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Abstract methods model the scene as a time series and develop a dy-

namical model to recover the current input based on past
Background modeling is an important component of observations. The magnitude of the deviation between the
many vision systems. Existing work in the area has mostlypredicted and actual observation can then be used as a mea-
addressed scenes that consist of static or quasi-staticstr ~ sure of change. Predictive mechanisms of varying complex-
tures. When the scene exhibits a persistent dynamic behavity have been considered in the literature. Several authors
ior in time, such an assumption is violated and detection [16, 17] have used a Kalman- Iter based approach for mod-
performance deteriorates. In this paper, we propose a neweling the dynamics of the state at a particular pixel. A sim-
method for the modeling and subtraction of such scenes.pler version of the Kalman Iter calletlVeiner lter is con-
Towards the modeling of the dynamic characteristics, opti- sidered in [23] that operates directly on the data. Such mod-
cal ow is computed and utilized as a feature in a higher eling may further be performed in an appropriate subspace
dimensional space. Inherent ambiguities in the computa-[26, 21] (PCA basis is the usual choice). Recent methods
tion of features are addressed by using a data-dependentre based on more complicated models. In [7], an autore-
bandwidth for density estimation using kernels. Extensivegressive model was proposed to capture the properties of
experiments demonstrate the utility and performance of thedynamic scenes. This method was modi ed in [20, 26] to
proposed approach. address the modeling of dynamic backgrounds and perform
foreground detection.
The second class of methods (which we cadn-
1 Introduction predictive density-basemethods) neglect the order of the
input observations and build a probabilistic represeotati
.d.f) of the observations at a particular pixel. In [25], a
ngle Gaussian is considered to model the statisticai-dist
bution of a background pixel. Friedman et. al.[9] use a mix-
ture of three Normal distributions to model the visual prop-
erties in traf ¢ surveillance applications. Three hypatise
are considered - road, shadow and vehicles. The EM algo-
rithm is used, which although optimal, is computationally
guite expensive. In [12], this idea is extended by using mul-
tiple Gaussians to model the scene and develop a fast ap-
proximate method for updating the parameters of the model
incrementally. Such an approach is capable of dealing with
multiple hypothesis for the background and can be useful
in scenes such as waving trees, beaches, escalators, rain or
show. The mixture-of-Gaussians method is quite popular
and was to be the basis for a large number of related tech-
nigues [15, 13]. In [10], a statistical characterizatioriref
The work was carried out during the appointment of the auttity error associated with this algorithm is studied. When the
Siemens Corporate Research, from November 1999 to March 200 density function is more complex and cannot be modeled

Increased computational speed of processors has enable
application of vision technology in several elds such as:
Industrial automation, Video security, transportatiord an
automotive. Background subtraction forms an important
component in many of these applications. The central idea
behind this module is to utilize the visual properties of the
scene for building an appropriate representation that can
then be utilized for the classi cation of a new observation
as foreground or background. The information provided by
such a module can then be considered as a valuable low
level visual cue to perform high-level object analysis task
such as object detection, tracking, classi cation and &ven
analysis.

Existing methods for background modeling may be clas-
sied as eitherpredictive or non-predictive Predictive




parametrically, a non-parametric approach able to handle2 Background Density Estimation via Vari-
arbitrary densities is more suitable. Such an approachwas  gbhle Bandwidth Kernels
used in [8] where the use of Gaussian kernels for modeling

the density at a particular pixel was proposed. - ) _
In order to facilitate the introduction of the proposed

Existing methods can effectively describe scenes thatfr mework. w me that ow m rements [18. 141 and
have a smooth behavior and limited variation. Conse- '2MEWOrK, We assume that ow measureme s[18,14]a
their uncertainties are available. Then, we propose a theo-

qguently, they are able to cope with gradually evolving i i : .
scenes. However, one can claim that their performance gderetical framework to obtain an estimate of the probability

teriorates [Figure 2] when the scene to be described is dy-g'S;réglmggvg:atlhrie‘:ﬁjg;v_eda?::se't?icaaz'dgEg::j'::r:fgr??l_
namic and exhibits non-stationary properties in time. Ex- P ' P p

amples of such scenes include ocean waves, waving treeL@n be considered for determining this probability distrib

rain, moving clouds, etc. One can observe that even receng ?gd t’g‘ ;n'Xtrlé;?g;tr:mti;\:;‘gt?itsuﬁgﬁsf_fgSacg:nt;fe?gg?t?{
predictive methods do not model multiple modalities of dy- bp X P

namic behavior [20, 26, 23], and therefore such models cang;';:sel’c'éen' :)Zeen;ﬁr?:;{aezd;?‘g 30\:12'223?§ Zerlrtg)r;r?;:hs?n?i; L:S,[O
be quite inef cient in many practical scenarios. ' P

) o i . [12]. Care has to be exercised, however, in dealing with the
Most of the dynamic scenes exhibit persistent motion |,,certainties in the correct manner.

characteristics. Therefore, a natural approach to model th
behavior is via optical ow. Combining such ow infor-
mation with standard intensity information, we present a
method for background-foreground differentiation that is
able to d.etect 9bject§ that differ from the background in ei- putationally expensivé
ther motion or intensity properties.

