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Abstract

In this report, we introduce a new technique to shape modelling in the space of
implicit polynomials. Registration consists of recovering an optimal one-to-one
transformation of a higher order polynomial along with uncertainties measures
that are determined according to the covariance matrix of the correspondences
at the zero isosurface. Such measures are used to weight the importance of the
training samples in the modelling phase according to a variable bandwidth non-
parametric density estimation process. The selection of the most appropriate ker-
nels to represent the training set is done through the maximum likelihood crite-
rion. Exceptional results for patterns of digits, related with the registration and the
modelling aspects of our approach demonstrate the potentials of our method.

∗The author gratefully acknowledge Dr. Jean-Yves Audibert for fruitful discussion regarding
the probabilistic models.





Résuḿe

Ce rapport introduit une nouvelle technique de modélisation des d́eformations
d’une forme dans l’espace des transformations polynomiales.
Le recalage d’une forme, représent́ee dans l’espace des fonctions implicites, a
pour but de d́eterminer la transformation polynomiale par morceaux inversible
et optimale selon des critères de similarit́e et de ŕegularit́e. Les mesures d’incer-
titudes quantifiant la qualité de la transformation obtenue sont estimées sur la
courbe de niveau zéro. Ces mesures calculées sur un vaste ensemble d’appren-
tissage permettent de déterminer l’importance relative de chaqueélément lors
de la phase de modélisation. Un mod̀ele non paraḿetrique baśe sur des estima-
teurs a noyaux̀a covariance variable sera introduit. Les spécimens de recalage
avec leur mesure d’incertitude les plus représentatifs de l’ensemble d’apprentis-
sage sont śelectionńes selon un crit̀ere de maximisation de la vraisemblance de
l’ échantillon.
Des ŕesultats exceptionnels sur des caractères nuḿeriques d́emontrent tout le po-
tentiel de notre ḿethode, tant en termes de recalage de forme que de modélisation
statistique.
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1 Introduction

Domain knowledge is often available in computational vision and therefore effi-
cient techniques are to be developed to account for it. To this end, once registration
of data (shapes, appearance, motion, etc.) to a common pose is completed, its sta-
tistical characterisation according to a compact model is to be recovered that is
used to impose constraints when solving the inference problem.

One can define the registration problem as follows: recover a transformation
between a source and a target shape that results in meaningful correspondences
between their basic elements. To this end, one (i) should select an appropriate
representation for the structures of interest, (ii) define the set and the nature of
plausible transformations, and (iii) determine an appropriate mathematical frame-
work to recover the optimal registration parameters.

Point-based global and local registration [20] through low cost optimisation
techniques like the ICP [4] algorithm is the most primitive approach to shape
registration. One can also refer to more advanced methods like diffeomorphic
matching [5]. More advanced representations of shapes refer to B-splines as well
as other form of continuous interpolation functions [19], shocks, skeletons [10]
and distance transforms [1].

Registration can be either global or local. Global parametric transformations
are within a restricted group, like rigid, similarity, affine, etc. The term local regis-
tration is often used in a narrower sense and refer to a transformation with infinite
degrees of freedom. Such a deformation can potentially map any finite number of
points to the same number of points. However, non-rigid registration is often an
under constrained problem. Therefore in order to find a unique non-rigid transfor-
mation, we need further constraints to be introduced through a regularization of
the registration field.

A different approach consists of addressing registration as a statistical estima-
tion problem [9] through successive steps. Within each step the uncertainty in the
estimates is being computed [16] and is used to guide further steps of the overall
algorithm [12]. In [15] the covariance matrix is used within an ICP algorithm
to sample the correspondences so that registration is well-constrained in all di-
rections in parameter space. Last, but not least in in [14] local deformation and
uncertainties are simultaneously recovered for the optical flow estimation problem
through a Gaussian noise assumption on the observation.

Similar to the registration problem, the modelling aspect consists of (i) se-
lecting the nature of the density function, and (ii) recovering the parameters of
such a function so it approximates the registered data. Parametric linear mod-
els like Gaussian densities are often employed through either an EM algorithm
or a singular value decomposition. One can claim that such models refer to an
efficient compact approximation when the selected model fits to the data. Non-
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parametric approaches of fixed bandwidth kernels like Parzen windows [8] are a
more efficient technique to approximate data that do not obey a particular rule.
Their tradeoff of is being a computationally expensive approach while important
attention is to be paid on the selection of their bandwidth.

Modelling the geometric form of objects is a challenging task of computa-
tional vision. Such a task consists of two steps, (i) registration, and (ii) statistical
modelling. Prior work consists of addressing registration and modelling in a se-
quential fashion. Within such an approach registration errors are not accounted
for and often lead to incorrect and erroneous models.

In this paper we propose a novel technique to shape modelling that exploits
registration uncertainties. To this end shapes are represented in an implicit fash-
ion and are registered using a thin-plate spline deformation model according to
a topology-preservation algorithm. This approach can also provide uncertainty
measures according to the covariance estimation matrix at the zero iso-surface.
Upon dimensionality reduction, through a maximum likerlyhood criterion that
dictates the most representative kernel set, these measures are used within a vari-
able bandwidth kernel-based density function. Given a new example once regis-
tration and uncertainties estimation have been completed, appropriate metrics are
designed that do explicitly encode the estimates and their uncertainties to evaluate
the probability of the subject under consideration being part of the family of the
model.

