
'

&

$

%

GPU-Cuts: Combinatorial
Optimisation, Graphic Processing

Units and Adaptive Object
Extraction

Nandan Dixit
Renaud Keriven
Nikos Paragios

Research Report05-07
March 2005

CERTIS, ENPC,
77455 Marne la Vallee, France,

http://www.enpc.fr/certis/

http://www.enpc.fr/certis/

GPU-Cuts: Combinatorial
Optimisation, Graphic Processing

Units and Adaptive Object
Extraction

GPU-Cuts : Segmentation d’Objects
par Optimisation Combinatoire sur

Processeur Graphique

Nandan Dixit12

Renaud Keriven1

Nikos Paragios1

1CERTIS, ENPC, 77455 Marne la Vallee, France,http://www.enpc.fr/certis/
2Indian Institute of Technology Bombay, India,http://www.iitb.ac.in/

http://www.enpc.fr/certis/
http://www.iitb.ac.in/

Abstract

Object extraction is a core component of computer vision with application to seg-
mentation, tracking, etc. In this paper we propose a GPU graph-based approach to
object segmentation. The main contributions of our approach consist of an adap-
tive, evolving schema to update to statistical properties of the object and the use
of a local variant push-relabel algorithm to recover the global minimum of the
designed cost function. Furthermore, we propose the implementation of the me-
thod on a graphics processing unit where each node of the graph is considered as
an independent processor that is connected with the neighborhood nodes. Such a
schema recovers segmentation in an optimal and progressive manner. Promising
experimental results and important decrease on the computational complexity de-
monstrate the potentials of our approach.

—–

The authors would like to acknowledge Prof. Boykov [6] from University of Western
Ontario, Canada for pointing out the concept of considering graph-based optimization
approaches on graphics processing units and provide references for the push-relabel algo-
rithm for the parallel implementation of the mim cut/max flow algorithm.

Résuḿe

L’extraction d’objets est un sujet central dans la vision par ordinateur et a des
applications dans la segmentation, le suivi (tracking), etc. Dans cet article, nous
proposons une ḿethode de segmentation sur GPU basée sur les graphes. Les prin-
cipauxéléments sont une misèa jour évolutive et adaptative des propriét́es sta-
tistiques de l’objet, ainsi que l’utilisation de l’algorithme de variation locale des
”push-relabel” pour trouver le minimum global de la fonction de coût choisie.
De plus, nous proposons l’implémentation de cette ḿethode sur un GPU tel que
chaque noud du graphe est considéŕe comme un processeur indépendant connecté
à ses nouds voisins. Une telle méthode donne une segmentation de façon optimale
et progressive. Des résultats exṕerimentaux promettants et une importante baisse
de la complexit́e algorithmique sont la preuve du potentiel de notre approche.

Contents

1 Introduction 2

2 Push Relabel Algorithm 3
2.1 Overview . 4
2.2 Implementation. 6
2.3 Parallel Push-Relabel. 6

3 Image Segmentation & Object Extraction 7

4 Graphics Processing Units & Push Relabel 8
4.1 Graph nodes and pixels. 9
4.2 Texture representation of Graphs:. 10
4.3 Push-Relabel on Pixel shader. 10
4.4 Notions & Approximations from Parallel and Distributed Pro-

gramming . 12
4.5 Incremental Segmentation. 12

5 Conclusions 13
5.1 Experimental Evaluation. 13
5.2 Future Directions. 14

2 GPU-Cuts and Adaptive Object Extraction

1 Introduction

Image segmentation has been heavily addressed in computer vision. Statistical
methods [8], snake-driven approaches [17], variational and level set techniques
[22], model-based methods [10] and graph-based techniques [7] are well received
formulations to address the problem. Unconstrained segmentation is a problem
with important complexity. In the most general case neither the number of classes
nor their characteristics are known. On the other hand, object extraction refers
to the separation of the object from the background and therefore is a tractable
application. In particular model-based segmentation is of increasing interest in
domains like medical image analysis.

Snake-driven techniques perform object extraction through the optimisation of
a cost function, that consists of image and smoothness terms. Such an approach
is quite popular to object extraction and has been exploited in multiple ways.
Dynamic programming, Lagrangian formulations and level set methods [21] are
some of the techniques considered within this formulation. To this end, an initial
surface is propagated towards the object boundaries according to the image term
while being constrained to be regular.

