
Abstract. Efficient formulas for computing the proba-
bilities of finding exactly m electrons in an arbitrarily
chosen volume X � R3 for Hartree–Fock wavefunctions
are presented. These formulas allow the use of shape
optimization techniques, such as level set methods, for
optimizing with respect to X various criteria involving
such probabilities. The criterion defined as the difference
between the Hartree–Fock and the independent-particle
model probabilities of finding m electrons in X stresses
the quantum effects due to the Pauli principle. We have
implemented a 2D level set method for optimizing this
criterion in order to study spatial separation of electron
pairs in linear molecules. The method is described and
the illustrative example of the BH molecule is reported.

Keywords: Shape optimization – Hartree–Fock – Elec-
tron pairs – Probability distribution – Spatial seperator

1 Introduction

Let us consider a system of N electrons described by a
wavefunction W. The probability of having m electrons in
a spatial region X � R3 reads

pmðXÞ ¼
N

m

� � X
r1;���;rN

Z
Xm

dx1 � � � dxm

�
Z

R3nXð ÞN�m

dxmþ1 � � � dxN

� Wðx1; r1; � � � ; xN ; rN Þj j2 ;

where xi is the position variable and ri the spin variable

of the ith electron and where
n
k

� �
is a notation for

n!
k!ðn�kÞ!.

If the electrons were independent particles, these
probabilities would simply read

pindm ðXÞ ¼
N
m

� �
bðXÞm 1� bðXÞ½ �N�m ; ð1Þ

with bðXÞ ¼ 1
N

R
X q (as usual, q denotes the electronic

density).
One of us observed in previous work [1] that for

atoms the maximizers with respect to R of the criteria

R 7!JmðBRÞ ¼ pmðBRÞ � pindm ðBRÞ ;
where BR denotes the ball of radius R centered on the
nucleus, provide radii which describe very well a spatial
separation into atomic shells (for Li–Xe), a feature
which is not obtained for heavy atoms when using
widespread methods like the analysis of the radial
distribution function [2], of the Laplacian of the density
[3, 4, 5, 6] or of the electron localization function [7, 8].

The origin of criteria of analysis involving the prob-
abilities pmðXÞ can be found in the early work of Daudel
and coworkers (see, e.g. Ref [9], or more recently,
Refs. [10, 11, 12, 13, 14, 15]). We have, however, ob-
served [1] that for atoms looking directly at the proba-
bilities works even in cases when the more complex
criteria used by Daudel and coworkers (e.g. the missing
information function) fail.

The goal of this article is show that for molecular
systems, the maximizers of the criteria

X 7!JmðXÞ ¼ pmðXÞ � pindm ðXÞ ; ð2Þ
i.e. the domains X which maximize the value of JmðXÞ for
a given value of m, provide information on the chemical
structure of the system. We see Jm as a useful measure to
show the correlation enhancements of pm (for Hartree–
Fock wavefunctions it is the Fermi correlation which is
enhanced). Preliminary tests on simple molecules (we
report here the illustrative example of the BH molecule)
whose ground-state wavefunctions are evaluated within
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Received: 7 January 2003 / Accepted: 15 May 2003 / Published online: 14 January 2004
� Springer-Verlag 2004

Theor Chem Acc (2004) 111:373–380
DOI 10.1007/s00214-003-0509-4



the Hartree–Fock approximation indeed show that the
maximizers of Jm correspond to regions of chemical
significance (lone pairs, bonding, etc.), and that the level
set method is well-suited for finding them.

The article is organized as follows. The methods we
have used for searching for local maxima of the criteria
Jm are explained in Sect. 2; efficient formulae for calcu-
lating JmðXÞ for a given bounded open set X are derived
in Sect. 2.1; the notion of the shape derivative and its use
in shape optimization are described in Sect. 2.2; prac-
tical details for computing useful ovelap integrals are
provided in Sect. 2.3; lastly, a brief presentation of the
level set method is the matter of Sect. 2.4. Two examples
of applications, the analysis of the electronic distribu-
tions of the Hartree–Fock ground states of the Be atom
and of the BH molecule, are reported in Sect. 3. The
current implementation of our method is only able to
deal with atoms or linear molecules in the Hartree–Fock
approximation; extensions currently in progress are
discussed in Sect. 4.

