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Abstract

In this report, we propose a particle filter-based propagation approach for the
segmentation of vascular structures in 3D volumes. In our approach, successive
planes of the structure are modeled as states of a particle filter. Such a state consists
in the 3D structure, orientation, position, geometric form and appearance in sta-
tistical means. In order to account for bifurcations and branchings, we consider
a Monte Carlo sampling rule that propagates in parallel multiple hypotheses. In
order to account for prior knowledge, notions of a linear (Kalman) filter are incor-
porated within the proposed approach. The prior knowledge constrains the vessel
detection, which combines edge-driven and region-based metrics. Promising re-
sults on the segmentation of coronary arteries demonstrate the potential of the
proposed approach.





Résuḿe

Dans ce rapport, les auteurs proposent une segmentation basee sur un filtre par-
ticulaire pour les structures vasculaires dans des volumes 3D. Suivant leur ap-
proche, les plans successifs de la structure sont modeles comme les etats d’un
filtre particulaire. Un tel etat est constitue d’une structure 3D, une orientation, une
position, une forme geometrique et un model d’apparence, en termes statistiques.
Afin de prendre en compte les bifurcations et branchements potentiels, les auteurs
considerent une regle d’echantillonage de Monte Carlo qui se propoage en sui-
vant de multiples hypotheses en parrallele. Afin de tenir compte de connaissance
a priori, un filtre lineaire (Kalman) est incorpore a la methode. Des resultats pro-
metteurs sur la segmentation des coronaires demontrent le potentiel de l’approche
presentee.
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1 Introduction

Segmentation of vascular structures is a problem that arises in numerous situations
in medical imaging, in particular for cardiac applications. Coronary arteries are
thin vessels responsible for feeding the heart muscle in blood, and their segmen-
tation provides a valuable tool for clinicians to diagnose diseases such as calcifi-
cations, and stenosis. Because of the low contrast conditions, and the coronaries
vicinity to the blood pool, the segmentation is a difficult task.

Since Computer Tomography (CT) and Magnetic Resonance (MR) imaging is
now widely available, the number of patients imaged has significantly increased
these past few years. Clinicians are now interested in periodically getting new
images from the same patients to measure the development and severity of heart
diseases, there effects on the heart function, to optimize the time of surgical op-
eration, and the effectiveness of treatments. All this results in a large amount of
information to process. To automatize the process, one has to segment the coro-
nary arteries from the rest of the data first. Many techniques have been developed
recently for this task.

One may distinguish model-free segmentation techniques from model-based
methods. Among the model-free techniques, skeleton-based techniques [31] aim
at detecting skeletons, from which the whole vessel tree is reconstructed. Also,
vessel enhancement using a multiscale-structural term derived from the image in-
tensity Hessian matrix [29, 12], and differential geometry-based methods [19],
have been widely used. They both consist in characterizing tubular structures
using ratios between the Hessian matrix eigenvalues. Voxels that best fit the char-
acterization are rendered brighter than the others, and the resulting image enhance
tubular structures.

In [3], an anisotropic filtering technique, calledVesselness Enhancement Dif-
fusion, is introduced that can be used to filter noisy images preserving vessels
boundaries. The diffusivity function relies on thevesselnessfunction introduced
in [12] to filter along the vessel principal direction and not across. In the resulting
image, the background is smoothed, whereas the vessel remains unchanged.

Region growing methods [35] consist in progressively segmenting the vessels
from a seed point, based on intensity similarity between adjacent pixels. These
methods work fine for homogeneous regions, but not for pathological vessels, and
may leak into other structures of similar intensity.

Morphological operators [11] can be applied to correct a segmentation, smooth
its edges or eventually fill holes in the structure of interest, but fail to account for
prior knowledge.

Tracking approaches [17, 32] are based on the application of local operators to
track the vessel. Given a starting condition such methods recover the vessel cen-
terline through processing information on the vessel cross section [16]. Various
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forms of edge-driven techniques, similarity/matching terms between the vessel
profile in successive planes, as well as their combination, were considered to per-
form tracking.

The maximization of flux was introduced in [33] and was exploited for vessel
segmentation in [6] in low contrast conditions using vessel measures introduced in
[12]. The vectors normal to the vessel boundaries are collected using the Hessian
matrix eigenvectors collected on the points satisfying the vessel measures. The
geometric maximizing flux algorithm is then applied to recover the vessel bound-
aries.

