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Abstract

Background modeling is an important component of
many vision systems. Existing work in the area has mostly
addressed scenes that consist of static or quasi-static struc-
tures. When the scene exhibits a persistent dynamic behav-
ior in time, such an assumption is violated and detection
performance deteriorates. In this paper, we propose a new
method for the modeling and subtraction of such scenes.
Towards the modeling of the dynamic characteristics, opti-
cal flow is computed and utilized as a feature in a higher
dimensional space. Inherent ambiguities in the computa-
tion of features are addressed by using a data-dependent
bandwidth for density estimation using kernels. Extensive
experiments demonstrate the utility and performance of the
proposed approach.

1 Introduction

Increased computational speed of processors has enabled
application of vision technology in several fields such as:
Industrial automation, Video security, transportation and
automotive. Background subtraction forms an important
component in many of these applications. The central idea
behind this module is to utilize the visual properties of the
scene for building an appropriate representation that can
then be utilized for the classification of a new observation
as foreground or background. The information provided by
such a module can then be considered as a valuable low-
level visual cue to perform high-level object analysis tasks
such as object detection, tracking, classification and event
analysis.

Existing methods for background modeling may be clas-
sified as eitherpredictive or non-predictive. Predictive
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methods model the scene as a time series and develop a dy-
namical model to recover the current input based on past
observations. The magnitude of the deviation between the
predicted and actual observation can then be used as a mea-
sure of change. Predictive mechanisms of varying complex-
ity have been considered in the literature. Several authors
[16, 17] have used a Kalman-filter based approach for mod-
eling the dynamics of the state at a particular pixel. A sim-
pler version of the Kalman filter calledWeiner filteris con-
sidered in [23] that operates directly on the data. Such mod-
eling may further be performed in an appropriate subspace
[26, 21] (PCA basis is the usual choice). Recent methods
are based on more complicated models. In [7], an autore-
gressive model was proposed to capture the properties of
dynamic scenes. This method was modified in [20, 26] to
address the modeling of dynamic backgrounds and perform
foreground detection.

The second class of methods (which we callnon-
predictive density-basedmethods) neglect the order of the
input observations and build a probabilistic representation
(p.d.f.) of the observations at a particular pixel. In [25], a
single Gaussian is considered to model the statistical distri-
bution of a background pixel. Friedman et. al.[9] use a mix-
ture of three Normal distributions to model the visual prop-
erties in traffic surveillance applications. Three hypothesis
are considered - road, shadow and vehicles. The EM algo-
rithm is used, which although optimal, is computationally
quite expensive. In [12], this idea is extended by using mul-
tiple Gaussians to model the scene and develop a fast ap-
proximate method for updating the parameters of the model
incrementally. Such an approach is capable of dealing with
multiple hypothesis for the background and can be useful
in scenes such as waving trees, beaches, escalators, rain or
snow. The mixture-of-Gaussians method is quite popular
and was to be the basis for a large number of related tech-
niques [15, 13]. In [10], a statistical characterization ofthe
error associated with this algorithm is studied. When the
density function is more complex and cannot be modeled
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parametrically, a non-parametric approach able to handle
arbitrary densities is more suitable. Such an approach was
used in [8] where the use of Gaussian kernels for modeling
the density at a particular pixel was proposed.

Existing methods can effectively describe scenes that
have a smooth behavior and limited variation. Conse-
quently, they are able to cope with gradually evolving
scenes. However, one can claim that their performance de-
teriorates [Figure 2] when the scene to be described is dy-
namic and exhibits non-stationary properties in time. Ex-
amples of such scenes include ocean waves, waving trees,
rain, moving clouds, etc. One can observe that even recent
predictive methods do not model multiple modalities of dy-
namic behavior [20, 26, 23], and therefore such models can
be quite inefficient in many practical scenarios.

Most of the dynamic scenes exhibit persistent motion
characteristics. Therefore, a natural approach to model their
behavior is via optical flow. Combining such flow infor-
mation with standard intensity information, we present a
method for background-foreground differentiation that is
able to detect objects that differ from the background in ei-
ther motion or intensity properties.