2 Methodology

2.1 Probabilities of having m electrons in the spatial region X

When W is a Slater determinant, i.e. when

Wðx1; r1; � � � ; xN ; rN Þ ¼
1ffiffiffiffiffi
N !
p det /iðxj; rjÞ

� �
;

with

81 � i; j � N ;
Z

R3

X
r

/iðx;rÞ/jðx; rÞdx ¼ dij ;

it can be proven (the proof is postponed until the Appendix) that

8t 2 R;
XN

m¼0
pmðXÞtm ¼ det tSðXÞ þ IN � SðXÞ½ �f g ; ð3Þ

where IN is the N � N identity matrix and where SðXÞ denotes the
N � N symmetric matrix defined by

81 � i; j � N ; SijðXÞ ¼
Z
X

X
r

/iðx; rÞ/jðx; rÞdx : ð4Þ

Denoting by ½kkðXÞ�1�k�N the N eigenvalues of SðXÞ, it follows that
½ðt � 1ÞkkðXÞ þ 1�1�k�N are the eigenvalues of the matrix

tSðXÞ þ IN � SðXÞð Þ and therefore that

8t 2 R;
XN

m¼0
pmðXÞtm ¼

YN
k¼1
½ðt � 1ÞkkðXÞ þ 1� :

In particular,

p0ðXÞ ¼
YN
k¼1
½1� kkðXÞ�

and when p0ðXÞ 6¼ 0

p1ðXÞ ¼
XN

k¼1

kkðXÞ
1� kkðXÞ

 !
p0ðXÞ;

p2ðXÞ ¼
X
j 6¼k

kjðXÞ
1� kjðXÞ

kkðXÞ
1� kkðXÞ

 !
p0ðXÞ; � � �

As the algorithmic complexities of these formulas scale as
N
m

� �
, it

is more convenient to use the alternative method described later to

compute pmðXÞ for m � 2. One can indeed prove by induction that
the coefficients pmðXÞ are given by

80 � m � N ; pmðXÞ ¼ aN
m ; ð5Þ

where the ðak
j Þ0�k�N ; 0�j�k are defined by the recursion

a00 ¼ 1; and for 1 � k � N

ak
0 ¼ akak�1

0

ak
j ¼ bkak�1

j�1 þ akak�1
j ;

1 � j � k � 1

ak
k ¼ bkak�1

k�1

8>>><
>>>:

;
ð6Þ

with

81 � k � N ; ak ¼ 1� kkðXÞ and bk ¼ kkðXÞ : ð7Þ
This method allows us to compute all the pmðXÞ in OðN 2Þ opera-
tions.

Equations (5), (6) and (7) are valid for any kind of Slater-type
wavefunction. For wavefunctions obtained from restricted
Hartree–Fock calculations (RHF), the coefficients ak and bk are
also given by

81 � k � Np; b2k�1 ¼ 1� a2k�1 ¼ kRk ðXÞ;
b2k ¼ 1� a2k ¼ kRk ðXÞ ;

where Np ¼ N=2 is the number of electron pairs and where the
kRk ðXÞs are the Np eigenvalues of the Np � Np symmetric matrix
defined by

81 � i; j � Np; SR
ij ðXÞ ¼

Z
X

/iðxÞ/jðxÞdx : ð8Þ

For wavefunctions obtained from unrestricted hartree–fock (UHF)
calculations, the coefficients ak and bk are given by

81 � k � Na; bk ¼ 1� ak ¼ ka
kðXÞ;

81 � k � Nb; bNaþk ¼ 1� aNaþk ¼ kb
k ðXÞ ;

where Na is the number of a electrons, Nb the number of b electrons
and where ka

kðXÞ and the kb
k ðXÞ are the eigenvalues of the matrices

SaðXÞ (overlap of the a orbitals) and SbðXÞ (overlap of the b
orbitals), respectively.
Let us conclude this section by remarking that, still denoting by q
the electronic density, one has

bðXÞ ¼ 1

N

Z
X

q¼

1
N Tr½SðXÞ� in the general case
1

Np
Tr ½SRðXÞ� in the RHF setting,

1
N fTr½S

aðXÞ� þTr½SbðXÞ�g in the UHFsetting .

