Area Preserving Cortex Unfolding
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Abstract. We propose a new method to generate unfolded area pre-
serving representations of the cerebral cortex. The cortical surface is
evolved with an application-specific normal motion, and an adequate
tangential motion is constructed in order to ensure an exact area preser-
vation throughout the evolution. We describe the continuous formulation
of our method as well as its numerical implementation with triangulated
surfaces and level sets. We show its applicability by computing inflated
representations of the cortex from real brain data.

1 Introduction

Building unfolded representations of the cerebral cortex has become an impor-
tant area of research in medical imaging. On a simplified geometry, it becomes
easier to visualize and analyze functional or structural properties of the cortex,
particularly in previously hidden sulcal regions. Moreover, if some metric prop-
erties of the cortical surface can be preserved while eliminating folds, it makes
sense to map the data from different subjects in a canonical space for building
brain atlases.

Three types of unfolded reprentations have been proposed in the litterature:
inflated, that is to say a smoothed version of the cortex retaining its overall
shape, spherical and flattened (see [1] and references therein). Three metric
properties have been considered: geodesic distances, angles and areas. Unfor-
tunately, preserving distances exactly is impossible because the cortical surface
and its simplified version will have different Gaussian curvature [2]. Moreover,
it is not possible to preserve angles and areas simultaneously.

As a consequence, early methods for cortex unfolding have settled for varia-
tional approaches, leading to a variety of local forces encouraging an approximate
preservation of area and angle while smoothing the surface [3,4]. In [1], the au-
thors point out that the result of such methods are not optimal with respect to
any metric property, and work out a method which focuses on distances only
and minimizes their distortion.

A lot of work has focused on building conformal representations of the cor-
tical surface, i.e. one-to-one, onto, and angle preserving mappings between the
cortex and a target surface, often a sphere or a plane (see [5,6] and references



therein). These approaches use a well known fact from Riemannian geometry
that a surface without any handles, holes or self-intersections can be mapped
conformally onto the sphere, and any local portion thereof onto a disk.

In our work we focus on area preservation, motivated by a general result
which ensures the existence of an area preserving mapping between two diffeo-
morphic surfaces of the same total area [7]. A method for building such an area
preserving mapping for the purpose of cortex unfolding has been proposed in
[8]. In addition, this method allows to pick, among all existing area preserv-
ing mappings, a local minimum of metric distortion. This minimum is in some
sense the nearest area preserving map to a conformal one. This mathematical
formulation is very promising but no numerical experiment is presented in the
paper. Moreover, the numerical implementation of their method is feasible only
for spherical maps.

We propose a method to evolve the cortical surface while preserving local
area, and we use it to build area preserving inflated representations of the cortex.
Our method relates both to [8] and [3,4,9]. We evolve a surface in time as in [3,
4, 9], whereas the method of [8] is static and generates a single mapping between
the cortex and a sphere. We achieve an exact area preservation as in [8], whereas
in [3, 4, 9] area preservation is only encouraged by tangential forces. Furthermore,
the latter approaches only have a discrete formulation and are specific to one type
of deformable model, whereas ours is continuous and can be applied numerically
both to triangulated surfaces and level sets.

To achieve this, we treat the normal and the tangential components of the
motion differently. On the one hand, the normal motion controls the geometry
of the surface. It is application-specific and is chosen by the user. For example,
it can be a mean curvature motion in order to obtain a multiresolution repre-
sentation of the cortex, or it can be a force pulling the surface towards a target
shape, typically a sphere. On the other hand, given the selected normal motion,
an adequate tangential motion is constructed in order to ensure an exact area
preservation throughout the evolution.

The rest of the paper is organized as follows. In Sect. 2, we present a general
method for building an area preserving motion for a codimension one manifold
in arbitrary dimensions. Given a desired normal motion, we compute a non-
trivial tangential motion such that the evolution is area preserving. In Sect. 3,
we demonstrate the applicability of our method by computing area preserving
inflated representations of the cortex from real brain data. Finally, we evoke
some potential applications of our method in other fields in Sect. 4.

2 Area Preserving Surface Motion

In this section we first explicitely state the mathematical conditions for the
preservation of the local area of an evolving codimension one manifold in arbi-
trary dimensions. This condition ensures that the total area, as well as the area
of any patch, is preserved. When the total area needs not to be preserved, we
can nonetheless preserve the relative local area, i.e. the ratio between the area



of any patch and the total area. We then derive a procedure to build an area
preserving or relative area preserving tangential motion. Finally we describe the
numerical implementation of our method with two major types of deformable
models: triangulated surfaces and level sets. In the following, we make an inten-
sive use of differential geometry. We refer the reader to [2] for the basic theory.
Note that, contrary to conformal approaches, our formulation is not limited to
a genus zero surface and applies, a priori, to an arbitrary topology.

