probability for the region RA given the corre-
sponding image intensities (resp. p(I|RB)). Last, but not least, independence
on the pixel level can be considered to replace the region posterior with joint
probability among the region pixels:

p(I|RX) =
∏

s∈RX

pX(I(s))

where X ∈ {A,B}. Such assumptions can lead to the following conditional
(I) posterior partition probability for P(R);

pS(P(R)|I) =
∏

s∈RA

pA(I(s))
∏

s∈RB

pB(I(s)).

Optimal grouping is equivalent with recovering the partition tha corresponds
to the highest posterior. The optimization of the posterior probability is equiv-
alent to the minimization of the corresponding [-log()] function;

E(∂P(R)) = −
∫ ∫

RA

log

⎡
⎢⎣pA(I(x, y))︸ ︷︷ ︸

hA probability

⎤
⎥⎦ dxdy

︸ ︷︷ ︸
RA fitting measurement

−
∫ ∫

RB

log

⎡
⎢⎣pB(I(x, y))︸ ︷︷ ︸

hB probability

⎤
⎥⎦ dxdy

︸ ︷︷ ︸
RB fitting measurement

Such component is defined using the partition determined by the curve and
aims at maximizing the posterior segmentation probability given the input
image. It aims at separating the image regions according to their intensity
properties.

The Geodesic Active Region framework consists of integrating these two dif-
ferent frame partition modules;

E(∂P(R)) =(1 − α)
∫ 1

0
g (pC(I(∂R(c)) |∂Ṙ(c)|dc︸ ︷︷ ︸

boundary term

− ∑
X∈{A,B}

α
∫ ∫

RX

log [pX(I(x, y))] dxdy

︸ ︷︷ ︸
region term

where α is a positive constant that balances the contributions of the two terms
[0 ≤ α ≤ 1].
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The use of the level set function [60] as a direct optimization space for grouping
was a step further towards the establishment of these techniques in imaging
and vision. To this end, one can consider the distance transform D(s, ∂R) as
embedding function for ∂R:

φ(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D(s, ∂R) , s ∈ R
0 , s ∈ ∂R

−D(s, ∂R) , s ∈ Ω −R

and the Dirac and Heaviside distributions:

δα(φ) =

⎧⎪⎨
⎪⎩

0 , |φ| > α

1
2α

(
1 + cos

(
πφ
α

))
, |φ| < α

Hα(φ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 , φ > α

0 , φ < −α
1
2

(
1 + φ

α
+ 1

π
sin

(
πφ
α

))
, |φ| < α

and use them to introduce an image partition objective function [51,55].

The geodesic active contour [12,26] can now be defined in such a framework
as

Egeodesic(φ) =
∫ ∫

Ω
δα(φ)b(; )|∇φ| dΩ

where the arbitrary metric function b : R+ → [0, 1] is given by b(; ) =
g (pC(I(∂R(c)))).

The use of regional/global information modules [48] aim at separating the
object from the background and can lead to adaptive balloon forces. Such
criterion can be easily derived from the Heaviside distribution;

Eregional(φ) =
∫ ∫

Ω
Hα(φ)rO(; ) dΩ︸ ︷︷ ︸

class A

+
∫ ∫

Ω
(1 −Hα(φ))rB(; ) dΩ︸ ︷︷ ︸

class B

according to the global descriptors rO : R+ → [0, 1], rB : R+ → [0, 1] where
according to the Geodesic Active Region model rA(; ) = −log [pA(I(x, y))]
and rB(; ) = −log [pB(I(x, y))].

3 Optical Flow Estimation & Tracking

Tracking can be viewed in a simplistic form as object detection in static images.
Therefore - without loss of generality - frameworks that perform grouping

9



can be considered to tackle this application. Implicit representations offer the
ability to deform an initial curve while being able to measure certain properties
inside as well as outside the object. Therefore, their use to perform tracking as
well motion estimation where optical flow measueres are updated/determined
on the fly is quite prominent.