. fih f h h inh The most attractive method used in the statistical liter-
Computation of these features, however, has some inheryy e for modeling multi-variate probability distributie

entambiguities associated with them. The motion of 8 MOV- 4 sample points is thkernetbased density estimation
ing one-dimensional pattern viewed through a circular-aper [24]. (also callecParzen windowén Pattern Recognition).

_turle causes tze so}]callex]b(_arfure g_roblem _Flrj]rtherrr]nore, _ Such a selection is even more appropriate when the sam-
In locations where the spatial gradient vanishes, the motio o 4ints have variable uncertainties associated wittthe

cannot be estimated. This is sometimes calledtaekwall -6 the framework provides a structured way for utilizing
problem Transformation of intensity into an illumination- ¢, -1 uncertainties

invariant space causes further ambiguities. For very dark r o . . N
. ST . . Letxq; X2; 315 X be a set ofl-dimensional points iR
gions, such transformation is ill-de ned and subject to-sig . o : .
andH be a symmetric positive de nitd d matrix (called

ni ca.nt errors. - ~ the bandwidthmatrix). Letk : R% ! R! be a kernel
Itis natural to assume that the utilization of such ambi- gatisfying certain conditions that will be de ned later.

guities in the estimation process will signi cantly enhanc Then the multivariatexed bandwidth kernel estimator is
the accuracy of such estimation. To this end, we Proposey . hed as[24];

the use of variable bandwidths for density estimation using

A more suitable approach refers to a non-parametric
method. One can claim that such method has the charac-
teristic of being able to deal with the uncertainties in an
accurate manner. On the other hand, such a method is com-

kernels. Use of such technique not only enables utilization 10

of such ambiguities but also enables modeling of arbitrary fx)= = Ku(x X))

shapes of the underlying density in a natural way. Density n._;

estimation is performed in a higher-dimensional space con- 1% 1 (1)
sisting of intensity and motion features for the purpose of =< ——KH Px x)
modeling the background density, and thus perform fore- Mo kHK

ground detection.

The paper is organized as follows. Section 2 describeswhereKy (x) = kHk 72K (H *72x). The matrixH is
density estimation via variable-bandwidth kernels. Suth a the smoothness parameter and speci es the “width” of the
estimation utilizes the uncertainty in both the sample and kernel around each sample point
test observations. Section 3 describes the development of A well-behaved kernék must satisfy the following con-
appropriate measures for classi cation. Section 4 dessrib
methods for computation of optical ow and illumination- A ve-dimensional space has been utilized in this work - tvesrpo-
invariant intensity transformation. Finally, section 5-de nents for the optical ow and three for the intensity in themalized color

; ; ; space.
scribes experiments that quantlfy the performance of the 2with the rapid increase in the computational power of preces this

proposed approach in relation to existing methods for SOmemethod is already running in quasi real-time (7 fps) 468 120 3-band
real-world scenes. video on a Pentium IV 3 GHz processor machine.




ditions: An alternate strategy is to have the bandwidth matrix be
z a function of the sample points. Such estimator is called the

K (w)dw = 1; sample-poinestimator[24]:
z ®
wK (w)dw = 0; 50
z" fs(x) = % Khx)(X X))
ww TK (w)dw = Ig i=1
y _ X 1 1=2
The rst condition accounts for the fact that the sum of the = h ~ WK (H(xi) (x  xi))

kernel function over the whole region is unity. The sec-

ond equation imposes the constraint that the means of the

marginal kernel§ K (w;);i = 1;:::;dg are all zero. Last  The sample-point estimator still places a kernel at each dat

but not the least, the third term states that the marginal ker point. These kernels each have their own size and orienta-

nels are all pairwise uncorrelated and that each has umit var tion regardless of where the density is to be estimated. This

ance. type of estimator was introduced by [4] who suggest using
The simplest approach would be to use a xed bandwidth