2.1 The Total, Local and Relative Area Preserving Conditions

Let us consider an hypersurface I' in R™ evolving with speed v. We define the
local areal factor J at a point of I' as the ratio between the initial area and
the current area of an infinitesimal patch around this point. So an increasing J
indicates local shrinkage and a decreasing one local expansion. The preservation
of total area, local area, and relative area respectively write

J=1(la) ; J=1(1b) ; J=J (lc) , (1)
where ~ is the average of a quantity along I". J is related to the variation of the
total area through Ag = A J. The local areal factor J of a material point evolves

according to
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where D/Dt denotes the material derivative, and divp denotes the intrinsic
divergence operator on I'. As a consequence, the condition to be verified by
the motion for the preservation of total area, local area and relative area are

respectively
divr,v=0 (3a) ; divpv=0 (3b) ; divpv=divprv (3¢) . (3)

Note that the right-hand side of (3c) is spatially constant but is time-varying.
Also, the preservation of local area is the combination of the preservation of total
and relative area, so in the sequel we focus on (3a,c) only.

If we decompose v into its outward normal component vy and its tangential
part vy, (3a,c) become

Huy =0 (4a) ; divpvr+(n—1)Hoy =(n—1)Huoy (4b) , (4)

where N is the outward normal and H is the mean curvature. In the left-hand side
of (4b), we now better see the two different sources of local expansion/shrinkage:
one is tangential motion, the other is the association of normal motion and
curvature.

2.2 Designing a Relative Area Preserving Tangential Motion

We now outline our method to build a relative area preserving motion. We are
given a normal velocity field vy . Let us consider the solution 7 of the following
intrinsic Poisson equation on I

Arn=(n—-1)(Huy —Huy) , (5)



where Ap denotes the Laplace-Beltrami operator on I'. Finding a solution of
(5) is possible because the right-hand side is of zero average [10]. Moreover, the
solution 7 is unique up to a constant. Then one can check that

v=uoyN-Vrn (6)

verifies (4). Note that the normal motion is not altered since V7, the intrinsic
gradient of 7, is purely tangential, and that the resulting velocity is non local:
it depends on the whole shape and motion of the interface.

For a given normal velocity, there are in general an infinity of admissible
area preserving tangential velocities. The particular solution derived from (5)
is a reasonable choice since our method outputs a null tangential motion if the
normal motion is already area preserving.

In general, the given normal velocity field vy does not preserve total area,
and our method can only enforce a relative area preservation. If a strict area
preservation is required, we can either apply an adequate rescaling at a post
processing step, or integrate in the normal motion a rescaling motion —H vy (X -
N)N so that the total area is preserved.

2.3 The Area Relaxation Term

Numerical implementations of the above method may yield deceiving results.
Indeed, in pratice, (5) can only be solved up to a certain tolerance, and the
surface evolution is subject to discretization errors. As a consequence, the area
preserving condition cannot be fulfilled exactly and the area of interface patches
may drift slowly from its expected values. Thus, area preservation is likely to be
broken when the number of iterations increases.

We augment our method with an area relaxation term which encourages a
uniform area redistribution whenever area preservation is lost. This feature is
crucial to counteract local drifts in area due to numerical errors. We insist on the
fact that this additional term is not a numerical heuristic: it is fully consistent
with the mathematical formulation given above. Let us now seek the solution of

Arn:(n_1)(HvN—m)+A(1—§), ™)

where A is a weighting parameter. We build the velocity from (6) as previously.
Using (2) we get that
D(J/J)
Dt

Hence the ratio J/.J relaxes exponentially towards unity with time constant 1/\.
In our problem we have J = J = 1 for ¢ = 0 so that the solution of (8) is J = J
for all ¢ as desired. This was already the case without the relaxation term, so
at first sight this term is of no use. But in practice, numerical errors can make
J/J incidently deviate from unity. Thanks to the area relaxation term, it is now
possible to recover from this numerical drift.