Computation of these features, however, has some inher-
ent ambiguities associated with them. The motion of a mov-
ing one-dimensional pattern viewed through a circular aper-
ture causes the so-calledaperture problem. Furthermore,
in locations where the spatial gradient vanishes, the motion
cannot be estimated. This is sometimes called theblack wall
problem. Transformation of intensity into an illumination-
invariant space causes further ambiguities. For very dark re-
gions, such transformation is ill-defined and subject to sig-
nificant errors.

It is natural to assume that the utilization of such ambi-
guities in the estimation process will significantly enhance
the accuracy of such estimation. To this end, we propose
the use of variable bandwidths for density estimation using
kernels. Use of such technique not only enables utilization
of such ambiguities but also enables modeling of arbitrary
shapes of the underlying density in a natural way. Density
estimation is performed in a higher-dimensional space con-
sisting of intensity and motion features for the purpose of
modeling the background density, and thus perform fore-
ground detection.

The paper is organized as follows. Section 2 describes
density estimation via variable-bandwidth kernels. Such an
estimation utilizes the uncertainty in both the sample and
test observations. Section 3 describes the development of
appropriate measures for classification. Section 4 describes
methods for computation of optical flow and illumination-
invariant intensity transformation. Finally, section 5 de-
scribes experiments that quantify the performance of the
proposed approach in relation to existing methods for some
real-world scenes.

2 Background Density Estimation via Vari-
able Bandwidth Kernels

In order to facilitate the introduction of the proposed
framework, we assume that flow measurements [18, 14] and
their uncertainties are available. Then, we propose a theo-
retical framework to obtain an estimate of the probability
distribution of the observed data in a higher-dimensional
space1. Several methods - parametric and non-parametric -
can be considered for determining this probability distribu-
tion. A mixture of multi-variate Gaussians can be consid-
ered to approximate this distribution. The parameters of the
model, i.e. the mean and the covariance matrix of the Gaus-
sians, can be estimated and updated in a manner similar to
[12]. Care has to be exercised, however, in dealing with the
uncertainties in the correct manner.

A more suitable approach refers to a non-parametric
method. One can claim that such method has the charac-
teristic of being able to deal with the uncertainties in an
accurate manner. On the other hand, such a method is com-
putationally expensive2.

The most attractive method used in the statistical liter-
ature for modeling multi-variate probability distributions
from sample points is thekernel-based density estimation
[24]. (also calledParzen windowsin Pattern Recognition).
Such a selection is even more appropriate when the sam-
ple points have variable uncertainties associated with them
since the framework provides a structured way for utilizing
such uncertainties.

Letx1,x2, ....,xn be a set ofd-dimensional points inRd

andH be a symmetric positive definited× d matrix (called
the bandwidthmatrix). Let K : R

d → R
1 be a kernel

satisfying certain conditions that will be defined later.
Then the multivariatefixedbandwidth kernel estimator is

defined as[24]:

f̂(x) =
1

n

n
∑

i=1

KH(x − xi))

=
1

n

n
∑

i=1

1

‖H‖
1/2

K(H−1/2(x − xi))

(1)

whereKH(x) = ‖H‖−1/2K(H−1/2
x). The matrixH is

the smoothness parameter and specifies the “width” of the
kernel around each sample pointxi.

A well-behaved kernelK must satisfy the following con-

1A five-dimensional space has been utilized in this work - two compo-
nents for the optical flow and three for the intensity in the normalized color
space.

2With the rapid increase in the computational power of processors, this
method is already running in quasi real-time (7 fps) on a160×120 3-band
video on a Pentium IV 3 GHz processor machine.
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ditions:
∫

Rd

K(w)dw = 1,

∫

Rd

wK(w)dw = 0,

∫

Rd

ww
T K(w)dw = Id

The first condition accounts for the fact that the sum of the
kernel function over the whole region is unity. The sec-
ond equation imposes the constraint that the means of the
marginal kernels{Ki(wi), i = 1, . . . , d} are all zero. Last
but not the least, the third term states that the marginal ker-
nels are all pairwise uncorrelated and that each has unit vari-
ance.