Convergence to local minimum is the most important argument against the
use of such techniques. Recent advances in the area of combinatorial optimisa-
tion have made this domain of increasing interest in computer vision. The use
of graph-based techniques to the extraction of minimal paths [4], segmentation
and object extraction [7, 27], motion analysis and tracking [23] and stereo [18]
are some examples. In [7] connection between minimum cost curs in graphs with
MRF-based segmentation [13] is presented while in [3] an interactive approach to
dual segmentation is proposed using the max/min flow. In [24] the normalised cuts
criterion is introduced that is based on measuring the dissimilarity between the
different classes and similarity within the classes. A different graph partitioning
approach was proposed in [15] that attempts to find sets with a low isoperimetric
ratio that is a more geometric constraint when compared to previous graph-based
techniques.

The strongest argument to the use of combinatorial techniques is their abil-
ity to determine the solution that corresponds to the global minimum at least for
the dual case. The Max-Flow/Min-Cut flow algorithm [12] is the most promi-
nent technique. The push-relabel algorithm [14] is an alternative technique to
address the same task with certain additional complexity. The solution is recov-
ered through the propagation of maximum information (flow) from a node to its
neighbourhood. Such a concept - the one considered in this paper - can make
object extraction a rather dynamic process where the statistical properties of the
different classes could be updated according to a dynamic fashion.

In the past decade, the computational power that is provided by the graphics

CERTIS R.R. 05-07 3

card has exploded. In addition to this, the graphics processing unit(GPU) of the
modern graphics cards is very easily programmable. In light of this, there has
been increasing focus on performing general purpose computation on the GPU
in numerous domains [1] including image processing, computer vision [19] and
visualisation. In this paper we propose the implementation of a parallel version
[2] of the push-relabel algorithm [14] to address image segmentation in a graphics
processing unit through a max flow/min cut approach [11]. Once certain approxi-
mations are made, one can claim a significant decrease of computational complex-
ity that allows object extraction in a rather adaptive manner. In other words one
can tolerate several passes where the statistical properties of the different classes
could be updated according to a dynamic fashion.

The reminder of this paper is organised as follows. In section 2 we introduce
the push relabel algorithm, while in section 3 an approach to adaptive object ex-
traction is proposed. The use of graphics processing units is considered in section
4 while some comparisons regarding the computational aspect of the approach
and some experimental results are presented in section 5.

2 Push Relabel Algorithm

Let us consider a directed acyclic graph withN nodes that when can be seen
as the image pixels where segmentation labels are to be attributed. We restrict
our approach to the case of binary segmentation that consists separation of an
object from the background. One can introduce that within the graph notation
through two special vertices the sources and the sinkt which correspond to the
two segmentation classes.

Given such a graph, a cut-set is the set of edges which when removed make the
graph disconnected while the min-cut is a cut-set for which the sum of the weights
of edges is minimum. This idea was explored in [7] leading to a pioneering seg-
mentation approach. The Push Relabel Algorithm [14]consists of modelling a
directed acyclic graph as a flow network with a source and a sink and capacities
on each edge.

Under such a definition, one can consider two main problems: (i) the min-cut
problem for a network flow that is equivalent with finding a min-cut that discon-
nects the source from the sink, (ii) the max-flow problem refers to the assignment
of flow values to each pipe in a network such that we achieve the maximal flow
from the source to the sink. The max-flow problem is assignment of flow values
to each pipe in a network such that we achieve the maximal flow from the source
to the sink.

Let G = (V,E) be the a graph with two special vertices the sources and
the sinkt. One can introduce for any pair of verticesu , v a capacity measure

4 GPU-Cuts and Adaptive Object Extraction

c(u, v) that is zero in the absence of arc betweenu to v. It was shown [12] that
establishing the maximal flow is equivalent with finding the min-cut on the graph
according to the following constraints on the flow betweenu,v

• f(u, v) ≤ c(u, v),

• f(u, v) = −f(v, u)

• ∑
u∈V f(u, v) = 0,∀ v ∈ {V − {s, t}},

Thus, the max-flow problem is to maximise
∑

u∈V f(u, t) where the maximum
flow that an arc can carry is the weight(capacity) of the edge in the graph. One
can further facilitate the optimisation process through the introduction of pre-flow
constraints [16] ∑

u∈V

f(u, v) ≥ 0,∀ v ∈ {V − {s}},

that are like flows, with one exception, that a vertex can have an excess of inflow
over the outflow.