We consider the N-Partition case for the Geodesic Active Region model where
the position of N objects is to be recovered for a given time instant t along
with their motion models. Such models establish correspondences with their
position at time instant t−1. Therefore the following notation can be adopted:

• N moving objects are visible in a sequence of T frames [I1, ..., IT ],
• N curves represented using level set functions φi ∈[φ1, ..., φN ] are used to

track these objects,
• N×T parametric motion models describe the transformation of the objects

from one frame to the next; Ai,t is associated with object i and describes
its 2D apparent motion between frames t− 1 and t.

Boundary & Smoothness Component

Strong discontinuities between the moving objects and the static background -
often assumed to be homogeneous - is a well explored tracking assumption. To
this end, the outcome of standard edge-detection processing techniques [8,16]
was used within snake-driven methods to perform tracking;

Eboundary(φ1, ..., φN) =
N∑

i=1

∫∫
Ω
δα(φi)g(|∇I(t)|)|∇φi|dΩ

for a given frame t. One can consider replacing the attraction term with more
sophisticated terms that can better account for the object boundaries [45] and
go beyond the simplistic assumption of uniform background. Such objective
function involves N level set functions (one for each object) to perform track-
ing. The calculus of variations and a gradient descent method can be used to
obtained a minimum;

d

dτ
φi = δa(φ)div

(
g(|∇I(t)|) ∇φi

|∇φi|
)

Such a flow deforms an initial contour towards the object boundaries while
being constrained by the curvature. Such flow is single-directional and reaches
the object boundaries from one side. Optimal results are recovered when the
initial curve is either interior to the object or encloses it. One can overcome
this limitation by considering directional data terms like the ones introduced
in [49,54].

Background Subtraction tracking
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Fig. 1. Geodesic Active Tracking, Jumber Sequence using boundary attraction, back-
ground subtraction & visual grouping; results are presented in a raster scan format.

Background subtraction [35] and change detection [50] are basic components
of motion analysis for static sequences. The basic assumption behind these
modules is that a representation of the background can be recovered and
maintained. Statistical tests can be employed to separate the pixels that belong
to the moving objects from the static ones. The outcome of this process can
be used then as feature space to perform tracking [47].

Global modeling of the (inter) frame-difference is a computational efficient
method to detect moving objects [50] that does not require significant prior
history. Static versus and non-static hypothesis can be represented using two
zero-mean exponential functions. Such distributions can be derived from the
empirical distribution of the difference frame; Let B be the background refer-
ence frame, and D(t) the difference frame at moment t;

D(x, y; t) = B(x, y; t) − I(x, y; t)

One can assume that such distribution is a mixture model of two components
[50], one that corresponds to the static hypothesis pst (noise) and one that
corresponds to the mobile hypothesis pmb. Such assumption can lead to the
following continuous form for the observed distribution:

pD(d) = Pst pst(d) + Pmb pmp(d)

where Pst, Pmb are the a priori probabilities. The use of two exponential func-
tions has been efficiently considered in the past [50]. Such simplification is
valid when the static hypothesis is far more popular than the mobile one.
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Otherwise, more complicated models that can account for multiple popula-
tions within the mobile component are to be considered. Maximum Likelihood
principles can be used to recover the parameters of this mixture model. The
analysis and modeling of the difference frame provides a fast and reliable way
to perform background subtraction through the densities of the two conflict-
ing classes (pst, pmp). One can expect that the moving objects are composed of
mobile pixels. Therefore, tracking is equivalent with grouping pixels that do
not refer to the background hypothesis. Furthermore, the density of the static
hypothesis can be used to define a grouping metric for the background pixels.