In [2], Bouix, Siddiqi and Tannenbaum apply a method that relies on the av-
erage outward flux of the gradient vector field of the Euclidian distance from the
vessel boundary to recover skeleton points.

In [1], Armande et al. introduce a multiscale method to segment thin nets (line
where the gray level is locally extremum). First, the image is filtered by a gaussian
at a certain scale. For each scale, the image maximum curvature is computed and
based on differential properties, the points that belong to the vessels centerline are
kept.

On the other hand, model-based techniques use prior knowledge and features
to match a model with the input image and extract the vessels. The knowledge
may concern the whole structure, or consist in modeling locally the vessel. Ves-
sels template matching techniques (Deformable Template Matcher) [26] were in-
vestigated. The structure model consists of a series of connected nodes that is
deformed to best match the input image.

Generalized Cylindrical models are modified in Extruded Generalized Cylin-
ders in [24] to recover vessels in angiograms. For curvy vessels, the local basis
used for classical generalized cylinders may be twisted, and a non-orthogonality
issue may occur. This problem is solved keeping the vessel cross section orthog-
onal to the centerline, and the two normal vectors always on the same side of the
tangent vector spine, as the algorithm moves along the vessel.

Nevertheless, since vessels vary enormously from one patient to another, de-
formable models are preferred to rigid models. Deformable models can either
be parametric or geometric. Parametric deformable models [28] can be viewed
as elastic surfaces (often calledsnakes), and cannot handle topological changes.
Geometric deformable models [4, 30], on the contrary, preserve topology and
are well fitted for vessels segmentation. Like snakes, deformable models aim at
minimizing the energy computed along the model. Level sets [25] are a way to
consider deformable model for non-linear problems, such as vessel segmentation
[22]. The implicit function is defined all over the input image, and the zero-level
set determines the deformable model. To discourage leaking, a local shape term
that constrains the diameter of the vessel was proposed [23]. One should also
mention the method introduced in [21], where the optimization of a co-dimension
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two active contour was considered to segment brain vessels.
To account for the snakes sensitivity to initialization, [10] introduces snakes

determined after a learning process based on a non-parametric estimator. The
learning function uses a Parzen window estimator, with a Gaussian kernel. The
Parzen window estimator relies on feature value observations, and compare these
values with model values. The objective function is then chosen to maximize the
probability distribution of these observable quantities.

The Fast Marching algorithm was introduced as an implementation of front
propagation to recover isosurfaces for any given Riemannian metric. The Min-
imal Path algorithm [5] takes advantage of the Fast Marching algorithm to de-
termine the path of minimal weight between two points, backtracking from one
point toward the other crossing the isosurfaces perpendicularly. This method can
be considered to track vessels centerline provided that two points on the centerline
are know prior to the process.

One can claim that existing approaches suffer from certain limitations. Local
operators, region growing techniques, morphological filters as well as geometric
contours might be very sensitive to local minima and fail to take into account
prior knowledge on the form of the vessel. On the other hand, cylindrical models,
parametric active contours and template matching techniques may not be well
suited to account for the non-linearity of the vessel structure, and require particular
handling of branchings and bifurcations. Tracking methods can often fail in the
presence of missing and corrupted data, or sudden changes. Level sets are very
computational time-consuming and the Fast Marching algorithm loose all the local
implicit function properties.

To improve segmentation results, a new method must account for non-linearities
coming from two origins: branchings, and pathologies. This excludes any type of
parametric models, or linear models, which would require a particular handling for
bifurcations and non-linearities. Furthermore, the low contrast condition that fea-
tures the coronaries drove the authors toward a method that would handle multiple
hypotheses, and keep only the few most probable. The segmentation result would
not be a deterministic result, but rather the most probable state of a vessel among
several suppositions. Last, but not least, medical imaging is a field with vast prior
knowledge; therefore, the new method must account for prior knowledge. The
supposition that would math both the prior knowledge and the information pro-
vided by the input image would receive the highest probability.