The simplest approach would be to use a fixed bandwidth
matrixH for all the samples. Although such an approach is
a reasonable compromise between complexity and the qual-
ity of approximation, the use of variable bandwidth can usu-
ally lead to an improvement in the accuracy of the estimated
density. Smaller bandwidth is more appropriate in regions
of high density since a larger number of samples enables
a more accurate estimation of the density in these regions.
On the other hand, a larger bandwidth is more appropriate
in low density areas where few sample points are available.

It is possible to consider a bandwidth function that adapts
to the point of estimation, as well as to the observed data
points and the shape of the underlying density[24]. In the
literature, two simplified versions have been studied. The
first varies the bandwidth at each estimation point and is
referred to as theballoon estimator. The second varies
the bandwidth for each data point and is referred to as the
sample-point estimator.

Thus, for theballoon estimator,

f̂B(x) =
1

n

n
∑

i=1

KH(x)(x − xi))

=
1

n

n
∑

i=1

1

‖H(x)‖
1/2

K(H(x)
−1/2

(x − xi))

where H(x) is the smoothing matrix for the estimation
point x. For each point at which the density is to be esti-
mated, kernels of the same size and orientation are centered
at each data point. The density estimate is computed by tak-
ing the average of the heights of the kernels at the estima-
tion point. A popular choice for the bandwidth function in
this case is to restrict the kernel to be spherically symmetric
that further simplifies the approximation. Then, only one
independent smoothing parameter remainshk(x) which is
typically estimated as the distance fromx to thekth nearest
data point. Such an estimator suffers from several disad-
vantages - discontinuities, bias problems and integrationto
infinity.

An alternate strategy is to have the bandwidth matrix be
a function of the sample points. Such estimator is called the
sample-pointestimator[24]:

f̂S(x) =
1

n

n
∑

i=1

KH(xi)(x − xi))

=
1

n

n
∑

i=1

1

‖H(xi)‖
1/2

K(H(xi)
−1/2(x − xi))

The sample-point estimator still places a kernel at each data
point. These kernels each have their own size and orienta-
tion regardless of where the density is to be estimated. This
type of estimator was introduced by [4] who suggest using

H(xi) = h(xi)I

whereh(xi) is the distance fromxi to the k-th nearest
data point. Asymptotically, this is equivalent to choosing
h(xi) ∝ f(xi)

−1/d whered is the dimension of the data.
A popular choice for the bandwidth function, suggested by
[1], is to useh(xi) ∝ f(xi)

−1/2 and, in practice, to use
a pilot estimate of the density to calibrate the bandwidth
function.

In this paper, we introduce ahybrid density estimator
where the bandwidth is a function not only of the sample
point but also of the estimation pointx. The particular prop-
erty of the data that will be addressed is the existence of the
uncertainty estimates of not only the sample points, but also
the estimation pointx. Let {xi}

n
i=1 be a set of measure-

ments ind-dimensional space such that eachxi has associ-
ated with it a meanµi (in R

d) and ad×d covariance matrix
Σi. Also, letx (with meanµx and covarianceΣx) be the
current measurement whose probability is to be estimated.
We define the multivariatehybriddensity estimator as:

f̂H(x) =
1

n

n
∑

i=1

KH(x,xi)(µ − µi))

=
1

n

n
∑

i=1

1

‖H(x,xi)‖
1/2

K(H(x,xi)
−1/2(µ − µi))

(2)

where the bandwidth matrixH(x,xi) is a function of both
theestimationmeasurementx and thesamplemeasurement
xi. Chen et. al. [5] have suggested usingHi = χ2

γ,pΣi

for Epanechnikov kernels in the absence of error mea-
surements. Expanding this idea, we propose the use of
H(x,xi) = Σxi

+ Σx as a possible bandwidth matrix for
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theNormalkernel. Thus, the density estimator becomes3 :

f̂H(x) =
1

n(2π)d/2

n
∑

i=1

1

‖Σxi
+ Σx‖

1/2

exp

(

−
1

2
(µ − µi)

T (Σxi
+ Σx)−1(µ − µi)

)

(3)