8><
>:

ð9Þ
We therefore have at our disposal efficient formulas to compute the
criteria JmðXÞ defined by Eq. (2). To make use of those formulas,
one, however, has to evaluate the overlap matrix SðXÞ. This will be
the matter of Sect. 3.

We point out that one should not make the confusion of

bðXÞ ¼ 1

N

Z
X

q ¼
X

r1 ;���;rN

Z
X

dx1

Z

ðR3ÞN�1

dx2 � � �dxN

� Wðx1;r1; � � � ; xN ; rN Þj j2

with the probability

p1ðXÞ ¼
X

r1;���;rN

Z
X

dx1

Z

ðR3nXÞN�1

dx2 � � � dxN

� Wðx1; r1; � � � ; xN ; rN Þj j2

of finding one and only one electron in the domain X. One should
remember that bðXÞ is related to the probability of finding an
electron in X, no matter where the other N � 1 are (they can be in
X, or outside X), while with p1ðXÞ we consider the probability of
finding one and only one electron in X. Notice, however, that
p1ðXÞ �jXj!0 bðXÞ.
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Another way to see the difference between bðXÞ and p1ðXÞ is to
note thatZ
X

q ¼
XN

m¼0
mpmðXÞ

is the average electron number in X (the population of the domain
X), which is, in general, different from Np1ðXÞ.

The way
R

Xq depends on X is quite different from that of pm.
Take, for example, the Be atom, and consider different spherical
shells, such as

R
Xq ¼ 2. There is a significant change in p2 (solid line

in Fig. 1), while the average is kept unchanged.
Notice also that, as

R
Xq is unchanged in this process, pind1 is not

changed with the modification of the spherical shell. Thus, Jm, the
difference between pm and the probability of having the same
average for independent particles (see Eq. 2), changes in the same
way as pm. The plot of J2 (dashed line in Fig 1) shows the curve of p2
shifted downwards by pind2 ¼ 3=8.

The maxima of pm or Jm are not always as pronounced. Consid-
ering again the Be atom, one obtains for spherical shells keepingR
Xq ¼ 1 the plots for p1 (solid line) and J1 (dashed line) shown in

Fig. 2.
For the Hartree–Fock He atom one even finds p1 ¼ pind1 : the

electrons are ‘‘independent’’ at the Hartree–Fock level. This ex-
plains that within a shell nearly constant values are observed for J1.

2.2 Shape derivatives

The most efficient procedures to find out local maxima of a real-
valued function X7!JðXÞ with respect to the shape of X make use of
the concept of the shape derivative that we formally introduce in
the following. A more rigorous presentation of the theory of shape
derivatives can be found in Ref. [16].

Consider a smooth domain X � R3 and an infinitesimal defor-
mation of it, denoted by X0, obtained by making the boundary @X
of X move with the local velocity vðxÞnðxÞ during an infinitesimal
time step, dt, where nðxÞ denotes the outward pointing normal
vector at x 2 @X and v is a scalar field on @X (see Fig. 3).

In the special case when J is defined by

JðXÞ ¼
Z
X

f ð10Þ

where f is a given continuous integrable function on R3, it is easy to
check that

JðX0Þ ¼ JðXÞ þ dt
Z
@X

f ðxÞvðxÞdxþ oðdtÞ : ð11Þ

Returning to the general case, we will say that J is differentiable at
X if there exists a real-valued function @J

@X defined on @X and called
the shape derivative of J at X such that for any v

JðX0Þ ¼ JðXÞ þ dt
Z
@X

@J
@X
ðxÞvðxÞdxþ oðdtÞ :

The shape derivative plays a major role in shape optimization
problems (just as the gradient does in standard optimization
problems). Indeed, if the deformation field vðxÞ is chosen equal to
the shape derivative

8x 2 @X; vðxÞ ¼ @J
@X
ðxÞ ð12Þ

one has

JðX0Þ ¼ JðXÞ þ dt
Z
@X

@J
@X
ðxÞ

� �2

dx

2
4

3
5þ oðdtÞ : ð13Þ

Equation (13) shows that for small dt, this deformation strictly
increases the value of J , unless X is a critical point of J , charac-
terized by the equation