2.1 Overview

The central idea behind the push-relabel [14] algorithm is to change the flows that
are assigned to arcs, and try to push the excess flow towards the sink along the
arc that appears to be on the shortest path. Once such a condition (excess flow be
pushed to the sink) cannot be fulfilled, a saturation is observed and the remaining
excess has to be pushed back to the source. Upon completion of the process, the
resulting flow assignment can then be used to determine the the max-flow from
the source to sink3.

To perform such a push operation, one should be able to determine the shortest
path along the available outgoing arcs and therefore, the notion of graph labels are
introduced. We assign a numeric labelω(u) at each graph nodeu thats refers to
an under-estimate of the shortest non-saturated path length from that node to the
sink.

During the course of the push-relabel, we will impose mostly the first two
min-cut constraints

• f(u, v) ≤ c(u, v), f(u, v) = −f(v, u)

while allowing the flow conservation to be violated, as we maintain pre-flows.
Last, but not least instead of keeping track of the flows in the arcs and the capac-
ities, we only keep track of the residual capacities in all vertex pairs, which we
define asr(u, v) = c(u, v)− f(u, v). One can now introduce:3 The case of bin segmentation consists of attributing pixels to either class (out of two) and
finding the max-flow between them.

CERTIS R.R. 05-07 5

Flow excess: The flow excess at a node is the excess of the inflow over the
outflow at that node. That is,excess(u) =

∑
u∈V f(u, v). The pre-flow constraint

keeps the excess non-negative.

Active nodes: A node is said to be active if its excess is non-zero and the corre-
sponding label is notn. The algorithm consists of two operations on nodes, Push
and Relabel. These operations are only carried out on active nodes.
Push operation: A flow Push is applicable fromu tov if, u is active,r(u, v) > 0
andd(u) = d(v) + 1 The last condition is to ensure that we push the flow only in
paths that are estimated to be closest to the sink. When we carry out this push, of
a flow valueδ we decreaser(u, v) by δ and increaser(v, u) by the same amount.
The value ofδ is dictated by the pre-flow constraint and capacity constraint.

r(u, v) = r(u, v)− δ & r(v, u) = r(v, u) + δ

excess(u) = excess(u)− δ & excess(v) = excess(v) + δ

Where,δ = min(r(u, v), excess(u)) which comes from the pre-flow constraint
and capacity constraint.

Relabel operation: The Relabel operation on a vertexu involves increasing
d(u). A relabel is applicable onu if u is active and for every vertexv which has a
non-zero arc fromu in the residual graph,d(u) ≤ d(v). The new value ofd(u) is
set as

d(u) = 1 + minr(u,v)>0(d(v))

that is an under-estimate of the distance to sink.
Once such a set of definitions and operations are available one can introduce

thepush-relabel algorithm as follows:

• Init: Set the label of the source to be infinity. Label of all other nodes is
initialised as zero. In practice, the label of the source can just be a large
enough value(N) that the nodes connected with the sink will never reach.

• Init Pre-flow: For all u push a flowδ from the sources to u, whereδ =
c(s, u)

• Push-Relabel Loop:While there is an active node, pick an active nodeu. If
there is a push applicable on an arc(u, v) then do the flow push, else relabel
u. When there is no active nodeu left, exit.

Upon termination of the algorithm -O(n3) time - there will be no active nodes
left, that is, the pre-flow has become a flow. This is also a maximum possible flow
in the network [14]. To obtain the partition of the graph(S, S̄). We put inS, all
nodes which do not have a path to the sink in the residual graph, and all the nodes
which can reach the sink in the residual graph formS̄.

6 GPU-Cuts and Adaptive Object Extraction

Although the algorithm isO(n3), a vanilla implementation of push-relabel
turns out to be slow in most cases. This is in large part due to the incorrect es-
timates for the distance to the sink. And since our relabel operation changes the
label of only one node at a time, it takes a large time for the correct estimates to
kick in. Attempts like global relabel have been made to cut short on these times
and have a proper distance estimate.

The basic idea of this is to simply do a breadth first search (bfs) starting from
the sink as the root, and set the label of a node to be nothing but the distance from
sink we get in the bfs. If we do this bfs in the residual graph at regular intervals,
the performance of the algorithm improves significantly.

2.2 Implementation

The efficiency of the push-relabel method depend on the ordering of the push and
relabel operations. In [14] and then in [9], the authors introduce three families of
heuristics.

• The first one consists in pushing as many flow as possible from a vertex
before eventually relabelling it. This is thedischargeoperation. A efficient
implementation of this operation uses, for each vertex, a rotating list of its
edges, so that no particular edge is considered more than the others.