In this paper, we propose a particle-based approach to vessel segmentation.
Our approach (i) combines edge-driven and region-based tracking metrics, (ii) ac-
counts for the structural and appearance non-linearity of the vessel through the
maintenance of multiple hypotheses, (iii) can address pathological cases, and (iv)
can incorporate prior local knowledge on the vessel structure through constraints
derived from a linear (Kalman) filter. The final paradigm consists of a fast mul-
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(a) (b)
Figure 1: (a) one single hypothesis is iteratively improved, (b) Collection of hy-
pothesis, iteratively selected and improved
tiple hypothesis propagation technique where the vessel structure as well as its
appearance are successfully recovered.

The remainder of this paper is organized as follows. In section 2, we motivate
vessel segmentation and introduce the concept of the proposed approach and the
features space. Random sampling and particle filters for tracking are introduced
in section 3 while vessel segmentation with notions of local prior knowledge are
presented in section 4. Experimental results and discussion are part of the last
section.

2 Preliminaries
Cardio-vascular diseases are the leading cause of deaths in USA (39%) and there-
fore there is an imminent need for automated diagnostic tools to detect anomalies
in the proper operation of coronaries. Such tools could lead to early diagnostics
of the problem and therefore prevention that eventually will significantly decrease
the mortality rate due to cardiac diseases.

One can consider the problem of vessel segmentation as a tracking problem
of tubular structures in 3D volumes. Thus given a starting position, the objective
is to consider a feature vector that upon its successful propagation can lead to the
complete reconstruction of the coronaries. The statistical interpretation of such an
objective refers to the introduction of a probability density function (pdf) that uses
previous states to predict possible new positions of the vessel and image features
to evaluate the new position. To this end, one should define

• a state/feature vector,

• an iterative process to update the density function,

• a distance between prediction and actual observation.

2.1 Particle Filters: basic concept

To explain the concept of Particle Filters, let us start with one single hypothesis
about the vessel. This hypothesis describes the location, orientation, shape and
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(a) (b) (c) (d)
Figure 2:(a) calcification, (b) stent (high intensity prosthesis), (c) branching with
obtuse angles, (d) stenosis (sudden reduction of vessel cross section diameter).
appearance of the vessel, and a probability function can measure the likelihood
of this given hypothesis. If any parameter is modified in this hypothesis, another
probability is measured and the best of these two hypothesis can be kept to de-
scribe the vessel. The best hypothesis can thus be iteratively modified to improve
the model (see [FIG. (1-a)]).

Now, instead of one single hypothesis, a collection of hypothesis can be used.
Since a probability can be associated to each hypothesis, a probability density
function can be drawn over the feature space. The less probable hypothesis can
then be iteratively replaced by the most probable, slightly modified (see [FIG.
(1-b)]).

A Particle Filter work essentially the same: each hypothesis is actually a state
of the feature space (or particle), and the collection of hypothesis is a sampling of
the feature space.

2.2 The State/Feature Vector
One can define the state of the vessel at a given time as follows:

x = (x1, x2, x3)︸ ︷︷ ︸
position

,Θ = (θ1, θ2, θ3)︸ ︷︷ ︸
orientation

, ε = (α, β, φ)︸ ︷︷ ︸
segment

, pvessel︸ ︷︷ ︸
appearance

where the vessel state vector consists of the 3D location of the vesselx , the
tangent vectorΘ, its exact position at a given cross-section (segmentation is done
through an ellipse (α (major axis radius),β (minor axis radius),φ (orientation))
and the parameters required for the pdf estimation of the appearance of the vessel
pvessel, as a mixture of two gaussians:

pvessel = ((PB, µB, σB), (PC , µC , σC)) (1)

One can assume non-linearity in the appearance of the vessel because of the
presence of calcifications, stents, stenosis and diseased vessel lumen [FIG. (2)].
Therefore simple parametric statistical models on the appearance space will fail to
account for the statistical properties of the vessel and more complex distributions
are to be considered. We consider a Gaussian mixture model that consists of
two components to represent the evolving distribution of the vessel, the blood
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Figure 3:Three vessels cross sections detected using the ribbon measure.
(PB, µB, σB) and the calcification(PC , µC , σC) subject to the constraint[PC +
PB = 1] leading to the following state vector:

ω = (x, Θ, ε, (PB, µB, σB), (PC , µC , σC)) (2)

2.3 Bayes Sequential Estimator
The Bayesian tracking problem can be simply formulated as the computation of
the present statext pdf of a system, based on observations from time 1 to time t
z1:t: p(xt|z1:t). Assuming that one can have access to the prior pdfp(xt−1|z1:t−1),
the posterior pdfp(xt|z1:t) can be computed according to the Bayes rule:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
,

where the prior pdf is computed via the Chapman-Kolmogorov equation

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1,

and

p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt

The recursive computation of the prior and the posterior pdf leads to the exact
computation of the posterior density. Nevertheless, in practical cases, it is impos-
sible to compute exactly the posterior pdfp(xt|z1:t), which must be approximated.