@J
@X
¼ 0 on @X :

Fig. 2. The probability p1 (solid line) of finding one electron in a
spherical shell around the Be nucleus, having inner radius rmin, and
having on average one electron, from a Hartree–Fock calculation.
The dashed line corresponds to the criterion J1

Fig. 1. The probability p2 (solid line) of finding two electrons in a
spherical shell around the Be nucleus, having inner radius rmin, and
having on average two electrons, from a Hartree–Fock calculation.
The dashed line corresponds to the criterion J2

Fig. 3. Infinitesimal deformation of X obtained by making the
boundary @X move with the local velocity vðxÞnðxÞ during the time
step dt
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For finding out the maximizers of the criteria Jm defined by Eq. (2),
one then has to compute the shape derivatives of the functions pm
and pind

m ; let us start with the easier one, namely pindm . Deriving
Eq. (1), we get for 1 � m � N � 1,

@pindm

@X
ðxÞ ¼

N

m

 !
bðXÞm�1½1� bðXÞ�N�m�1; ð14Þ

fm½1� bðXÞ� þ ðN � mÞbðXÞg @b
@X
ðxÞ

and

@pind0

@X
ðxÞ ¼ N ½1� bðXÞ�N�1 @b

@X
ðxÞ; @pindN

@X
ðxÞ ¼ NbðXÞN�1 @b

@X
ðxÞ ;

the shape derivative of b being obtained by deriving Eq. (9):

@b
@X
ðxÞ ¼ 1

N
Tr

@S
@X
ðxÞ

� �
;

where we have denoted by @S
@X ðxÞ the N � N symmetric matrix de-

fined by

@S
@X
ðxÞ

� �
ij
¼ @Sij

@X
ðxÞ ¼

X
r

/iðx;rÞ/jðx; rÞ

ðsee Eqs. 4; 10; 11Þ :

For computing the shape derivative of pm, let us assume that all the
eigenvalues of SðXÞ are single (this is a technical assumption
ensuring that the eigenvalues are differentiable; the final formulae
Eqs. 15, 16, are still valid without this assumption). Using Eq. (5)
and the chain rule, the shape derivative of pmðXÞ is given for any
x 2 @X by

@pm

@X
ðxÞ ¼

XN

l¼1
aN ;l

m
@kl

@X
ðxÞ ;

where for each l the coefficients aN ;l
m are computed using the

recursion formulas Eq. (6) with

8k 6¼ l; bk ¼ 1� ak ¼ kkðXÞ; al ¼ �1; bl ¼ 1 :

Denoting by XlðXÞ a normalized eigenvector of SðXÞ associated
with klðXÞ, we obtain by deriving the system

SðXÞ � XlðXÞ ¼ klðXÞXlðXÞ
XlðXÞT � XlðXÞ ¼ 1 ;

(

the following expression

@kl

@X
ðxÞ ¼ XlðXÞT

@S
@X
ðxÞXlðXÞ :

Therefore

8x 2 @X; @pm

@X
ðxÞ ¼ Tr AmðXÞ

@S
@X
ðxÞ

� �
; ð15Þ

with

AmðXÞ ¼
XN

l¼1
aN ;l

m XlðXÞXlðXÞT : ð16Þ

Specific formulas can of course be established for RHF or UHF
wavefunctions.

2.3 Computation of the overlap matrix

In this section, we focus on the cases

– Of a linear molecule (the Cartesian coordinates are chosen such
that the nuclei lie on the z-axis).

– Of a wavefunction W originating from a RHF calculation
performed in a Gaussian basis set.

– Of a domain X symmetric with respect to rotations around the
axes of the molecule.

In order to be able to compute the probabilities pmðXÞ and pind
m ðXÞ

as well as their shape derivatives @pm

@X and
@pindm
@X along with the for-

mulas set up in the previous two sections, one has to build (and
then diagonalize) the overlap matrix SRðXÞ defined by Eq. (8).
Presently, we use the following method, which is fast enough for the
simulations we have performed up to now.