• The second issue is the order in which active vertices are processed. Main-
taining a FIFO queue of the active vertices seems to be less efficient than
processing the vertex with the highest label.

• Because update operations are local, the methods loses the global picture of
the distances to the sink. Theglobal relabellingheuristics uses a backward
breath-first search to restore the labelling to the distance to the sink in the
residual graph. Performing it periodically improves the running time. One
can also use agap relabellingheuristic, consisting in finding the smallest
positive value not used by any label. It such a value exists, all the vertices
with a greater label can directly be labelled toN .

Based on these ideas, the authors of [9] present a very efficient ”HPRF” imple-
mentation of the push-relabel method from IG [26].

2.3 Parallel Push-Relabel

In [14], the authors present a simple parallel push-relabel implementation, where
each process holds one vertex. The discharge operation is just slightly modified,
giving what we will refer to as theparallel dischargeoperation. First, all the

CERTIS R.R. 05-07 7

vertices push flow at the same time but update their own excess and residual ca-
pacities only, ignoring the corresponding updates of their neighbours. In a second
time, they all relabel themselves if necessary. As a third and last step, the vertices
are informed about what their neighbours had pushed during the first step and
eventually update their excess and and residual capacities.

In [2], a way to get some kind of parallel global relabelling using successive
waves is presented. The resulting algorithm is easy to implement (please see the
original paper for detail). We will refer to it as thewaves relabellingheuristic.
Bothparallel dischargeandwaves relabellingare data parallel SIMD algorithms,
thus good candidates for a GPU implementation.

3 Image Segmentation & Object Extraction

Once the general optimisation framework has been presented, one now can con-
sider the case of object extraction. Such a problem consists of creating a partition
of the image domain into two classes. Therefore, using the notions of combinato-
rial optimisation, one can consider a graph [7] where each node of the graph cor-
responds to an image pixel, while the object refers to the sink and the background
to the source. Furthermore, one can introduce local dependencies and smoothness
constraints through arcs going from a node to the nodes that correspond to the
neighbouring pixels in the image. Once such an equivalence is introduced, one
can see segmentation as the assignment of a labellingL(Ω) at the image domain
according to:

E(L(Ω)) = Edata(L(Ω)) + αEsmooth(p(L(Ω))

whereEdata(p(I|L(Ω)) is a term that accounts for dependencies between labels
and observations, whileEsmooth(p(L(Ω)) introduces the notion of smoothness on
the labelling process. Let us without loss of generality that some prior knowledge
on the statistical properties of the backgroundpB(I) and the object is knownpO(I)
that are the conditional densities with respect to the appearance of the two classes.
Then one can introduce the image term as follows:

Edata(L(Ω)) =∑

ω∈L(O)

−log [pO(I(ω))] +
∑

ω∈L(B)

−log [pB(I(ω))]

whereL(O) (resp.L(B)) are the image pixels assigned to the object (resp. back-
ground). Smoothness constraints aim at penalising discrepancies among labels at
the local neighbourhood scale;

Esmooth(L(Ω)) =
∑
ω∈Ω

∑

φ∈N (Ω)

V(ω, φ)

8 GPU-Cuts and Adaptive Object Extraction

whereV(ω, φ) could be defined in the following form:

V(ω, φ) =

{
0, if L(ω) 6= L(φ)

α, if L(ω) 6= L(φ)

with α being a positive constant. Such a term will force segmentation to be locally
smooth even in the cases where discontinuities on the data itself arise. Therefore
it is natural to relax such a constraint when the data refers to discontinuities, or

V(ω, φ) =

{
0, if ω = φ

α|IS(ω)− IS(φ)|, if ω 6= φ

where the input imageI was convolvedIS with a Gaussian operator to account
for local discrepancies due to noise. Such a problem can be represented using a
directed acyclic graph withN nodes, where its node is connected with the:

• sink according to:−log [pO(I(ω))]

• source according to:−log [pB(I(ω))]

• neighbouring nodes according to:α|IS(ω)− IS(φ)|.

One can consider the push-relabel algorithm approach for the optimisation of such
a cost function on a standard CPU. However, as it was shown in [5], the CPU non-
parallel version of the push-relabel algorithm is far more inefficient than its rivals.
On the other hand, the algorithm proposed in [5] cannot be considered in a parallel
version and therefore it would be interesting to compare it with the GPU parallel
version of the push-relabel algorithm.