matrixH for all the samples. Although such an approach is

a reasonable compromise between complexity and the qual- H(xi) = h(xi)l

ity of approximation, the use of variable bandwidth can usu-

ally lead to an improvementin the accuracy of the estimated

density. Smaller bandwidth is more appropriate in regions data point. Asymptotically, this is equivalent to choosing
of high density since a larger number of samples enablesh(xi) I f(x;) = whered,is the dimension of the data.
a more accurate estimation of the density in these regions.A popular choice for the bandwidth function, suggested by
On the other hand, a larger bandwidth is more appropriate[l], is to useh(x;) / f(x;) %2 and, in praé:tice, to use

in low density areas where few sample points are available.a pilot estimate of the density to calibrate the bandwidth
Itis possible to consider a bandwidth function that adapts function

to the point of estimation, as well as to the observed data

points and the shape of the underlying density[24]. In the In this paper, we introduce lybrid density estimator
literature, two simpli ed versions have been studied. The Where the bandwidth is a function not only of the sample
rst varies the bandwidth at each estimation point and is Pointbutalso of the estimation poixt The particular prop-
referred to as thdalloon estimator The second varies erty of the data that will be addressed is the existence of the

the bandwidth for each data point and is referred to as theuncertainty estimates of not only the sample points, but als

whereh(x;) is the distance fronx; to the k-th nearest

sample-point estimator the estimation poink. Letfx;glL; be a set of measure-
Thus, for theballoon estimator ments ind-dimensional space such that eagthas associ-
ated with it a mean; (inRY) andad d covariance matrix
£y (x) = 1 X KX X0) i- Also, letx (with mean , and covariance x) be the
n current measurement whose probability is to be estimated.

i=1
1 X 1
N ._ kH(x)k'™?

We de ne the multivariatdybrid density estimator as:
K(HX) 2 xi)

1 X
where H (x) is the smoothing matrix for the estimation fh(x) = n. K i ( 1))
pointx. For each point at which the density is to be esti- =1
mated, kernels of the same size and orientation are centered - } X 1 K (H(x:x) ¥ )
at each data point. The density estimate is computed by tak- N -y KH (x;x)kE2 o '
ing the average of the heights of the kernels at the estima- )

tion point. A popular choice for the bandwidth function in

this case is to restrict the kernel to be spherically symimetr

that further simpli es the approximation. Then, only one where the bandwidth matrid (x; x;) is a function of both
independent smoothing parameter reméip&«) which is theestimatiormeasurement and thesamplemeasurement
typically estimated as the distance fronto thekth nearest  x;. Chen et. al. [5] have suggested usidg = "’;p i

data point. Such an estimator suffers from several disad-for Epanechnikov kernels in the absence of error mea-
vantages - discontinuities, bias problems and integration surements. Expanding this idea, we propose the use of

in nity. H(X;Xi) = «x, + x as a possible bandwidth matrix for



theNormalkernel. Thus, the density estimator becorfies

xX 1
i (x) = - = =
n(2 ])-d 2 o1 K ox * Xkl 2 (3)
exp 5( DTC ot %) i)

This particular choice for the bandwidth function has a
simple but meaningful mathematical foundation. Suppose
X1 andx, are two normally distributed random variables
with meand ;g and covariance matricds g, i.e. X;

Figure 1. Adaptive thresholds for (a) The Ocean Se-
quence, (b) Traf c Sequence. Notice that the thresh-

N( i; i);i =1;2 Itis well-known that ifx; andXx; olds are higher in regions of low variability and low
are independent, the distribution €,  X2) isN( 1 in regions of high variability.
2; 1+ 2). Thus, the probability that; = x, orxy

Xo=0is
p(X1 = X2) = 1 = More formally, guaranting a false-alarm rate of less than

(2 )92k 1+ ok ¢ requires that the thresholshould be set such that:

1
exp 5( 1 2Tt ) M1 2) Z
fdx < (4)
i(x)<T

Thus, Equation 3 can be thought of as the average of the
probabilities that the estimation measurementis equako t

sample measurement, calculated over all the sample me E

gEurthermore, iff o (x) is the foreground distribution, guar-

surements.
The choice for the bandwidth matrix can also be justi-

anteeing amiss probability of |, leads to the following
conditiononT:

ed by the fact that the directions in which there is more Z
uncertainty are given proportionately less weightage hSuc f’:)(x)dx > (5)
uncertainty can be either in the estimation measurement or fo(x)>T

the sample measurements. Experimentally, the results ob-

tained using these criteria were satisfactory when contpare Meeting both constraints simultaneously could be impos-

with the xed bandwidth estimator or the balloon/sample- sible, therefore a compromise is generally required. Fur-

point estimators. thermore, the foreground distribution is generally unknow
weakening the use of the second constraint.

