
An Improved Calibration Technique for
Coupled Single-Row Telemeter and CCD Camera

Romain Dupont, Renaud Keriven
C.E.R.T.I.S.∗

Ecole Nationale des Ponts et Chaussees
6-8 Avenue Blaise Pascal

Champs-Sur-Marne, 77455, France
Email: {dupont,keriven}@certis.enpc.fr

Philippe Fuchs
E.N.S.M.P.

60, Bd Saint-Michel
Paris, 75272, France

Email: fuchs@ensmp.fr

Abstract

Toward a successful 3D and textural reconstruction of
urban scenes, the use of both single-row based telemetric
and photographic data in a same framework has proved
to be a powerful technique. A necessary condition to ob-
tain good results is to accurately calibrate the telemetric
and photographic sensors together. We present a study of
this calibration process and propose an improved extrin-
sic calibration technique. It is based on an existing tech-
nique which consists in scanning a planar pattern in sev-
eral poses, giving a set of relative position and orientation
constraints. The innovation is the use of a more appropri-
ate laser beam distance between telemetric points and the
planar target. Moreover, we use robust methods to manage
outliers at several steps of the algorithm. Improved results
on both theoretical and experimental data are given.

1 Introduction

For urban planning, the heritage safeguard or the cre-
ation of virtual environments (3D cartography, cinema,
video games), there is a growing interest for automatic dig-
itization of urban environments. One way to build accurate
3D textured urban models is to merge two kinds of data :
telemetric data acquired with a single-row telemeter and
photographic data obtained via a CCD camera. These two
sensors are rigidly fixed on a moving car as in [9], [3], [1].
While the car is moving through the city, the telemeter ac-
quires 2D profiles which are put in the same reference, giv-
ing a cloud of 3D points (figure 1 shows an example of such
a point cloud). In same time, the CCD camera acquires a se-
quence of images which are mainly used to obtain textures
and structure information via stereovision.

This method of digitization has proved to be an effi-

Figure 1. Point cloud of an urban environment

cient way to quickly obtain satisfactory 3D textured urban
models. To use both telemetric and photographic data in
a same framework, the geometrical transformation between
the Telemeter and the Camera references must be known
accurately. If such calibration techniques exist for system
based on lighting telemeters (in such case, the laser beam
is visible) [5], [6], there are few results for telemeters with
invisible beam. One major work is the one published by
Pless & Zhang in [7]. They propose an extrinsic calibration
process : they scan a planar pattern (a chessboard) in several
poses with the telemeter and the camera, giving a set of rel-
ative position and orientation constraints. An optimization
via a gradient descent method is done to get the extrinsic
parameters between the sensors.

This paper studies this telemeter / camera calibration
process. Several improvements of this technique are pro-
posed : in [7], the residual to be minimized is the orthogonal
distance between the telemetric points and the target plane.
Yet the variances of estimation errors are not equal for each
angle of sight, inducing a bias. We introduce a more ap-
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propriate distance, which is still the distance between the
telemetric points and the target plane but along the ray of
the laser beam and hence not orthogonally. Furthermore,
we introduce robust methods to manage outliers at several
steps of the algorithm.

The outline of this paper is as follows: Section 2 presents
the acquisition system and its characteristics. Section 3
presents the laser/camera calibration process. The intro-
duction of the new distance will be described. Section 3.4
presents a more robust method for the relative orientation
estimation. Lastly, results on both synthetic and experimen-
tal data are presented in Section 4.

2 Acquisition system overview

Our system is composed of a telemeter and a CCD cam-
era hard-linked through a support. The ’optical center’ of
the telemeter is put close to the camera one, reducing the
occlusions due to a shifted point of view (see figure 2 for an
example of such a support).

Figure 2. Telemeter / CCD Camera support
(there are two cameras, but here, only the left
one is used).

2.1 Telemeter characteristics

Our telemeter is a single-row one and so sweeps a plane
in space. It gives for each angle of sight the distance to the
first obstacle. Its laser beam is invisible (class 1 IR laser)
and its distance estimation accuracy is about 5 cm what-
ever the distance to the first obstacle is. Last but not least,
the laser beam is not a perfect thin cylinder but its form is
slightly conical: at high distance, we can encounter erro-
neous distances, especially near the edges. This last phe-
nomena must be taken into account while observing the re-
sults.

2.2 Camera calibration

The calibration target (ie. the chessboard) is placed in
front of the camera. The camera calibration process is done

via Matlab with the Matlab Calibration ToolKit which uses
standard calibration methods ( [2], [8]). The reprojection
accuracy is sub-pixel (less than 0.3 pixel). Extrinsic para-
meters are estimated with an error less than 0.25 ◦for ro-
tation parameters, and less than 1 cm for translation para-
meters. These values are computed during the calibration
process 1. Actually, the accuracy depends on other para-
meters, such as the accuracy of the measures of the dimen-
sions of the target (or the size of a square of the chessboard).
These errors have been estimated empirically as about 3%
of the distance. This must be taken into consideration be-
cause the calibration process evolves in a metric reference.