2.4 Prediction & Observation: Distance
Once such a recursive paradigm was built, the next and last issue to be addressed
is the definition of a measure between the distribution and the data through statis-
tical means. To this end, we are using mostly the image terms, and in particular
the intensities that do correspond to the vessel in the current cross-section. The
observed distribution of this set approximated using a Gaussian mixture model
according to the expectancy-maximization principle.

Each hypothesis is composed by the features given in [EQ. (2)], therefore, the
probability measure is essentially the likelihood of the shapeS and appearanceA
models, given the observationz:

p(S, A|z) = p(S|z) ∗ p(A|z) (3)
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assuming statistical independence of shape and appearance (which is obviously
not true in practice).

• Probability measure for shape

The vessel cross section is modeled by an ellipseε, for which theribbon
measureR is computed:

{
R = −∞ ifµint ≤ µext

R = µint−µext

µint+µext
,

p(S|z) = e
− |R|

R0

whereµint is the intensities mean value for the voxels in the ellipse, andµext

is the intensities mean value for the voxels in the ribbon around the ellipse,
such that the ribbon and the ellipse have the same area.

Since the coronary arteries are brighter than the background, the ellipse that
best matches the vessel’s cross section maximizesR (see [FIG. (3)]).

• Probability measure for appearance

For the vessel lumen pixels distributionpvessel [EQ. (1)], the probability
is measured as the distance between the hypothesized distribution and the
distribution actually observed.

The distance we use is the symmetrized Kullback-Leibler distanceD:

D =

∫
p(x)log(

p(x)

q(x)
) + q(x)log(

q(x)

p(x)
)dx,

p(A|z) = e
− |D|

D0 .

The combination of edge-driven and region-based metrics can measure the
fitness of the observation to the prior knowledge included in the state vector. Lin-
ear models are a reasonable approximation to sequential motion estimation. The
Kalman filter is the most notable example among them.

2.5 Linear Case: The Kalman Filter
The Kalman filter [18] is a set of mathematical equations that provides efficient
computational (recursive) mean to estimate the state of a process, in a way that
minimizes the mean of the squared error. The filter is very powerful in several
aspects: it supports estimations of past, present, and even future states, and it can
do so even when the precise nature of the modeled system is unknown.
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Figure 4: Kalman filters & Vessel Segmentation. The non-linearity of the ves-
sel geometric structure (in particular branching) is reflected on the Kalman filter
results.

Such a filter assumes that the posterior density is Gaussian at each time step,
and that the current statext and observationzt are linearly dependent on the past
statext−1. Such assumptions simplify the Bayesian equations to the following
form: {

xt = Ftxt−1 + vt−1

zt = Htxt + nt,

wherevt−1 andnt refer to zero mean Gaussian noise with covariance matrices
Qt−1 andRt that are assumed to be statistically independent. The matrixFt is
considered known and relates the former statext−1 to the current statext. The
matrix Ht is also known and relates the statext to the observationzt. Then, the
pdfs can be computed recursively according to the following formulas:





p(xt−1|z1:t−1) = N(xt−1; mt−1|t−1, Pt−1|t−1)

p(xt|z1:t−1) = N(xt; mt|t−1, Pt|t−1)

p(xt|z1:t) = N(xt; mt|t, Pt|t)

with 



mt|t−1 = Ftmt−1|t−1

Pt|t−1 = Qt−1 + FtPt−1|t−1F
T
t

mt|t = mt|t−1 + Kt(zt − Htmt|t−1)

Pt|t = Pt|t−1 − KtHtPt|t−1

where
Kt = Pt|t−1H

T
t

(
HtPt|t−1H

T
t + Rt

)−1

Some (negative) examples of the application of such a linear model to vessel seg-
mentation are shown in [FIG. (4)], using the state space earlier introduced and
the Kullback-Leibler information criterion to measure the distance between pre-
diction and observation. Kalman filters have been considered to track vessels in
retinal images [27] where particular handling to treat branching is considered.