Determination of the threshold according to Equation (4)
involves the inversion of complex integrals of clipped dis-

Once an appropriate mechanism for density approxima-tr?b“t?ons- _ Such solutior_1 is feasible only for simple dis-
tion is built, the next step is to determine a classi cation tibutions like the Gaussian [10]. In the presence of more
mechanism for the observed data. Classi cation may be COMPplex underlying densities, a statistical approxinratso
performed by thresholding on the probability of a new ob- More suitable. We propose the use of sampling to get an

servation to belong to the background. However, two obser-€stimate of the false alarm rate for a given threshold. Sam-
vations need to be taken into account: ples are drawn from the learnt background distribution (es-

timated via kernels in the present work) and the density at
The threshold should be adaptive and determinedthese sample points is classi ed using the current threshol
based on the uncertainty or spread of the backgroundas background or foreground. These classi cations provide
distribution at a particular pixel (calleehtropyin in- an estimate of the false alarm rate for the current thresh-
formation theory). old value. Such information can then be utilized for adjust-
ing the threshold according to the desired false alarm rate.
Since the “spread” of the distribution at a particular pixel
is not expected to vary signi cantly over time, such thresh-
old can be adjusted incrementally. Incremental adaptation
of the threshold reduces the false alarms in the regions of
high variation (e.g. waves, trees) while maintaining high
detection rates in stationary areas.

3 Classi cation

Any available prior information about the foreground
distribution should be utilized.

3Given the sample measurements, this estimator is a funofitoth
the mean and the covariance of the estimation measureméis,  is
not a density function in the traditional sense which is acfiom only of
the estimation point ird-dimensional space. However, if the covariance
matrix  is kept xed, it becomes a proper density function.



4 Measurement of Features and their Uncer-  as the actual velocity eld, and; as the random variable
tainties describing the difference between the two. Then:

Once the appropriate generic model for background sub- fl=f+n

traction is introduced, addressing the selection/estomat . R

of the features is to be considered. As mentioned earlier, weS'm"arly’ Ietgt_be _the actua! temporal derivative, aidhe
utilize ve features - two for optical ow and three for the measured derivative. Then:
intensity in the normalized color space. We have assumed
that the uncertainties in their measurements are available

Here, we brie y describe methods that might be used for \;yara ., is a random variable characterizing the uncer-

?;;?ilglsng such measurements and their associated UnCelyinty in this measurement relative to the true derivative.

The uncertainty in the spatial derivatives is assumed to be
much smaller than the uncertainty in the temporal deriva-
tives.

Under the assumption thag andn, are governed by a

Several optical ow algorithms and their extensions p,qrmq| distribution with covariance matrices = 11 and

[22, 18, 14, 6, 2] can be considefedhe most suitable for »= o (itis scalar), and the ow vectdrhas a zero-mean

our approach[22] is brie y described next. Ithas the desire - Norma) prior distribution with covariance , the covari-

characteristic of being able to determine the error charact  5ce and mean of the optical ow vector may be estimated:
istics of the optical ow estimate. The method proposed by

O =%+ N2

4.1 Optical Flow

Simoncelli [22], is an extension to the method of Lucas and "’ X M. # 1
Kanade [18]. The basic idea of this algorithm is to apply ¢ = _ Wi _[2 + o, 1
the optical ow constraint equation [14]: o Cair g(xiiiz + 2) @
X b
rTg:f+gt:o ;= wi; bj

o Cadir gxijiz + 2)
wherer g andg; are the spatial image gradient and tempo-

ral derivative, respectively, of the image at a given spatia Wherew; is a weighting function over the patch, with the
location and time, and is the two-dimensional velocity ~ Points in the patch indexed By andM i, andb; are the
vector. Such equation puts only one constraint on the twoSame as matrices de ned in Equation 6 but without the sum-
parametersgperture problei Thus, a smoothness con- Mation and evaluated at locatian

strainton the eld of velocity vectors is a common selection ~ In order to handle signi cant displacements, a multi-
to address this limitation. If we assume locally constant ve Scale approach is considered that uses the ow estimates
locity and combine linear constraints over local spatial re from a higher scale to initialize the ow for a lower level.

gions, a sum-of-squares error function can be de ned: Towards the propagation of variance across scales, a kalman
X Iter is used with the normally used time variable replaced
E(f)= wlr Tg(xi;t)f + g (xi;)]? by scale. Further details of the approach may be obtained

[ from the original paper by Simoncelli [22].