We denote by C ¼ ½Cli� the matrix of the coefficients of the
expansion of the molecular orbitals /i in the primitive Gaussian set
fvlg1�l�Nb

:

/iðxÞ ¼
XNb

l¼1
ClivlðxÞ ;

with

vlðx; y; zÞ ¼ Alxnl
x ynl

y ðz� zlÞn
l
z e�al½x2þy2þðz�zlÞ2� :

Clearly,

SRðXÞ ¼ CTRðXÞC ;

where RðXÞ is the overlap matrix of the primitive Gaussians

RlmðXÞ ¼
Z
X

vlvm :

Let us consider a domain X � R3 symmetric with respect to rota-
tions around the z-axis, and let us denote by x its trace on the half-
plane ðr; h; zÞ; r > 0; h ¼ 0f g (Fig. 4).

By symmetry, Rlm ¼ 0 if one at least of the two integers nl
x þ nm

x
and nl

y þ nm
y is odd. In the remaining case (nl

x þ nm
x ¼ 2p and

nl
y þ nm

y ¼ 2q with p and q in N), one has

RlmðXÞ ¼ AlAmWpq

Z
x

r2pþ2qþ1e�ðalþamÞr2glmðzÞdz ;

with

Wpq ¼
Z2p

0

ðcos hÞ2pðsin hÞ2pdh

and

glm ¼ ðz� zlÞn
l
z ðz� zlÞn

l
z

e�al½x2þy2þðz�zlÞ2��am½x2þy2þðz�zmÞ2 � :

Fig. 4. A domain X � R3 symmetric with respect to rotations
around the z-axis and its trace x on the half-plane
ðr; h; zÞ; r > 0; h ¼ 0f g
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By integration by parts with respect to the variable r, one obtains

RlmðXÞ ¼ AlAmWpqZ
@x

Ipþq;alþam ðrÞglmðzÞðnðr; zÞ � erÞdl ð17Þ

where @x denotes the boundary of x, nðr; zÞ the outward pointing
normal vector, er the unit vector associated with the r variable and
where

In;aðrÞ ¼
Zr

0

snþ1e�as2ds ¼ 1

2

Zr2

0

tne�atdt :

Both Wpq and In;aðrÞ can be computed analytically by recursion
formulas. The overlap matrix RlmðXÞ can therefore be easily com-
puted by numerical integration on the boundary @x (Eq. 17).

2.4 The level set method

Our optimization problem now reduces to the simulation of the
evolution of some closed surface @X embedded in R3 (or of some
closed curve @x embedded in R2 in the setting described in Sect. 3)
according to some given normal velocity field v given by Eq. (12).
This section introduces the so-called level set method, which is
commonly used in such simulations.

2.4.1 Principle

Methods of curve evolution for segmenting a domain into two or
more regions have been extensively used, for example, in the
computer vision domain where they were introduced by Kass et
al.[17]. These evolutions were reformulated by Caselles et al.[18] in
the context of curves and surfaces driven by partial differential
equation (PDE). There is extensive literature that addresses the
theoretical aspects of these PDEs and offers geometrical interpre-
tations as well as results of existence and uniqueness [19, 20]. The
level set method was first introduced by Osher and Sethian in Ref.
[21] in the context of fluid mechanics and provides both a nice
theoretical framework and efficient practical tools for simulating
such motions. For a complete tour of the level set method, we refer
the reader to Ref. [22, 23].

Let us consider a family of hypersurfaces SðtÞ in Rk , where t is
the time, that evolve according to the following dynamics:

@S

@t
¼ vn ð18Þ

with initial condition Sðt ¼ 0Þ ¼S0, where n is the unit normal
vector of S, v is a velocity field and S0 is some initial closed

hypersurface. For a generic molecular system, k ¼ 3, S ¼ @X, v is
given by Eq. (12) and S0 is some initial guess for @X, whereas
k ¼ 2 and S ¼ @x (see Fig. 4) for the case of a linear molecule and
a symmetric domain X.