This particular choice for the bandwidth function has a
simple but meaningful mathematical foundation. Suppose
x1 andx2 are two normally distributed random variables
with means{µi} and covariance matrices{Σi}, i.e. xi ∼
N(µi,Σi), i = 1, 2. It is well-known that ifx1 andx2

are independent, the distribution of(x1 − x2) is N(µ1 −
µ2,Σ1 + Σ2). Thus, the probability thatx1 = x2 or x1 −
x2 = O is

p(x1 = x2) =
1

(2π)d/2‖Σ1 + Σ2‖
1/2

exp

(

−
1

2
(µ1 − µ2)

T (Σ1 + Σ2)
−1(µ1 − µ2)

)

Thus, Equation 3 can be thought of as the average of the
probabilities that the estimation measurement is equal to the
sample measurement, calculated over all the sample mea-
surements.

The choice for the bandwidth matrix can also be justi-
fied by the fact that the directions in which there is more
uncertainty are given proportionately less weightage. Such
uncertainty can be either in the estimation measurement or
the sample measurements. Experimentally, the results ob-
tained using these criteria were satisfactory when compared
with the fixed bandwidth estimator or the balloon/sample-
point estimators.

3 Classification

Once an appropriate mechanism for density approxima-
tion is built, the next step is to determine a classification
mechanism for the observed data. Classification may be
performed by thresholding on the probability of a new ob-
servation to belong to the background. However, two obser-
vations need to be taken into account:

• The threshold should be adaptive and determined
based on the uncertainty or spread of the background
distribution at a particular pixel (calledentropyin in-
formation theory).

• Any available prior information about the foreground
distribution should be utilized.

3Given the sample measurements, this estimator is a functionof both
the mean and the covariance of the estimation measurement. Thus, it is
not a density function in the traditional sense which is a function only of
the estimation point ind-dimensional space. However, if the covariance
matrixΣx is kept fixed, it becomes a proper density function.

Figure 1. Adaptive thresholds for (a) The Ocean Se-
quence, (b) Traffic Sequence. Notice that the thresh-
olds are higher in regions of low variability and low
in regions of high variability.

More formally, guaranting a false-alarm rate of less than
αf requires that the thresholdT should be set such that:

∫

f̂(x)<T

f̂(x)dx < αf (4)

Furthermore, iffo(x) is the foreground distribution, guar-
anteeing amissprobability of αm leads to the following
condition onT :

∫

f̂o(x)>T

f̂o(x)dx > αm (5)

Meeting both constraints simultaneously could be impos-
sible, therefore a compromise is generally required. Fur-
thermore, the foreground distribution is generally unknown
weakening the use of the second constraint.

Determination of the threshold according to Equation (4)
involves the inversion of complex integrals of clipped dis-
tributions. Such solution is feasible only for simple dis-
tributions like the Gaussian [10]. In the presence of more
complex underlying densities, a statistical approximation is
more suitable. We propose the use of sampling to get an
estimate of the false alarm rate for a given threshold. Sam-
ples are drawn from the learnt background distribution (es-
timated via kernels in the present work) and the density at
these sample points is classified using the current threshold
as background or foreground. These classifications provide
an estimate of the false alarm rate for the current thresh-
old value. Such information can then be utilized for adjust-
ing the threshold according to the desired false alarm rate.
Since the “spread” of the distribution at a particular pixel
is not expected to vary significantly over time, such thresh-
old can be adjusted incrementally. Incremental adaptation
of the threshold reduces the false alarms in the regions of
high variation (e.g. waves, trees) while maintaining high
detection rates in stationary areas.
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4 Measurement of Features and their Uncer-
tainties

Once the appropriate generic model for background sub-
traction is introduced, addressing the selection/estimation
of the features is to be considered. As mentioned earlier, we
utilize five features - two for optical flow and three for the
intensity in the normalized color space. We have assumed
that the uncertainties in their measurements are available.
Here, we briefly describe methods that might be used for
obtaining such measurements and their associated uncer-
tainties.