Binary decisions from the background subtraction process can cause non-
reversible errors in the tracking process. Decisions taken using Bayes rule
compare the probabilities of the two conflicting hypotheses given the input
image. Cases where both hypotheses do equally well or bad can produce im-
portant errors through a binary classification module. One can overcome this
limitation by introducing a background subtraction tracking term in the form
of a continuous region-defined component [45];

Edetection(φ1, ..., φN) =

−
N∑

i=1

∫∫
Ω
Hα(φi)log(pmb(I(t))dΩ︸ ︷︷ ︸
moving objects

−
∫∫

Ω

[
N∏

i=1

(1 −Hα(φi))

]
log(pst(I(t))dΩ︸ ︷︷ ︸

static background

This terms assumes that moving objects have different visual properties com-
pared to the static background. In areas where such objects are present, the
pdf for the object (mobile) hypothesis is much stronger than the static one.
Similar interpretation is valid for the background subtraction component. One
can replace the −log with more appropriate terms that exhibit stable behav-
ior. A gradient descent method is a naturally way to recover a solution that
minimizes the previously defined objective function;

d

dτ
φi = δα(φi)log

(
pst(I(t)

pmb(I(t))

)

where we assume the absence of occlusions for the moving objects. The inter-
pretation of such flow is quite clear; the evolving curve shrinks when located
on the background and expands otherwise (inside a moving object). One can
consider this term as an adaptive balloon force. In [45], boundary and back-
ground subtraction components were combined to perform tracking [Fig. (1,2)]
with encouraging results. In the absence of background model, similar analysis
on the inter-frame difference frame can be used to separate the static from the
mobile image components.

Visual Consistency

Visual consistency through motion recovery for the moving objects in the
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Fig. 2. Geodesic Active Tracking, Oxford Sequence using boundary attraction, back-
ground subtraction & visual grouping; results are presented in a raster scan format.

temporal domain is a standard constraint to perform tracking. Most of the 2-D
motion estimation approaches are based on the measurement of the apparent
motion of the intensity patterns over time [1,3]. Such methods assume that
the image brightness along the motion trajectory is constant [20]. However,
changes on the object pose, global/local illumination conditions, etc. violate
the brightness constancy constraint, a core assumption during flow recovery.
Furthermore, the motion vectors satisfying the image brightness constraint
are not unique and external factors like surface reflections properties, sensor
noise and distortions can cause changes not related with motion.

Motion can be determined either using global motion models or by considering
correspondences pixel-wise. Global motion models assume the existence of
a valid transformation for the entire object. Opposite to that, local motion
(optical flow) is estimated independently pixel-wise. Robustness is the main
advantage of global motion components while their inability to deal with local
deformations is a strong limitation. One can claim that for a sufficiently small
field of view and planar moving objects, the image velocity field (projection
of the real 3D motion) can be approximated by a linear model A(x, y) =
(Ax(x, y), Ay(x, y)) while in the absence of motion (static background), the
brightenss remains constant in time;

{
I(x, y; t) = I(x, y; t+ 1); background

I(x, y; t) = I((x, y) + A(x, y); t+ 1); planar object

Parametric motion estimation [5,7,34,56] is a computationally efficient method
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to recover optical flow. Low complexity and robust estimates are its main
strengths. One can claim that when the assumptions imposed by the model
are satisfied by the moving object, efficient motion estimates can be recovered.
On the other hand, such approaches cannot deal with local object deformations
or objects that exhibit depth discontinuities (non-planar). One can consider
transformations that involve limited number of parameters like rigid, or more
complicated ones that can account for more complex scenes and motions. In
latest case the use of affine, homographic or quadratic models can be used to
approximate the motion of the target. We consider affine transformations [43],
a compromise between low complexity, stability and fairly good approximation
of the motion field. Such model consists of six motion parameters:

A(x, y) =

[Ax(x, y)

Ay(x, y)

]
=

[
a11 a12

a21 a22

] [
x

y

]
+

[
a13

a23

]

The most common way to derive motion estimates is the optical flow constraint
[20]. In the absence of global illumination changes, one can assume that the
observed intensities at the position (x, y) in the frame t + 1, and at (x, y) +
A(x, y) in the frame t are the same. This constraint relies on minimizing the
sum of squared differences (SSD)

E(A) =
∫∫

Ω
(I(A; t+ 1) − I(t))2dΩ

Global (affine) motion models introduce certain limitations in the estimation
process. Local deformations as well as depth changes do not satisfy the bright-
ness constraint and can perturb the estimation of the motion parameters. At
the same time, least estimators (sum of square differences) are sensitive to the
presence of noise and outliers [21]. A simple way to deal with such limitation is
to consider local deformations as outliers of the estimation process and ignore
them during the estimation of the motion parameters. Towards this direction
within the considered application one would like recover N parametric motion
models Ai that create visual correspondences for each object in the temporal
domain for the moving targets. Furthermore one can assume the absence of
motion for the static background, resulting on the following functional:

Emotion((φ1,A1), ..., (φN ,AN)) =
N∑

i=1

∫∫
Ω
Hα(φi)ρ (I(Ai; t+ 1) − I(t))) dΩ

︸ ︷︷ ︸
moving object visual consistency

+
∫∫

Ω

[
N∏

i=1

(1 −Hα(φi))

]
ρ (I(t+ 1) − I(t)) dΩ

︸ ︷︷ ︸
background visual consistency

where ρ is a bounded error function. We consider the fair error estimator given
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Fig. 3. Motion Estimation & Tracking, Highway Sequence (part 1); (first column)
image t & tracking result at t, (second column) image t + 1 & tracking result at
t + 1, & (third row) optical flow estimates.

by

ρfair(r) = c2
[ |r|
c

− log

(
1 +

|r|
c

)]

Such objective function couples motion estimation and tracking. The unknown
variables are the motion parameters and the targets position at frame t + 1.
This functional implicitly assumes the absence of occlusions between the mov-
ing objects. In order to interpret the proposed term, we will consider the mo-
tion transformation known. In that case, the lowest potential of the objective
function Emotion((φi,A1), ..., (φN ,AN)) refers to an image region composed of
pixels that satisfy the visual constancy constraint with the target position in
the previous frame. On the other hand, for known objects positions, the lowest
potential of the objective function corresponds to an optimal motion transfor-
mation Ai that creates pixel-wise visual correspondences for the target in the
temporal domain.

One can optimize this functional with respect to the targets positions (φi) and
the optical flow estimates (Ai) using a gradient decent method;

d

dτ
φi =δα(φi) (ρ (I(t+ 1) − I(t)) − ρ (I(Ai; t+ 1) − I(t))))

d

dτ
ai

kl =
∫∫

Ω
Hα(φi)ψ(I(Ai; t+ 1) − I(t))(

∂I(Ai; t+ 1)

∂x
,
∂I(Ai; t+ 1)

∂y

)(
∂Ax

i

∂ai
kl

,
∂Ay

i

∂ai
kl

)
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Fig. 4. Motion Estimation & Tracking, Highway Sequence (part 2); (first column)
image t & tracking result at t, (second column) image t + 1 & tracking result at
t + 1, & (third row) optical flow estimates.

where φ(r) = ρ′(r) is the derivative of ρ known as influence function and akl is
the (k, l) parameter of the motion model [Ai]. One can interpret the obtained
motion equation as follows;

• i Level Set Flow: a force that aims to move the i curve towards the direc-
tion that decreases the visual correspondence error. A relative comparison
between the background and the motion hypotheses is used to determine
the propagation direction. If the error produced by the static hypothesis is
greater than the one of the object (given the current estimation of the mo-
tion), then the contour expands to include this pixel in the object hypothesis
and vice-versa.

• i Motion Estimation Flow: an iterative mechanism to update the i mo-
tion estimates given the current position of the object. Such updates are
driven by a term that tends to improve the quality of visual correspon-
dences between the current and the previous frame position of the objects.

Tracking and motion estimation can be jointly recovered in an iterative man-
ner. However, one can claim that the use of a gradient descent method to
estimate the motion parameters is not the most prominent solution. Such pa-
rameters have different rate of update and the use of the same time step can
cause discrepancies on the estimation. Eventually, the system can become un-
stable due to the different convergence rates of the motion model components.
Such limitation can be addressed by updating the motion estimates using a
closed form solution [43]. To this end, the motion estimation task is reformu-
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Fig. 5. Motion Estimation & Tracking, Footballeur Sequence; (first column) image
t & tracking result at t, (second column) image t + 1 & tracking result at t + 1, &
(third row) optical flow estimates.

lated as follows; given a current estimate of the motion model A, recover a
complementary affine model