2.3 Why not calibrating manually ?

Such a support allows several relative positions and ori-
entations between the telemeter and the camera. One can
approximate them manually and rigorously (which is done
in general) but it will be inaccurate:

• an error of about one degree in the estimation of the
orientation of telemeter bring important error at high
distances (for example, 1 degree covers 35 cm at 20
meters from the telemeter). Moreover, it is difficult to
estimate manually the angles around Y-axis and Z-axis
(drawn in figure 4).

• and the position of the optical center of the telemeter
is generally unknown, and not necessarily at the center
of the rotating head.

3 Calibration technique

We want to estimate R (rotation matrix) and T (transla-
tion vector) such that:

PL = RPC + T

with PL = (XL, YL, ZL)T the coordinates of laser points
in the Telemeter reference RL and PC = (XC , YC , ZC)T

in the Camera reference RC
2. A Euclidean transformation

has been chosen. Indeed, the scale of RC and RL are the
same (in millimeters) and an affine or projective transfor-
mation are useless.

The general principle is to present a planar target with
a chessboard (fig. 3) in front of the laser/camera support.
The telemeter scans the target, giving a 2D profile (seg-
ment in space) while the camera is capturing an image of
the chessboard. From this image, we extrinsically calibrate

1These errors are three time the standard deviation of estimation er-
rors (details are available on the web site: http://www.vision.
caltech.edu/bouguetj/calib doc/)

2Note: Telemetric point coordinates PL are always in the form
(0, Y, Z)T in RL, because they belong to the plane X=0
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the camera. Extrinsic parameters are then used to estimate
the target plane parameters (N ,d) in the Camera reference
such as N · x = d with N normalized.

Figure 3. Planar target with a chessboard

These telemetric points necessarily belong to the tar-
get plane, inducing constraints which are used to compute
the relative position and orientation between RC and RL.
However, these constraints would be insufficient to estimate
correctly R et T if we let the target static. Additional con-
straints will be obtained by moving the target in several
poses (rotations around the vertical and horizontal axis).

3.1 Formalization

The laser reference RL is orthogonal direct, like the
Camera reference RC . Figure 4 shows the axis directions.

Figure 4. Telemeter reference RL and Camera
reference RC

When the telemeter sweeps the target, telemeter points
PL belong to the chessboard and so verify:

N · PC − d = 0
i.e. N ·

[
R−1(PL − T )

]
− d = 0

with d, the distance between the target plane and the
camera, N the plane normal in RC (N normalized). The

target is moved in N poses and we estimate R and T by
minimizing

E =
N∑
i

∑
j

D2
ij(R, T )

with Dij , the distance from the j-th point PCj of the i-th
pose of the target. Rather than choosing the algebraic (ie.
orthogonal) distance N · PC − d, which is inadequate here
(the variances of the distance errors are not equal for each
angle of sight), we use the distance D along the laser beam
→
r (of center s) between the point PC = R−1(PL − T ) and
the target plane:

Dij =
∥∥∥PC − (s+

→
r ∗T )

∥∥∥
with

T =
(−d + N · s)

N · →r
→
r = (PC − s)
s = −R ∗ T

Intuitively, T is the time of collision between the target
plane and the ray

→
r passing through the center s . The figure

5 shows theses distances.

Figure 5. The bold lines represent the residual
distances along the laser beam. The dotted
lines represent the orthogonal distances and
the crosses represent telemetric points.

3.2 Rotation representation

The rotation matrix R is replaced by a couple (V,α),
where the vector V represents the direction of the princi-
pal rotation axis and α, the angle around this axis. Posing
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α = ‖V ‖, this representation (also called Rodriguez Repre-
sentation) takes three parameters and avoids problems met
with the ’Euler Representation’ which is not unique and not
continuous everywhere and thus inadequate for optimiza-
tion process.

3.3 Calibration process

We present the target in front of the camera/laser support
and, for each pose of the target, we extract several n 2D
telemetric profiles and one image of the target. Multiplying
the profiles reduces the error of the distance estimation by
computing, for each angle of sight, a robust mean of the
n given distances xi. We proceed as follows: we compute
the robust residual σ, also called median absolute deviation
(MAD) through

σ = 1.48 median
i

|xi −median
j

|xj | |.

We pose ri = xi−medianj |xj | the residual for each point
xi. Good results and robustness against outliers have been
obtained by removing points with |ri| > 4.7σ as recom-
mended in [4]. Then, we recalculate the residual without
the outliers and so on until stabilization. Thus, the accu-
racy increases: the estimation error evolves from 5 cm to
less than 1 cm. Then, these 3D points are segmented via a
simple algorithm which separates telemetric points belong-
ing to the target (these points are in front of the telemeter)
from the others (see figure 6). The function to be mini-

Figure 6. Segmentation of the horizontal tele-
metric 2D profile (view from above): on the
left, the origin of the telemeter and in the mid-
dle, the points of the target automatically ex-
tracted.

mized is not linear, thus the minimization of E is done with
the Levenberg-Marquardt optimization algorithm. Results
are presented in section 4.