4.1 Optical Flow

Several optical flow algorithms and their extensions
[22, 18, 14, 6, 2] can be considered4. The most suitable for
our approach[22] is briefly described next. It has the desired
characteristic of being able to determine the error character-
istics of the optical flow estimate. The method proposed by
Simoncelli [22], is an extension to the method of Lucas and
Kanade [18]. The basic idea of this algorithm is to apply
the optical flow constraint equation [14]:

∇T g.f + gt = 0

where∇g andgt are the spatial image gradient and tempo-
ral derivative, respectively, of the image at a given spatial
location and time, andf is the two-dimensional velocity
vector. Such equation puts only one constraint on the two
parameters (aperture problem). Thus, a smoothness con-
straint on the field of velocity vectors is a common selection
to address this limitation. If we assume locally constant ve-
locity and combine linear constraints over local spatial re-
gions, a sum-of-squares error function can be defined:

E(f) =
∑

i

wi[∇
T g(xi, t)f + gt(xi, t)]

2

Minimizing this error function with respect tof yields:

f = −M−1b

where

M =
∑

∇g∇T g =

[ ∑

g2
x

∑

gxgy
∑

gxgy

∑

g2
y

]

,

b =

[ ∑

gxgt
∑

gygt

]

(6)

and all the summations are over a patch around the point.
In [22], a model for recovering the uncertainties is intro-

duced in the following way. Definêf as the optical flow,f

4A survey and performance analysis of existing methods is presented
in [3].

as the actual velocity field, andn1 as the random variable
describing the difference between the two. Then:

f̂ = f + n1

Similarly, let ĝt be the actual temporal derivative, andgt the
measured derivative. Then:

gt = ĝt + n2

wheren2 is a random variable characterizing the uncer-
tainty in this measurement relative to the true derivative.
The uncertainty in the spatial derivatives is assumed to be
much smaller than the uncertainty in the temporal deriva-
tives.

Under the assumption thatn1 andn2 are governed by a
normal distribution with covariance matricesΛ1 = λ1I and
Λ2 = λ2 (it is scalar), and the flow vectorf has a zero-mean
Normal prior distribution with covarianceΛp, the covari-
ance and mean of the optical flow vector may be estimated:

Λf =

[

∑

i

wiMi

(λ1||∇g(xi)||2 + λ2)
+ Λ−1

p

]

−1

µf = −Λf

∑

i

wibi

(λ1||∇g(xi)||2 + λ2)

(7)

wherewi is a weighting function over the patch, with the
points in the patch indexed byi, andMi, andbi are the
same as matrices defined in Equation 6 but without the sum-
mation and evaluated at locationxi.

In order to handle significant displacements, a multi-
scale approach is considered that uses the flow estimates
from a higher scale to initialize the flow for a lower level.
Towards the propagation of variance across scales, a kalman
filter is used with the normally used time variable replaced
by scale. Further details of the approach may be obtained
from the original paper by Simoncelli [22].

4.2 Normalized Color Representation

SupposeR,G andB are the RGB values observed at a
pixel. Then, the normalized features are defined as:

r = R/S, g = G/S, I = S/3 (8)

whereS = R + G + B. The advantage of such transfor-
mation is that, under certain conditions, it is invariant to
a change in illumination. However, such transformation in-
troducesheteroscedastic(point-dependent) noise in the data
that needs to be modeled correctly. Assuming that the sen-
sor noise (inRGB space) is normally distributed with a
diagonal covariance matrix having diagonal termsσ, it is
not too difficult to show [11] that the uncertainties in the
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(a) (b) (c) (d)

Figure 2. (a) Original Images. Detection result using
(b) a mixture of Gaussians model (c) a non-parametric
model, and (d) our approach. Simple spatial and tem-
poral filtering was used for all algorithms.

normalized features is:

Σr,g =
σ2

S2





(

1 − 2R
S + 3R2

S2

)

(

−R+G
S + 3RG

S2

)

(

−R+G
S + 3RG

S2

)

(

1 − 2G
S + 3G2

S2

)





4.3 Combining the Features

The covarianceΣi for an observationxi (in 5D space)
may be estimated from the covariances of the components
- the normalized color and optical flow. Assuming that the
intensity and optical flow features are uncorrelated (which
may not be true in general), an expression for the covariance
matrix may be derived:

Σi =





Σr̂,ĝ 0 0

0 σi 0

0 0 Λf



 (9)

Figure 3. Detection for a traffic sequence consisting
of waving trees.

whereΛf is obtained as in Equation 7 and boldfaceO’s
represent appropriate zero matrices.