4 Graphics Processing Units & Push Relabel

Towards optimal implementation of the push-relabel algorithm, it is important
to understand the GPU computational platform and in particular the graphics
pipeline. Scene rendering on a graphics card is a multi-step process. The specifi-
cation of geometric shapes in terms of meshes (vertices forming convex hulls) is
the first step. Such a mesh is then rotated according to viewing angle, providing
a projection where textures are applied at a per-pixel level. Therefore one can
introduce two classes of processing

• Operations that involve processing each vertex of the mesh: rotation, scal-
ing, 2D projections, etc.

CERTIS R.R. 05-07 9

• Operations that have to be done on each pixel of the rendered scene: apply-
ing textures, illumination, per pixel processing, etc.

Consequently, most modern GPUs have two programmable processors: (i) the
vertex processor that performs operation of the first class and (ii) the pixel pro-
cessor, that refers to operations of the second class. In other words, the pixel
processor - in normal operation - take as input the coordinates of pixels and the
corresponding texture, and outputs the colours at each pixel in the final rendered
image. It is important to note that processing for each pixel is done in a parallel
fashion.

Therefore, one can conclude that the use of the pixel processor is adequate for
doing parallel computations on a large number of nodes, that is the case of the
push-relabel algorithm. Different type of operations are supported by the pixel
shader:

• Arithmetic Operations:scalar and vectorial operations are supported with -
in most of the cases - limited support for integers.

• Logical Operations and Conditionals:scalar and vector logical operations
are supported as well as conditional assignments.

• Texture operations:The pixel shader have support to look up the texture
values of a point using a vector that describes its texture coordinates , the
most prominent component of the pixel processor.

Shader Model is a standard for vertex and pixel processor specifications. The
newer shader model 3.0 is much more conducive for doing general purpose com-
putation. In order to implement the push-relabel algorithm on the GPU, several
aspects are to be addressed:

4.1 Graph nodes and pixels

The pixel processor is used to do parallel computation on the nodes in our Graph.
To process nodes on the pixel processor we need to have a scheme of assigning a
pixel to every node that is trivial in the case of the rectangular grid nature of the
graph when the problem of image segmentation is considered. Since the source
and the sink are never active and hence never need processing, the remaining
nodes are a perfect grid, where each pixel corresponds to a graph node. However,
passing the graph structure to the card is not as trivial as the node assignment
since the structure along with all the modifications have to be stored on the card.
Textures are the only available storage media, where the graph structure is to be
mapped.

10 GPU-Cuts and Adaptive Object Extraction

4.2 Texture representation of Graphs:

In order to store all the information about a residual graph, in addition to the nodes
we also need the residual capacities on the arcs between the nodes and arcs to the
sink and from the source. On top of that for push-relabel, we also need to store
the excesses at every node and the labels. Such information has to be packed into
textures from which the pixel shader can extract all the required values. To this
end, we use textures with4 attributes(rgba) at each coordinate.

The graphics card we used offered eight bits per attribute. Hence the values
of the attribute are in the range of0 − 255. In our implementation of image
segmentation, we only generate planar grid graphs which always have degree4
4. Therefore, the capacities of all4 outgoing edges (arcs) are packed into a single
texture. On the other hand, the capacities of the incoming edges are available
through the neighbouring texture locations. The excesses and the labels and stored
in a difference texture. Since they can grow and be larger than the0 to 255 range
offered by the8 bits, we use two attributes to store excess and two to store the
label of the graph node.

Last, but not least the source and sink links arcs are stored in a texture with
two attributes(16 bits) for each of the source and sink arc.

4.3 Push-Relabel on Pixel shader

One of the major constraints of the pixel shader is that it can render a limited
number of targets at a time and often there is a limit on the instructions number on
the pixel shader code5. The biggest constraint on the pixel shader was the small
instruction limit. To counter this, the basic idea was to split the code for flow
pushing into many parts, each pushing flow in a particular direction if permitted
by the labels and the capacities.

On top of that while for the shader model 3.0 we can renter/modify4 textures
at a time, only one texture can be modified for our original implementation on the
ATI Radeon 9800 Pro card which fully supports Shader Model 2.0(SM2). There-
fore, it is important to introduce a procedure that effectively splits each operation
of pushing or relabelling to a certain number of steps. Such a procedure will be
of interest even for the implementation of the algorithm on the Shader Model 3.0
when a neighbourhood system with more than4 (substantial number) connections
is considered.

Without loss of generality we will assume that a single texture can be modified
at a time that was the case for the Radeon 9800 Pro card model. Then, we propose
to split a single operation of pushing or relabelling according to3 steps on the

4The source and the sink links are introduced in a separate manner.
5Radeon 9800 Pro card (Shader Model 2.0(SM2)) can not go beyond 96 instructions.