∆A(x, y) =

[
∆Ax(x, y)

∆Ay(x, y)

]
=

[
δa11 δa12

δa21 δa22

] [
x

y

]
+

[
δa13

δa23

]

that when combined with the current estimates improves the matching be-
tween the object positions in two consecutive frames. Such an approach is
demonstrated in [Fig. (7)]. Using the notation introduced earlier, one can re-
define the motion-related component of the objective function;

Emotion((φi,∆A1), ...,(φN ,∆AN)) =
∫∫

Ω

[
N∏

i=1

(1 −Hα(φi))

]
ρ (I(t+ 1) − I(t)) dΩ

+
N∑

i=1

∫∫
Ω
Hα(φi)ρ (I(Ai + ∆Ai; t+ 1) − I(t))) dΩ

17



Fig. 6. Motion Estimation & Tracking, Swedish Pedestrians Sequence; (first column)
image t & tracking result at t, (second column) image t + 1 & tracking result at
t + 1, & (third row) optical flow estimates.

The optimal solution of such objective function with respect to ∆Ai can now
be recovered using the following constraints:

n ∈ [1, 2], m ∈ [1, 3]

∂

∂δai
mn

Emotion((φi,∆A1), ..., (φN ,∆AN)) = 0

leading to a linear system with respect to [δa11, δa12, δa13] and [δa21, δa22, δa23]
that has a solution in a close form. We perform this motion estimation step
until the motion model converges. Such mechanism can be used to recover
the optimal estimates of the motion model according to the latest position
of the object as defined from the tracking module (φi). One can consider
performing such motion correction step after each iteration. Motion correction
is required when the object position (tracking) changes significantly. The use
of the proposed tracking framework will gradualy update the object position
from one iteration to the next until tracking is optimized. Therefore, updating
the motion model as shown in [Fig. (7)] in each iteration is not necessary [43].
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Fig. 7. Incremental Motion Estimation & Tracking, Footballeur Sequence.

4 Complete Recovery of the Apparent Motion & Mobile Observer

Complete recovery of the aparent motion is a most prominent solution when
dealing with non-rigid objects. In that case, we assume that existence of a
(U(x, y), V (x, y)) = (u, v) field in the image plane as follows;{

(x, y) ∈ Ω : (U(x, y), V (x, y))

I(x, y; t) = I(u(x, y), v(x, y); t+ 1)

The constant brighness assumption can be considered to define an objective
function that can recover the vector field (u, v) in the pixel level;

E(U, V ) =
∫∫

Ω
ρ(I((u, v); t+ 1) − I(t))dΩ

However the recovery of the optical flow using the above constraint is an ill-
posed problem. The number of unknown variables is larger than the number
of constraints. A common technique to overcome this limitation is to consider
additional smoothness constraints on the flow;

E(U, V ) =
∫∫

Ω
ρ(I((u, v); t+ 1) − I(t)) + εζ (|U | + |V |) dΩ

where ζ is a regularization term that penalizes discontinuities on the optical
flow and ε a positive constant that balances importance of the two terms.

This framework can be used to recover dense optical flow and perform tracking.

19



Opposite to the affine case, theoretically such functional can deal with the case
of moving camera as well. However, such simplistic estimation component may
fail to deal with complex 3D scenes and do not account for discontinuities on
the optical flow that are quite natural along the object boundaries.

Mobile Observer

One can further explore this framework to address the case of mobile observer.
Within such a scenario, the objective would be to separate the additive motion
due to observer displacement from the motion of the non-static objects of
the scene. While the real 3D motion of the observer can be determined in a
unique manner, its projection to the image plane introduces certain difficulties.
Depth discontinuities as well as depth layers would reflect to different motion
observation in the image plane.

The use of unique parametric models to describe the observer motion is not
an adequate solution. However, one can assume that such a model could be
used to determine the observed motion at each layer. To this end, - under the
assumption that image has been partitioned into layers that refer to constant
depth - one can consider an affine model to describe their apparent motion.
Under such consideration, non-static objects of the scene will appear in the
form of motion layers.