Note that the single-row telemeter accuracy is generally
of about 5 cm, whatever the distance of the first obstacle.

So, for high distances, the relative accuracy of the telemeter
increases. Hence, the planar target must be as far away as
possible from the telemeter and have a large size such that
the camera sees it with good resolution. In our configura-
tion, its size is about 100*100 cm2.

3.4 Robust estimation of the relative orientation

If objects to be digitized are far away from the acquisi-
tion system, the accuracy of the relative position between
the two sensors is less important but the orientation be-
comes critical. The method proposed above gives good re-
sults but it is not robust against erroneous telemetric points
(outliers) and somes poses of the target may be inaccurate
due to their important angle with respect to the camera.

We add a two-steps post-processing algorithm: the first
step removes telemetric points whose residuals are more
than 4.7 robust deviation (MAD) away from the median
of all residuals D2

ij(R, T ). After removing them, we re-
estimate R and T without the outliers, and so on until
no new outlier is detected (about 3 iterations are gener-
ally needed). Moreover, in the second step, we apply the
same principle to remove poses which have a too much high
global residual. Results will be discussed in 4.2.

4 Results

These approaches are compared here, both on synthetic
and real data.

4.1 Synthetic data

Toward a ground-truth comparison, we generate syn-
thetic data via the following method: we fix T and R and
we determine n plane equations in RC , corresponding to
n target poses. These equations are those computed dur-
ing the experiments, in order to be close to the experimental
framework. These equations are then expressed in RL, we
simulate the emission of laser beams (the sweeping range
of the telemeter is empirically determined) and we compute
their intersections with the target plane. In cylindrical co-
ordinates, distances are noised according to the measured
telemeter characteristics (in our configuration, it is an IBEO
telemeter: the noise is Gaussian with a standard deviation of
5 cm).

Results are summarized in tables 1 and 2. The table 1
gives the number of iterations needed to converge to the
same accuracy and in the second column, the residual er-
ror of the estimation of the relative position between the
telemeter and the camera (expressed in millimeters). The
table 2 gives the residual of the relative orientation between
the two sensors. The errors in rotation depend on several
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Method nb of iter. transl. error

Orthogonal distance 1500 5 mm
(Pless and Zhang [7])

Our method 300 1.5 mm

Table 1. Synthetic data: relative position esti-
mation

parameters, mainly the axis of rotation and the initial pa-
rameters used for the optimization process. These errors
are grouped into an interval, explaining the presence of the
symbol ± into the table. Gaussian noise has been added
with two standard deviation: 10 and 50 mm.

Method rotation error rotation error
noise 10 mm noise 50 mm

Orthogonal dist. 0.03± 0.03 ◦ 0.30± 0.06 ◦

(Pless & Zhang [7])

Our method 0.015± 0.015 ◦ 0.05± 0.03 ◦

Table 2. Synthetic data: relative orientation
estimation

The use of the distance along the ray increases the over-
all accuracy for both translation and orientation estima-
tions. Particularly, rotation errors are divided by two. More-
over, we notice an improved robustness against local min-
ima throughout our experiments. Several experiments have
shown that even when we set a coarse initialization (up to
30 ◦ of error from the exact orientation), the optimization
process recovers the global minimum.

4.2 Experimental results

There is no ground-truth data to compare numerically the
accuracy of the calibration process. We use the virtual pro-
jection of the telemetric points into images as a comparative
criterion.

Figures 7 and 8 show these points projected using para-
meters obtained via calibration on several objects and envi-
ronments. We can see that the telemetric points are correctly
projected. Note that the optical center of the telemeter does
not coincide with the camera one, so some objects seen by
the telemeter are not seen by the camera. Hence, in figures 7
and 8, we can observe the presence of some projected points
which looks erroneous but this is just due to occlusions.

Figures 9, 10 and 11 show telemetric points projected
on a facade. Telemetric point are more accurately projected

Figure 7. Projection of telemetric points with
our distance

Figure 8. Projection of telemetric points with
our distance

with our distance. As mentioned in the subsection 2.1, the
presence of points above the facade are due to the telemeter
characteristics and not to the calibration.

Figure 9. Projection of telemetric points on a
facade with our distance

In addition, in most cases, no pose has been removed
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throughout the process: the plane orientation of each tar-
get has always been well estimated. Furthermore, a small
amount of erroneous telemetric points has been removed
during the robust step of the calibration. This is due to
the great quantity of available telemetric points and to the
robust mean computed just after acquiring several 2D tele-
metric profiles (as detailed in the subsection 3.3).

Figure 10. Zoom of the projection of telemet-
ric points on a facade with orthogonal dis-
tance.

5 Conclusion

We have made an extended study of the calibration
process and we propose an improved technique which uses
both a more appropriate distance and robust statistics. It
has been extensively tested on both synthetic and real data.
For applications requiring to build accurate 3D models, it
gives satisfactory results in regards to the characteristics of
the telemeter and the camera. Telemetric points are well
virtually projected on corresponding images.

Figure 11. Zoom of the projection of telemet-
ric points on a facade with our distance.
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