CERTIS R.R. 05-07 11

pixel shader where such a step refers to the smallest unit of processing that can
be invoked on the shader. In such a scenario, (i) the first step determines which
operation is to be performed, while (ii) subsequent steps modify a texture based
on the output of the first technique. One can alternate between these steps (mod-
ification of the texture representation) to accomplish push-relabel on the graph.
The operation to be performed is dictated by the first step, and is either push or
relabel. On top of that one should the push direction and either the push value or
the new label.

Action Instruction: The Push Relabel involves two operation on active nodes:
Push and Relabel. This technique determines which operation is applicable on
the node. On top of that if the ”push” is applicable this action determines theδ
while for the ”relabel” case it determine the new label. This happens on the pixel
shader, hence is done for all the nodes in parallel. The first step involves looking
up arc capacities and labels from the textures where texture lookup functions are
used. Initial action consists of pushing the flow to the sink. If such an action is not
possible, we try to push flow to any of the4 neighbouring nodes and the source. If
the push of flow is not possible, we relabel with the new label while for non active
nodes no action takes place.

Subsequent Techniques: Once the action to be performed inaction instruction
has been determined, the subsequent techniques consists of bookkeeping, modify-
ing the residual arcs, labels and excesses in agreement with theaction instruction.
It is worth mentioning that such techniques are to be synchronised with the op-
erations performed at the neighbouring pixels ofu. Pushes from neighbouring
pixels change the excess and arc capacities of arcs going out ofu as well. The
above techniques are applied in a loop until no active nodes are left. For checking
completion, we have to move the textures to the cpu, where we check the excesses
of all nodes. When the excesses of all nodes become zero, we are done, the nodes
with labels greater thanN are on the source side (background) and the remaining
ones are with the sink (foreground).

As it was earlier explained, one can performglobal relabel to further acceler-
ate the convergence to the optimal solution. Such a step can be considered either
on the graphics card or at the CPU. Both methods have been implemented and
an experimental comparison between the two methods was considered. We came
to the conclusion that for well structured graphs related with image segmentation
problems their difference is marginal and therefore for global relabelling takes
place on the CPU. Based on the experimental results presented in [FIG. (1)] the
speed up factor of the parallel version is marginal when compared to its CPU
version. On the other hand using some theoretical notions from parallel and dis-

12 GPU-Cuts and Adaptive Object Extraction

(i)

(ii)
(a) (b) (c) (d)

Figure 1:(i.a) input image, (ii.b) optimal segmentation, (ii) approximate segmen-
tation using : (a) 5 discharges, 35 ms, (b) 10 discharges, 70ms, (c) 15 discharges,
105 ms, (d) 20 discharges, 140ms.

tributed programming and certain approximations one can overcome the need of
global relabelling and can boost the GPU version of the algorithm.

4.4 Notions & Approximations from Parallel and Distributed
Programming

One can claim that relaxing the constraint of having an efficient vertices ordering
as well as efficient relabelling scheme, does not eliminate the ability of recovering
the global minimum. In [25] the authors observe that the minimum cut is most of
the time near to the source or near the sink.

In computer vision applications like segmentation, it seems to be so where
most of the minimum cut turned out to be near the sink. This means that one
practically does not have to wait for the vertices that will be with the source to
get a high label. Starting from a 0 label, after a very few parallel discharges, all
the vertices that have a label greater than a small constant, can be approximatively
considered as sources vertices, and the other ones as sink vertices. Examples
of such an approach are shown in [FIG. (2,3)] where results obtained through
different numbers of discharges are presented.

4.5 Incremental Segmentation

Once such an implementation is available, one can consider the use of various
image and smoothness terms to perform object extraction. The piece-wise con-
stant Mumford-Shah approach [20] consists of segmenting and reconstruction the

CERTIS R.R. 05-07 13

image using piece-wise linear functions.

Edata(L(Ω), µO, µB) =∑

ω∈L(O)

(I(ω))− µO)2 +
∑

ω∈L(B)

(I(ω))− µB)2

Furthermore, one introduce the edge weights without taking into account data
discontinuities [4] leading to a graph-based definition of the piece-wise constant
Mumford-Shah approach [20], that was used for our experiments.

5 Conclusions

In this paper we have proposed a fully distributed discrete optimisation approach
to image segmentation on graphic processing units. Such an approach is based on
recent advances on combinatorial optimisation related with the max flow/min cut
problem. In most of the cases [FIG. (2)] we can only claim a marginal decrease
of the computational cost when comparing the approach with its CPU version.