In the level set method, the evolution Eq. (18) is achieved by
means of an implicit representation of the surface SðtÞ. The key
idea is to introduce a function uðx; tÞ from Rk � Rþ to R such that

8t � 0; SðtÞ ¼ x 2 Rk ; uðx; tÞ ¼ 0
� 	

: ð19Þ

Equations (18) and (19) are compatible if u is solution to the
Hamilton–Jacobi equation:

@u
@t
¼ bjruj ð20Þ

with initial conditions uðx; 0Þ ¼ u0ðxÞ, where u0 is some function
from Rk to R such that S0 ¼ fu0 ¼ 0g and bðx; tÞ is a suitable
extension to Rk � Rþ of the velocity field vðx; tÞ defined only for
x 2 SðtÞ. Such a compatibility condition can be established by
differentiation of Eq. (19) and by making use of the relation
n ¼ ru

jruj.
1. It has been proven that for a large class of functions b

and u0, the zero level set at time t of the solution of Eq. (20) is the
solution at time t of Eq. (18) (Fig. 5).

The main advantages of the level set approach with respect to
other interface tracking methods are that it can be easily imple-
mented in R2 or in R3, with a stable and accurate scheme on a
regular or adaptive grid, and that it can automatically deal with
splitting or merging surfaces (Fig. 6).

2.4.2 Bells and whistles

Details on the practical implementation of the level set method can
be found in Refs. [22, 23]. We will, however, give some hints for our
particular case.

1. The function u0 is most often chosen to be the signed distance
function to the closed surface S0 (negative inside and positive
outside S0). Note that at a further time step t, uð:; tÞ is no longer
the distance function to SðtÞ.

2. It is important to notice that bðx; tÞ in Eq. (20) is defined in
Rk � Rþ, whereas in the vector field vðx; tÞ in Eq. (18) it is only
defined for x 2SðtÞ. The extension of bð�; tÞ from SðtÞ to the
whole domain Rk is a crucial point for the analysis and
implementation of Eq. (20). There are mainly two ways of
doing this.

Fig. 5. The level set method: the evolution of a
closed curve S in R2 (right-hand side) is replaced
by the evolution of a function u (left-hand side)
such that the zero level set of the surface
fz ¼ uðx1; x2; tÞg is SðtÞ

1 Usually, u is chosen negative inside S (in X), and positive outside
(in R3 n XÞ. As a result, ru

jruj is the outward normal vector
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– Most of the time this extension is natural. A classical example
is the so-called mean curvature motion, where v ¼ HS, the
mean curvature of S in Eq. (18). In this case, one can choose
b ¼ Hu, the mean curvature of the level set of u passing though
x in Eq. (20).

– In some cases, like ours, this extension is not possible; indeed,
although the ‘‘natural’’ extension consisting in choosing
bðx; tÞ ¼ f ðxÞ for criteria of the form of Eq. (10) can be used
to extend the term @S

@X appearing in Eqs. (14) and (15) to the
whole space, this possibility has to be discarded: numerical
tests have shown that it leads to convergence towards global
maxima of Jm (typically the core shells of the heavy atoms),
whereas we are mostly interested in local mimina (lone pairs or
bonding electrons). Then one may assign to bðx; tÞ in Eq. (20)
the value of vðy; tÞ in Eq. (18) where y is the closest point to x
belonging to SðtÞ. The problem of this extension of the
velocity has been broadly studied [24, 25]. We use the solution
given in Ref. [26].

3. In the particular symmetric case described in the previous
section, only a plane curve has to be considered. Yet, as
previoulsy mentioned, a 3D implemention of the level set
method is straightforward. In that case, the algorithmic
complexity of the method is generally lowered thanks to the
so-called narrow-band implementation [27], where only the
neighbors of the zero level on the regular grid are updated.

3 Analysis of some simple systems

3.1 The Be atom

It turns out that, in general, for a given m, it is possible to
find several maxima of Jm, each having its own signif-
icance. Taking again the example of the Hartree–Fock
Be atom one can find with p2 or J2 a maximum
corresponding to the core, and another one for the
valence Fig. 7.

3.2 The BH molecule

In order to illustrate the chemical relevance of using Jm,
we consider the simple case of the BH molecule, which
presents a core, around the B nucleus, a BH bond, and
a lone pair on the opposite side (the Lewis structure
is :B:H).