5 Results and Conclusion

5.1 Experimental Results

In order to validate the proposed technique, two different
types of scenes were considered. The first is the challenging
scene of the ocean front. Such scene involves wave motion,
blowing grass, long-term changes due to tides, global illu-
mination changes, shadows etc. An assessment of the per-
formance of the existing methods [12, 8] is shown in Fig-
ure [2]. Even though these techniques were able to cope to
some extent with the appearance change of the scene, their
performance can be considered unsatisfactory for video
based surveillance systems. The detection of events was
either associated with a non-acceptable false alarm rate or
the detection was compromised when focus was given to
reducing the false alarm rate.

On the other hand, our algorithm was able to detect
events of interest in the land and simulated events on the
ocean front with extremely low false alarm rate as shown in
Figure [5]. Large-scale experiments were conducted for this
scene using several days of videos. Over this period, there
were only 4 false alarms, occurring due to the reflection of
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moving clouds in the water. On the other hand, the algo-
rithm was able to detect simulated objects having almost no
visual difference from the ocean if they were moving in a
pattern that was different from the ocean [Figure 5 (i) - (l)].
At the same time, the algorithm had superior performance in
the static parts of the scene because of the additional use of
the optical flow component. This performance is reflected
in theROCcurves for the various methods for this sequence
[Figure 4(a)].

A typical traffic surveillance scenario was considered
next where the challenge was due to the vigorous motion of
the trees and bushes [Figure 3]. Again, our method was able
to deal with the motion of the trees and outperformed exist-
ing techniques [Figure 4(b)]. Movie files containing some
of these results have been made available on the conference
website.

Since the information needs to be stored and evaluated
for a sufficiently large temporal window, a limitation of
the approach was its high computational and storage needs.
Several optimizations can, however, be performed to reduce
such requirements and our implementation is already run-
ning at about 7fps on a160 × 120 3-band video on a Pen-
tium IV 3GHz processor using about 400 MB of RAM for
a temporal window size of 200 frames.

5.2 Discussion

In this paper we have proposed a technique for the mod-
eling of dynamic scenes for the purpose of background-
foreground differentiation and change detection [19]. The
method relies on the utilization of optical flow as a fea-
ture for change detection. In order to properly utilize the
uncertainties in the features, we proposed a novel kernel-
based multivariate density estimation technique that adapts
the bandwidth according the uncertainties in the test and
sample measurements.

The algorithm had satisfactory performance in challeng-
ing settings. Detection performance was a function of the
complexity of the observed scene. High variation in the
observation space reflected to a mechanism with limited
discrimination power. The method was able to adapt with
global and local illumination changes, weather changes and
changes of the natural scene.

We are investigating the evaluation of correlation that
may exist between the different features in a multi-
dimensional space. Also to be investigated is the use of
other features like edges. Such incorporation will again re-
quire the proper evaluation of uncertainties and their cor-
relation with other features. Last but not least, one can
consider the modeling of scenes that exhibit more complex
patterns of dynamic behavior. Such scenes may, for exam-
ple, exhibit some dependencies between neighboring pixels.
More sophisticated tools that take decisions at a higher level
and are able to represent more sophisticated patterns of dy-
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Figure 4. Receiver-Operator Characteristic (ROC)
curves for (a) “ocean” sequence and (b) “traffic” se-
quence for (i) Mixture-of-Gaussians model [12], (ii)
Non-parametric Kernels [8], (iii) Linear Prediction in
PCA subspace [20], and (iv) Our method.

namic behavior is an interesting topic for further research.
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Figure 5. Additional results for the ocean sequence
using the proposed algorithm. Note that, in Figures
(i) - (l), an object with the same visual properties as
the ocean was detected because of exhibiting different
motion characteristics (horizontal).
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