Under certain approximations one can observe a substantial decrease of com-
putational cost. On the other hand a more de-favourable comparison with the
graph-cut algorithm [5] was observed when the optical solution was the objective.
One can argue though that when approximations are considered such comparisons
turns in favour for the GPU approach. Furthermore, given the expected evolution
of the GPU in terms of speed, memory and operations (dynamic branching, etc.)
the proposed approach inherit enormous potentials.

5.1 Experimental Evaluation

All the tests are done on a simple graph issued from a 2D segmentation problem
using 4 neighbours only. We do perfectly know that on such graphs, the graph-
cuts method is more efficient than the push-relabel one. Tests on more complex
regular graphs are perfectly feasible using the multi-target rendering capacities
of the recent GPUs. On such graphs, we expect the push-relabel to be a serious
candidate.

We first used an ATI Radeon 9800 Pro GPU with no multi-target rendering
and a limited number of instructions in each pass. With a 256x256 image, each
parallel discharge operation takes 43ms. On an Nvidia GeForce 6800GT GPU,
the same operation takes 15ms only. Yet, this GPU permits multi-target rendering
and a less limited number of instructions version which takes 2.6ms only. In the
same conditions, a 512x512 image needs 9.2ms for each parallel discharge and
29ms are needed for a 1024x1024 image. This gives us a discharge rate of more
than 36 millions of single vertex discharges per second. On a Pentium4 running at

14 GPU-Cuts and Adaptive Object Extraction

SIZE PR GPU GPU+GR GPU+∗

256x256 170ms 910ms 950ms 10-50ms
512x512 870ms 9200ms 3200ms 35-140ms

1024x1024 1820ms 125000ms 95000ms 150-700ms

Figure 2: Execution times for the results presented in [FIG. (1)] using the
Nvidia6800Pro card; (PR) Push Relabel on the CPU [26], (GPU) Push Relabel
on the GPU, (GPU+GR) Push Relabel on the GPU and Global Relabelling on
the CPU, (GPU+∗) approximation of the Push Relabel on the GPU with limited
number of discharges.

3.0Ghz, the sequential algorithm [26] gives a less than 0.6 millions of discharges
per second.

Yet, our parallel algorithm lacks of any heuristics on the ordering of the up-
dated vertices, and will obviously never have one, just because all the vertices are
continuously updated. As a result, our implementation reaches the global mini-
mum latter than the sequential HPRF version, just because a lot more discharges
are needed! On a 256x256 image, we need almost 350 parallel discharges and
nearly 1 second, whereas the HPRF terminates in no more than 180ms. With a
512x512 image, its even worse: 1000 discharges and nearly 9 seconds instead of
870ms for the sequential version.

Global relabelling is also a crucial heuristic in order to obtain the global min-
imum. We have tested thewave relabellingof [2]. Yet, this algorithm needs a
nearlyN parallel discharges to get the waves reach all the vertices. As a con-
sequence, it is more adapted to complex graphs where the sequential algorithm
would have passed through a lot of updates, anyway. The running times we get
with waves relabelling are similar to the ones without it: it sometimes reduces the
number of discharges, but handling the waves gives a nearly 25 percent slower
discharge operation. Another solution is to perform global relabelling and gap
relabelling of the CPU. This really decreases the number of discharges. Yet, it
supposes to read the data from the GPU back to the CPU, which is still a rela-
tively slow operation. On an 512x512 image, each global relabel takes 80ms, for
a total running time of nearly 3 seconds, which is still more than 3 times slower
than the CPU HPRF version.

5.2 Future Directions

The implementation of the method to account for 3D data is a natural extension
of our approach. Furthermore, it was shown that for more complicated neigh-
bourhood systems [5] the push-relabel approach is favourable compared to the
graph-cut approach and therefore is a natural future direction. Real-time incre-

CERTIS R.R. 05-07 15

(a) (b) (c) (d)

Figure 3:(a) input image, (b) optimal segmentation, (c) approximate segmentation
using 5 discharges (35 ms), (d) 10 discharges (70ms).

mental stereo reconstruction graphics processing units was the purpose of our
investigation. To this end, adaptation of the push-relabel algorithm to address
reconstruction is the ultimate objective.

References
[1] General-Purpose Computation Using Graphics Hardware.http://www.gpgpu.org/.