A 2D level set algorithm used to optimize the crite-
rion J2 with respect to the contour @x for three different
initial guesses (top left in Fig. 8) corresponding vaguely

to the expected location of the B core shell, the BH bond
and the lone pair, respectively. The calculation was
performed on a uniform space grid (length step of
0:1 bohr) with an adaptive time step chosen between 0:1
and 1:0. The bottom-right picture on Fig. 8 shows the
contours obtained after 300 time steps, which corre-
spond to the time tN when the convergence criterion
0 � J2½XðtN Þ� � J2½XðtN�1Þ� � 10�4 is reached for the
three contours. The top-right and the bottom-left pic-
tures show intermediate positions of the coutours at the
100th and at the 200th time step respectively. The opti-
mization of the three contours takes about 20 min of
computation time on a Pentium III 800 MHz personal
computer, but this computational time can be signifi-
cantly reduced by using adaptive space and time grids
[22] and narrow-band [27] strategies. Current work in
this direction is in progress.

In the isolated B atom, integrating the density inside a
sphere of radius of around 0:70 bohr, one obtains a
population of two electrons; J2 is maximized for a radius
of around 0:72 bohr [1]. In BH, one obtains a maximum
of J2 (approximately equal to 0:53), for a deformed
sphere around the B nucleus, having roughly the same
size as the core of the free B atom. One notices a small

Fig. 6. Changes of topology for S are
handled automatically: the zero level set of
fz ¼ uðx1; x2; tÞg can split or
merge without any special treatment

Fig. 7. p2 (left) and J2 (right) for the Hartree–Fock Be atom in a
spherical shell between r1 and r2; contours from 0.1 to 0.9 in steps
of 0.1. There are two maxima, one for r1 ¼ 0 and r2 ’ 1:0, the other
for r1 ’ 1:0 and r2 ¼ þ1
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deformation, due to the ‘‘pressure’’ of the valence elec-
tron pairs.

Two more local maxima of J2 are found (J2 ’ 0:42,
and 0:43, respectively). Although sought independently,
they practically divide the space not occupied by the
core, as can be seen in the bottom-right picture in Fig. 8.
The first domain can be attributed to the B lone pair
(lower part), the other to the BH bonding pair (upper
part).

4 Perspectives

In our experience with atoms and molecules, optimizing
Jm or related quantites gives better results for dividing
space into chemically significant regions than other
existing methods. We have shown here just a few
examples, the Be atom and the BH molecule, where
the level set method proved to be an efficient tool to find
these regions. Although optimized independently, we

find that electron pairs in fact divide the space among
themselves, in accordance with chemical intuition:
electrons pairs guard the space they occupy.

We are now developing the 3D extension of the code
to be able to study any (not-necessarily linear) molecular
system. Progress is also being made in the extension to
correlated wavefunctions produced by configuration
interaction, multiconfigurational self-consistent-field or
quantum Monte Carlo calculations). A further imme-
diate extension can be made by considering spins sepa-
rately. For example, we can consider not having two
electrons in a given region, but having simultaneously
one with spin up, and one with spin down. In the future,
we also intend to investigate correlations between re-
gions, cases where m1 electrons are in one region, and m2
in another.

Appendix

Let us establish Eq. (3). When W is a Slater determinant,

jWj2 ¼ 1ffiffiffiffiffi
N !
p det /iðxj; rjÞ

� �









2

¼ 1

N !
det ½

XN

k¼1
/iðxk; rkÞ/jðxk; rkÞ�

¼ 1

N !

XN

k1;���;kN¼1
det½/iðxkj ; rkjÞ/jðxkj ; rkjÞ� ð21Þ

¼ 1

N !

X
p2SN

det½/iðxpðjÞ; rpðjÞÞ/jðxpðjÞ; rpðjÞÞ� ; ð22Þ

where SN denotes the group of the permutations of
j½1;N �j. To pass from Eq. (21) to Eq. (22) it suffices to
remark that the determinant vanishes if kl ¼ km for some
l 6¼ m. Therefore

pmðXÞ ¼
1

m!ðN � mÞ!
X

p2SN

det ~Sij;pðXÞ
� �

;

with ~Sij;pðXÞ equal to SijðXÞ if pðjÞ 2 j½1; m�j and to
dij � SijðXÞ otherwise. Thus pmðXÞ is the sum of all the
determinants obtained by selecting m columns of SðXÞ
and by replacing the remaining N � m columns by the
corresponding columns of IN � SðXÞ. Equation (3)
follows.
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