Motion segmentation [2,5,56] was studied in a rigorous manner during the past
decade. The objective of our approach is to extend the motion estimation and
tracking framework to perform motion separation. Without loss of generality
one can assume that the number of layers is known. Such a condition can be
met by fitting parametric motion models to the dense motion field and then
performing a clustering step in the space of their parameters. Such clustering
step can also be used to determine the initial motion parameters of each layer.

The outcome of such a procedure will be the number of depth layers that then
are to be recovered along with their motion parameters:

Emotion((φi,∆A1), ..., (φN ,∆AN)) =
N∑

i=1

∫∫
Ω
Hα(φi)ρ (I(Ai + ∆Ai; t+ 1) − I(t))) dΩ

where the notion of static background has been eliminated, as well as to some
extend the notion of moving objects. Such a term is comparable with the
one earlier presented for the case of multiple objects. Opposite to the case of
static observer, the term of background subtraction cannot be used (unless a
motion compensation step is first applied). On the other hand one can consider
separating the regions according to their intensity properties that is equivalent
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Fig. 8. Implicit Representations for Recovery and Reconstruction of Motion Layers;
(first column) image t, (second column) image t+1, (third column) segmented layers
& (fourth row) motion estimates.

with

Esegmentation(φ1, ..., φN) = −
N∑

i=1

∫∫
Ω
Hα(φi)log (pi(I)) dΩ,

where I = I(; τ) and [pi, i = 1, · · · , N ] are the non-parametric approximations
of the intensity distribution of the different motion layers. The integral of the
objective function measures the quality of fitting between the actual observa-
tions and the expected properties of each motion layer. More details on this
component can be found at [59] while some preliminary results are reported
in [Fig. (8)].
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5 Discussion

In this paper a variational formulation to deal with tracking and motion esti-
mation was reported as well as potential extensions of the methods for motion
reconstruction in layers. The base of our approach was the Geodesic Active
Region model. Several visual cues were integrated within an objective function
that separates moving objects from the static parts of the scene, and tracks
them in consecutive frames. To this end, we have proposed an edge-driven
tracking module, a change detection background/foreground separation com-
ponent and a visual consistency term that couples motion with tracking.

Implementation Issues

The proposed framework can be used to detect, track and recover the trajec-
tories of rigid as well as non-rigid objects. The number of moving objects can
be determined either by the user or by processing the first frame 2 . To this
end, the background subtraction module can be used. Upon convergence of
the background subtraction flow, a connected component analysis method can
determine the number of moving objects in the scene. Then, a level set func-
tion can describe the motion of each object that is a computational intensive
procedure. An elegant way to reduce complexity without reducing the model
capacity is to couple the level set functions as proposed in [55] where N level
set functions can be used to detect and track 2N objects.

Promising experimental results demonstrate the potentials of such selection
for different outdoor sequences with respect to the motion estimation [Fig.
(3,4,5,6)] task and the tracking [Fig. (1,2,3,4,5,6)]. The incremental estimation
of the apparent motion is a promising solution to the optical flow recovery
problem. However, it suffers from being a global method that considers a linear
model to recover the object motion. The use of robust estimators will lead to
reasonable handling of the non-rigid parts. Hopefully within the estimation
process such parts will be considered as outliers and will not perturb the
motion estimates for the rigid part of the object. On the other hand, such
errors will propagate to the tracking component of our technique and may
cause certain discrepancies.

Future Directions

Dense motion recovery that also accounts for the uncertainties of the estima-
tion process is an interesting extension of the proposed framework. The out-
come of such a procedure will be the use optical flow in a qualitative manner
within tracking. Use of prior knowledge on the geometric form of the objects

2 Similar process has to be considered to deal with objects that appear in the
camera view in some later time.
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to be tracked is also a natural extension of our approach [41] with numerous
applications. Last, but not least one can consider similar formulation to per-
form stereo reconstruction, or recovering the disparities between two different
views.

Acknowledgements: The first author would like to thank Rong Zhang and
Dimitris Metaxas from Rutgers University for fruitful discussions during the
partial extension of the proposed framework to deal with the case of a mobile
observer that is joint work currently under development.
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