However, the strong assumption of Gaussian noise and in particular the linear-
ity case make their use in vessel segmentation quite problematic. One can claim
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Figure 5:The resampling process: a random selection chooses the samples with
the highest weights where a local perturbation is applied.
that neither the observation space [FIG. (2)], nor the structure/geometric space
are linear [FIG. (4)] and such a method will fail to account for pathological cases
where such linearity is absent.

3 Particle Filters

Particle filters [7, 15] are sequential Monte-Carlo techniques that can be used to
estimate the Bayesian posterior probability density function (pdf) with a set of
samples [13, 34]. In terms of a mathematical formulation, such a method approx-
imates the posterior pdf byM random measures{xm

t ,m = 1..M} associated to
M weights{wm

t , m = 1..M}, such that

p(xt|z1:t) ≈
M∑

m=1

wm
t δ(xt − xm

t ).

where each weightwm
t reflects the importance of the samplexm

t in the pdf, as
shown in [FIG. (5)].

The samplesxm
t are drawn using the principle ofImportance Density[14], of

pdf q(xt|xm
1:t, zt), and it is shown that their weightswm

t are updated according to

wm
t ∝ wm

t−1

p(zt|xm
t )p(xm

t |xm
t−1)

q(xm
t |xm

t−1, zt)
. (4)

Once a set of samples has been drawn,p(xm
t |xm

t−1, zt) can be computed out of the
observationzt for each sample, and the estimation of the posteriori pdf can be
sequentially updated.

Such a process will remove most of the particles and only the ones that express
the data will present significant weights. Consequently the model will lose its
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(a) (b)
Figure 6: Particle filters & resampling; (a) least possible states are tolerated in
SIR, leading to a more robust segmentation in very hard non-linear cases (b) only
the most probable states are preserved in SRR

ability to track significant changes on the pdf; therefore a resampling procedure
has to be considered on a regular basis. Such a process will preserve as many
samples as possible with respectful weights. One can find in the literature several
resampling techniques. We consider two of them, the most prominent ones,

• SAMPLING IMPORTANCERESAMPLING [13] where the most probable sam-
ples are randomly selected and are perturbed to create new samples,

• STRATIFIED RESAMPLING [9] where the samples of heavy weights are pre-
served and the rest of them are re-sampled.

3.1 Sampling Importance Resampling
The Sampling Importance Resampling (SIR) algorithm [13] consists of choosing
the prior densityp(xt|xt−1) as importance densityq(xt|xm

1:t, zt). This leads to the
following condition

wm
t ∝ wm

t−1p(zt|xm
t ). (5)

The samples are updated by settingxm
t ∝ p(xt|xm

t−1), and perturbed according to
a random noise vector.

The SIR algorithm is the most widely used resampling method because of
its simplicity from the implementation point of view. Nevertheless, the SIR uses
mostly the prior knowledgep(xt|xt−1), and does not take into account the most
recent observationszt. Such a strategy could lead to an overestimation of outliers.
On the other hand, because SIR resampling is performed at each step, fewer sam-
ples are required, and thus the computational cost may be reduced with respect to
other resampling algorithms.

3.2 Stratified resampling

Stratified resampling [9] (SRR) is an alternative to the Sampling Importance Re-
sampling. The central idea is (i) to threshold the samples according to their
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weights, (ii) to preserve the samples with important weights, and (iii) to re-sample
the least expected samples.

Such an operation is performed according to a constant factor1/c, wherec is
the unique solution of

M∑
m=1

min(c wm
t , 1) = N,

whereN (< M) is the number of particles of non-zero weight. It is then proved
that the use of this threshold results into an optimum resampling process, over all
unbiased resampling algorithms, in terms of minimizing

M∑
m=1

E((Wm
t − wm

t )2),

whereWm
t is a random variable that describes all possible values thatwm

t can
take. A resampling is said unbiased ifE(Wm

t ) = wm
t .

The basic algorithm for computingc is first to order the set of weights{wm
t }m=1..M .

Then, when the smallest weightwm0
t that satisfies

M∑
m=1

min(
wm

t

wm0
t

, 1) ≤ N,

is determined, we setc = (N − Am0) /Bm0, whereAm0 is the number of weights
that are larger thanwm0

t (M −m0 for an ordered set of weights), andBm0 is the
sum of the remaining elements. Finally, the set of samples can be split into two
sets: the samples with weights above1/c will be kept for the next time step, and
the samples with weights below1/c will be re-sampled.