Minimizing this error function with respect to yields: . .
g P y 4.2 Normalized Color Representation

f= M

SupposeR,G andB are the RGB values observed at a

where . 5 pixel. Then, the normalized features are de ned as:
X 2
M = r rT = P S nggy ) = R=S: = G=S: = S=
o 'g ey @ r=R=S; g=G=S; |=S=3 (8)
P e whereS = R + G + B. The advantage of such transfor-
b= P o0 (6) mation is that, under certain conditions, it is invariant to

) ) a change in illumination. However, such transformation in-
and all the summations are over a patch around the point. oqycedeteroscedastigpoint-dependent) noise in the data
In [22], a model for recovering the uncertainties is intro- {hat needs to be modeled correctly. Assuming that the sen-

duced in the following way. De né" as the optical owf sor noise (inRGB space) is normally distributed with a
4A survey and performance analysis of existing methods isgmed diagonal covariance matrix having diagonal _ter_mSt_ IS
in [3]. not too dif cult to show [11] that the uncertainties in the



(b)

Figure 2. (a) Original Images. Detection result using
(b) a mixture of Gaussians model (¢) a non-parametric
model, and (d) our approach. Simple spatial and tem-
poral ltering was used for all algorithms.

normalized foeatures is:

1
2R 3R? R+G 3RG

2 1 STt s s T s A
rg T o2 2
7 mo,ume g m.

4.3 Combining the Features

The covariance ; for an observationx; (in 5D space)
may be estimated from the covariances of the component
- the normalized color and optical ow. Assuming that the
intensity and optical ow features are uncorrelated (which

may not be true in general), an expression for the covariancee

matrix may be derived:

3
rg 0 O
=4 0 i 05 (9)
0O 0 ¢

Figure 3. Detection for a traf ¢ sequence consisting
of waving trees.

where ; is obtained as in Equation 7 and boldfa0és
represent appropriate zero matrices.

5 Results and Conclusion
5.1 Experimental Results

In order to validate the proposed technique, two different
types of scenes were considered. The rstis the challenging
scene of the ocean front. Such scene involves wave motion,
blowing grass, long-term changes due to tides, global illu-
mination changes, shadows etc. An assessment of the per-
formance of the existing methods [12, 8] is shown in Fig-
ure [2]. Even though these techniques were able to cope to
some extent with the appearance change of the scene, their
performance can be considered unsatisfactory for video
based surveillance systems. The detection of events was
either associated with a non-acceptable false alarm rate or

$he detection was compromised when focus was given to

reducing the false alarm rate.

On the other hand, our algorithm was able to detect
vents of interest in the land and simulated events on the
ocean front with extremely low false alarm rate as shown in
Figure [5]. Large-scale experiments were conducted far thi
scene using several days of videos. Over this period, there
were only 4 false alarms, occurring due to the re ection of



moving clouds in the water. On the other hand, the algo- oo wbasedMEIhod$
} Linear_Prediction in thePCA subspace -+--

rithm was able to detect simulated objects having almost no 08 et T Nenpaigmetic kemels -5
visual difference from the ocean if they were moving in a o

pattern that was different from the ocean [Figure 5 (i) - (1)] 05
Atthe same time, the algorithm had superior performancein o4
the static parts of the scene because of the additional use of

R

Detection Rate

0.3

the optical ow component. This performance is re ected 01 o *
in theROCcurves for the various methods for this sequence 001 o1 1 10
. alse Alarms/Frame
[Figure 4(a)]. (@)
A typical traf ¢ surveillance scenario was considered 1 — +
0.9 Our Optical Flow-based Méthod +—

Linear Prediction in the PCA subspace -+--

next where the challenge was due to the vigorous motion of I
the trees and bushes [Figure 3]. Again, our method was able o7t
to deal with the motion of the trees and outperformed exist- o T

Non-parametric kernels -&--

0.8
. Mixture-of-Gaussians -

o’

Detection Rate

ing techniques [Figure 4(b)]. Movie les containing some 0a

of these results have been made available on the conference™ o2

website. o
Since the information needs to be stored and evaluated

for a suf ciently large temporal window, a limitation of

the approach was its high computational and storage needs. (b)

Several optimizations can, however, be performed to reduce

such requirements and our implementation is already run- Figure 4. Receiver-Operator Characteristic (ROC)

0
0.001 0.01 0.1 1
False Alarms/Frame

ning at about 7fps on 2460 1203-band video on a Pen- curves for (a) “ocean” sequence and (b) “traf c” se-
tium IV 3GHz processor using about 400 MB of RAM for quence for (i) Mixture-of-Gaussians model [12], (ii)
a temporal window size of 200 frames. Non-parametric Kernels [8], (iii) Linear Prediction in

PCA subspace [20], and (iv) Our method.
5.2 Discussion

In this paper we have proposed a technique for the mod-
eling of dynamic scenes for the purpose of background-
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