=\1-J/J) . (8)



2.4 Numerical Methods

For each time step we have to solve the intrinsic Poisson equation (7). Apparently
it represents a huge computational cost. Hopefully, only the very first iteration
is expensive. Indeed, for subsequent iterations, we use the solution 7 of time
t — 1 as the initial guess for time ¢. If the shape and the normal motion change
slowly relatively to the chosen time step, the guess is likely to be very close to
the actual solution, and solving (7) is computationally cheap.

Triangulated surfaces: solving a Poisson equation on a triangulated surface
can be done with a finite element technique as proposed in [6]. Equation (7) then
translates into a linear system with a sparse symmetric positive semi-definite
matrix and can be solved efficiently with numerical iterative methods such as
the conjugate gradient method [11].

Level sets: at first sight, a level set implementation of cortex unfolding is
not feasible. Indeed, a level set representation conveys a purely geometric de-
scription of the interface. The tangential part of the velocity vanishes in the level
set evolution equation. As a consequence, it is impossible to keep point corre-
spondences or to handle data living on the interface with the straightfoward level
set approach. Some hybrid Lagrangian-Eulerian methods have been proposed to
circumvent this limitation [12]. However, for sake of stability and topology inde-
pendence, a completely Eulerian approach should be preferred. Recently, several
Eulerian methods based on a system of coupled partial differential equations
have been proposed to handle interface data in the level set framework. [13,
14] address the transport and diffusion of general data on a moving interface. In
[15], we have described how to maintain explicit backward point correspondences
from the current interface to the initial one. Our method consists in advecting
the initial point coordinates with the same speed as the level set function. This
extension of the level set method makes it applicable to cortex unfolding.

In order to solve the Poisson equation in this framework, we use a finite-
difference discretization of the Laplace-Beltrami operator proposed in [16]. Equa-
tion (7) then translates into a linear system with a sparse symmetric indefinite
matrix suited for a minimum residual method [11]. To compute the average of
a quantity along the interface, we use a smoothed version of the Dirac function
on the cartesian grid as in [17].

3 Experimental Results

In this section we focus on the level set implementation of our method and we
compute inflated representations of the cortex from real brain data. Our method
is quite flexible through the choice of the normal motion, and we could obtain a
sphere or any target shape by designing a force pulling the surface towards the
target. In order to obtain smoothed versions of the cortex, we use the well-known
and easy-to-implement motion by mean curvature vy = —H or a variant with
an additional rescaling motion vy = —H + H? (x - N) in order to preserve the
total area.



In the following experiments, the input of our algorithm is a 128 x 128 x 128
level set of the pial surface of a human brain extracted from a 256 x 256 x 256
T1 weighted MRI image with a home-made segmentation software combining
hidden Markov random fields classification [18] and topology preserving level
set deformable models [19]. To give an idea of the resolution of the surface, the
marching cube algorithm produces roughly 100000 triangles from this level set.

In Fig. 1, in order to show the benefits of area preservation, we compare
three inflated representations. The first one (row 2) was obtained with the nice
method of Fischl et al. [1]. This method minimizes metric distortion but does not
consider area. The second inflated cortex (row 3) was obtained with a standard
mean curvature motion with a null tangential motion. The third one (row 4)
was obtained with a mean curvature motion plus an area preserving tangential
motion computed with our method. As expected, the geometries of last two rep-
resentations are identical since the normal motion is the same in both cases. We
display the histograms of the normalized areal factor J/J in each case (column
d). Not suprisingly, area distortion is far smaller when using our method. In
this example, it is less that 5 percent almost everywhere. More interestingly, the
overall aspect all the representations is similar, which suggests that our method
does not induce a blow-up in metric distortion. Moreover, as shown in Table 1,
the amount of area distortion decreases when the area relaxation parameter A
increases. On the other hand, higher values of A require to use smaller time steps
and hence to perform a larger number of iterations.

4 Conclusion and Future Work

We have presented a new method to generate unfolded area preserving repre-
sentations of the cerebral cortex: depending on the normal motion driving the
geometry, an adequate tangential motion is computed to ensure an exact area
preservation. A demonstration of the efficiency of the method and a comparison
with a popular existing method have been done on real brain data.

Future work includes implementing our method for triangulated surfaces and
evaluating its benefits for the evolution of explicit deformable models in other ap-
plications. Indeed, our approach involves a good redistribution of control points
which is synonymous of numerical stability: we expect it to prevent the merging
of grid points or the formation of the so-called swallow tails. Thus, it could be an
alternative to the heuristic elastic forces or the delooping procedures typically
used to deal with these difficulties.
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Table 1. Standard deviation of J/J against A\ when using our method.
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