4 Particle Filters & Vessel Tracking

We now consider the application of such non linear model to vessel segmentation
and tracking. Without loss of generality one can assume that the root of a coro-
nary is known, either provided by the user or through some automatic procedure.
Simple segmentation of that area can provide an initial guess on the statistical
properties of the vessel

( (PB, µB, σB) , (PC , µC , σC) )

using an expectation/maximisation process. Then, one can consider the problem
of vessel segmentation equivalent to the recovery of successive cross-sections,
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along with the position of the vessel at any given cross-section. Such an ap-
proach is equivalent to finding a deterministic number of sequential statesωτ =
(xτ , Θτ , ετ ), which belong to the feature space (see Section2.2) where we use the
notion of particle filters.

In other words, given a current position of a given particle, we perform a ran-
dom perturbation on its state vectorωτ therefore creating a new configurationωτ+1

that refers to a new cross-section, as well as to the a new segment of the vessel.
Once such a configuration is available, one can recover the distance between the
prior state of the vessel and the new potential state as:

v(p|q) = e(−D(p|q)) + δ

∮

ε

e−g(|∇I|)dε

that is used within the sequential estimator to determine the strength of the new
configuration and to update the pdf of this particular particle. In practice, given
the root of the vessel, a certain number of possible (random) states are introduced
that are propagated to perform segmentation. The number of particles as well
as the resampling within such an approach are the most challenging issues to
be addressed. Once a resampling step is considered, a Kalman filter is run over
several time steps to obtain the statistical distribution model (q) that refers to prior
knowledge or prior most prominent state that is then used to update the particle’s
weight and estimate the posterior pdf.

4.1 Resampling
One should mention that several particles will converge to highly improbable con-
figurations and therefore have to be eliminated. Furthermore, the coronaries con-
sist of a tree with increasing complexity, therefore the number of particles has to
be adaptive, in particular when situations like branching arise. Regarding the ini-
tial configuration, the use of approximatively1, 000 particles gave the sufficient
results for our experiments. Based on the time needed to observe an anatomical
change on the vessel, we perform a systematic resampling according to the Sam-
pling Importance Resampling every10 cross sections. The number of time steps
between two resamplings was a compromise between low complexity and ability
to capture the anatomy of the vessel3. The preference for SIR, compared to SRR,
is motivated by the robustness of the segmentation, see [FIG. (6)].

4.2 Branching detection
When a branching occurs, the particles split up in the two daughter branches, and
then track them separately (see [FIG. (7)]). In order to detect branchings and

3One can assume that branching will be observable in at at least such a number of cross sec-
tions.
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(a)

(b)

Figure 7:(a) branching points between LCX and LAD for three patients with the
particles’ mean state overlaid, (b) the particles , clustered using K-means, follow
up the two branches.
eventually introduce new particles, simple clustering techniques are considered.
To this end, a simple K-means approach on the joint space (position+orientation)
of the particles can be considered. When the two clusters are well separated, the
number of particles is doubled and equally dispatched in the two branches. The
segmentation goes on, according to [EQ. (4)], with a bi-modal distribution.

The K-means algorithm [8] partitions N points into K disjoint clusters, mini-
mizing the sum-of-squares

J =
K∑

j=0

N∑
n=0

|xn − µj|2.

4.3 Using Kalman Filter for Prior Knowledge
One of the reasons for medical imaging being among the most successful appli-
cation areas of computer vision is the domain specific knowledge that is available
to the user. In most cases, the structures to be recovered follow a given anatomy
that, even if not inherently linear, can be so modeled to improve algorithms. To
this end, one can consider linear models for a precise prior probability estima-
tion in the particle filter framework. Such information can be used to determine
the number of particles, constrain their propagation and improve the resampling
strategy.

Vessels can be considered locally linear both in their shape and appearance;
therefore Kalman filters [18] track properly small vessel segments. Using this
characteristic, these filters have been used to provide prior knowledge. Run over
few steps, the Kalman filters give a priori knowledge that consists of statistics in
the feature space of the vessel segment:

ω = (x, Θ, ε, (PB, µB, σB), (PC , µC , σC))

This prior knowledge, computed and updated as the particle filter runs, is used
in two different ways: (i) to compute the observation pdfp(zt|xt), (ii) in the im-
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portance densityq(xt|xm
1:t, zt), to select the particles that are closer to the prior

knowledge in the feature space.