[2] R. Anderson and J. Setubal. A Pralallel Implementation of the Push-Relable Algorithm for
the Maximum Flow Problem.Journal of Parallel and Distributed Computing, 29:17–26,
1995.

[3] Y. Boykov and M-P. Jolly. Interactive Graph Cuts for Optimal Boundary and Region Seg-
mentation of Objects in N-D images. InIEEE International Conference in Computer Vision,
volume I, pages 105–112, 2001.

[4] Y. Boykov and V. Kolmogorov. Computing Geodesics and Minimal Surfaces via Graph Cuts.
In IEEE International Conference in Computer Vision, volume I, pages 26–33, 2003.

[5] Y. Boykov and V. Kolmogorov. An Experimental Comparison of Min-Cut/Max-Flow Al-
gorithms for Energy Minimization in Vision.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26:1124–1137, 2004.

[6] Y. Boykov, P. Torr, and R. and Zabih. Discrete Optimization Methods in Computer Vision,
2004. Tutorial, European Conference in Computer Vision.

[7] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Minimization via Graph
Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23:1222–1239,
2001.

[8] Y. Cheng. Mean Shift, Mode Seeking, and Clustering.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 17:790–799, 1995.

[9] B. Cherkassky and A. Goldberg. On Implementing the Push-Relabel Method for the Maxi-
mum Flow Problem.Algorithmica, 19:390–410, 1997.

[10] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models - their training and
application.Computer Vision and Image Understanding, 61:38–59, 1995.

[11] E. Dinic. Algorithm for Solution of a Problem of the Maximum Flow Problem.Soviet
Mathematics Doklady, 11:1277–1280, 1970.

[12] L. Ford and D. Fulkerson.Flows in Networds. Princeton University Press, 1962.

16 GPU-Cuts and Adaptive Object Extraction

[13] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

[14] A. Goldberg and R. Tarjan. A New Approach to the Maximum Flow Problem.Journal of
the Association for Computing Machinery, 35:921–940, 1988.

[15] L. Grady and E. Schwartz. Faster graph-theoretic image processing via small-world and
quadtree topologies. InIEEE Conference on Computer Vision and Pattern Recognition,
2004.

[16] A. Karzanov. Determining the maximal flow in a network by the method of preflows.Soviet
Mathematics Doklady, 15:434–437, 1974.

[17] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. InIEEE Interna-
tional Conference in Computer Vision, pages 261–268, 1987.

[18] V. Kolmogorov and R. Zabih. Multi-camera Scene Reconstruction via Graph Cuts. InEuro-
pean Conference on Computer Vision, volume 3, pages 82–96, 2002.

[19] A. Lefohn, J. Cates, and R. Whitaker. Interactive, GPU-Based Level Sets for 3D Segmenta-
tion. In Medical Imaging Copmuting and Computer-Assisted Intervention, volume 1, pages
564–572, 2003.

[20] D. Mumford and J. Shah. Boundary detection by minimizing functionals. InIEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 22–26, 1985.

[21] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed : Algorithms
based on the Hamilton-Jacobi formulation.Journal of Computational Physics, 79:12–49,
1988.

[22] N. Paragios and R. Deriche. Geodesic Active Regions: A New Framework to Deal with
Frame Partition Problems in Computer Vision.Journal of Visual Communication and Image
Representation, 13:249–268, 2002.

[23] J. Shi and J. Malik. Motion Segmentation and Tracking Using Normalized Cuts. InIEEE
International Conference in Computer Vision, pages 1154–1160, 1999.

[24] J. Shi and J. Malik. Normalized Cuts and Image Segmentation.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

[25] J. Sibeyn. The Parallel Maxflow Problem is easy for almost all Graphs.
http://citeseer.ist.psu.edu/sibeyn97parallel.html.

[26] IG SYSTEMS. Efficient implementation of a push-relabel algorithm for the maximum
flow/minimum cut problems.http://www.igsystems.com/hipr/.

[27] N. Xu, R. Bansal, and N. Ahuja. Object Segmentation Using Graph Cuts Based Active
Contours. InIEEE Conference on Computer Vision and Pattern Recognition, pages 46–53,
2004.

	Introduction
	Push Relabel Algorithm
	Overview
	Implementation
	Parallel Push-Relabel

	Image Segmentation & Object Extraction
	Graphics Processing Units & Push Relabel
	Graph nodes and pixels
	Texture representation of Graphs:
	Push-Relabel on Pixel shader
	Notions & Approximations from Parallel and Distributed Programming
	Incremental Segmentation

	Conclusions
	Experimental Evaluation
	Future Directions