• The pixel intensity distribution((PB, µB, σB), (PC , µC , σC)), corrected by
the Kalman filter, is used as a model; the particle’s probability measure
is then equal to the distance in the distribution space between the model
and the observed distribution. That way, the statistics model is regularly
updated, and takes into account any non-linear state transition (such as dis-
eases or prosthesis for the case of coronary arteries, see [FIG. (2)]).

• The Kalman filter prior gives a precious piece of information about the po-
sition / orientation of the vessel. When the linear filter is run right before the
resampling process, the importance densityq(xt|xm

1:t, zt) (= p(xt|xt−1) for
SIR) takes account of the prior knowledge in terms of position/orientation.
Therefore, while being resampled, the particles belonging to the vessel (and
thus responding positively top(xt|xt−1), given the prior knowledge) are
more likely to be selected. The number of particles can be reduced in this
way.

The pdf p(zt|xm
t ) in [EQ. (5)] is computed from the distance between the

Kalman shape appearance predictionq and the actual observationp. The distance
we use is the symmetrized Kullback-Leibler distance:

∫
p(x)log(

p(x)

q(x)
) + q(x)log(

q(x)

p(x)
)dx.

4.4 Implementation and Validation
One should mention that several particles will converge to highly improbable
configurations and therefore have to be eliminated. Furthermore, the coronar-
ies consist in a tree of increasing complexity, therefore the number of particles
has to be adaptive, in particular when situations like branching arise. Regard-
ing the initial configuration, the use of approximatively1, 000 particles gave the
sufficient results for our experiments. Based on the time needed to observe an
anatomical change on the vessel, we perform a systematic resampling according
to the Sampling Importance Resampling every time the effective sampling size
Neff =

∑
i 1/w

2
i (wherewi is the weight of theith particle) falls below half the

number of particles. The number of time steps between two resamplings was a
compromise between low complexity and ability to capture the anatomy of the
vessel4. The preference for SIR, compared to Stratified Resampling [20], is mo-
tivated by the robustness of the segmentation.

4One can assume that branching will be observable in at least such a number of cross sections.
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Validation is a difficult part for any coronary segmentation method. The al-
gorithm has been run on 28 patients, and has successfully recovered all the main
arteries (RCA, LCA, LCX) for each patient (see [FIG. (8)]). These results have
been achieve with a one-click initialization ; a method based on a PCA on the
intensity volume gives the approximative initial direction. All patients presented
some kind of artery pathologies in one, at least, of their coronary vessels. This
means the particle filter successfully segmented both healthy and unhealthy coro-
naries.

Although the main branchings were correctly detected, some of the smaller
branchings, at the lowest parts of the vessel tree, have been missed. Nevertheless,
one can argue that their clinical use is of lower importance. However, current
studies focus on the issue of branchings for narrow vessels in very low contrast
conditions.

5 Discussion

In this paper, we have shown that particle filters can be used for vascular seg-
mentation. In the context of vascular segmentation, Particle filters sequentially
estimate the pdf of segmentations in a particular feature space. The case of coro-
nary arteries was considered to validate such an approach where the ability to
handle discontinuities on the structural (branching) as well as appearance space
(calcifications, pathological cases, etc.) was demonstrated. The main advantage
of such methods is the non-linearity assumption on the evolution of samples. Ex-
periments were conducted on several diseased patients CTA data sets, segmenting
theLeft Anterior Descendingand theRight Coronary Artery[FIG. (8)].

Introducing further prior knowledge in the segmentation process is the most
prominent future direction. Current efforts consist of the use of linear models
to account for prior information. In parallel to that, the use of non parametric,
non-linear approximations of prior knowledge, in terms of anatomy as well as ap-
pearance, could significantly increase the performance of particle filters for vessel
segmentation.
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(1) Tree

(2) Tree

(3) Tree

(4) Tree

Figure 8:Segmentation of the Left anterior descending coronary artery and Right
coronary artery in CTA (in red) for four patients (1) & (2) & (3) & (4); Different
3D views super-imposed to the cardiac volume are presented.
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