The reminder of the paper is organized in the following fashion. In section 2
we briefly present shape registration in the space of implicit polynomials while the
estimation of uncertainties is part of section 3. The objective of building compact
non-parametric densities to describe shapes is addressed in section 4. Results and
discussion appear in section 5.

2 Registration through Implicit Polynomials

Smoothness and in particular topology preservation are desirable properties in
registration. A transformation is said to be smooth if all partial derivatives, up to
certain orders, exist and are continuous. At the same time it is said to preserve the
topology if the source and the transformed source have the same topology.

In the present framework, a shapeS is represented in an implicit fashion using
the Euclidean distance transformD [1]. In the 2D case, we consider the function
defined on the image domainΩ andRS is the region enclosed byS:

φS(x, y) =


0, (x, y) ∈ ∂S

+D((x, y),S), (x, y) ∈ RS
−D((x, y),S), (x, y) ∈ R̄S
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Figure 1: Examples of registration to a common pose of various samples of ’3’
using an16× 14 ffd grid.

Such a space is invariant to translation and rotation and can also be modified to
account for scale variations. In the most general case an apparent relation between
the distance function of the source and the target is not present.

Now consider a smooth 2D diffeomorphism depending upon a vector of pa-
rametersΘ ∈ Rn and defines an image transformation onΩ :

L(Θ, .) : Ω → Ω

Standard point-based curve registration consists of applyingL to the source shape
S and minimize the curve integral along∂S :

E0(L(Θ)) =
∮

∂S
ρ(φT (L(Θ,x))ds

Such that some metric error between the transformed source and the target is min-
imal. One can extend registration within a band of information along numerous
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image isophotes :

Eα(L(Θ)) =
∫∫

Ω
χα(φS(x))ρ (φS(x)− φT (L(Θ,x))) dx

and introduce the indicator function :

χα(x) =
{

1/(2α) ifx ∈ [−α, α]
0 else

Within such a process the selection of theα is crucial since to some extent it refers
to the scale of the shapes to be registered and eliminates the risk of convergence
to local minima.

On the other hand, it is natural when converging to the optimal solution that
α ≈ 0. To this end, we assume a finite number of decreasing set of radius
{α0 > α1 > ... > αn ≈ 0} that is equivalent to a scale-space decomposition
of the process. However, it shall also be noticed that the complexity of the trans-
formationL and therefore the size ofΘ has to be increased progressively asαk

decreases in order to prevent the convergence to local minima. At the scalet− 1,
minimum will be obtained for the parameterΘt−1 defining the transformation
Lt−1 = L(Θt−1, .). Also letSt−1 = Lt−1 ◦ S, the registration between shapes is
then equivalent with iteratively minimizing :

Eαt(L(Θ))

=
∫∫

Ω
χαt(φS(x))ρ(φSt−1(Lt−∞(x))− φT (L(Θ,x)))dx

where a correction process is applied when refining scales through the modifica-
tion of the distance transform that describes the source shapeφSt−1(). Within such
a formulation the integration domain is always related to the initial source shape
and does not depend on the number of iteration or the parameterαt. Moreover
when using Euclidean distance andαt → 0, Eαt(L(Θ)) is equivalent to the point
based registration (Eα∞(L(Θ)) = E0(L(Θ))).

Such an objective function can be used to address global registration as well
as local deformations. Affine models are used to globally align shapes with six
degrees of freedom, while as proposed in [7] we refine the transformation using
free form deformations to address local registration.

Cubic B-spline based free form deformations are an efficient way to model
locally smooth transformations on images [13]. Deformations of shapes (and their
implicit representationφS) are recovered by evolving a square control latticeP
that is overlaid on the initial distance transform structure. Let us consider the
control lattice points{Pm,n} defining the initial regular grid. The displacement of
any of control points will induce a local andC2 field of deformation:

L(Θ,x) =
2∑

k=−1

2∑
l=−1

Bk(u)Bl(v)(Pi+k,j+l + δPi+k,j+l)
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Figure 2: Examples of problematic registration where the recovered transforma-
tion present certain irregularities. Such cases represent only 1.8 % of the MNIST
OCR database.

WhereBk is thekth basis function of the Cubic B-spline. This local transfor-
mation is a compromise between global and local registration and its parameters
consist of the displacement of control points (Θ = {δPm,n}). In [7], such a
framework is introduced using implicit functions defined on the complete domain
Ω.

Such a transformation accounts for smoothness to a certain degree in an im-
plicit fashion. In order to avoid folding and recover a wiggle free transformation
one can consider the use of additional smoothness terms aim to constraint the spa-
tial variation of the displacement. Opposite to [7], we adopt a regularization term
motivated by the thin plate energy functional [18] :

Esmooth(L(Θ)) =
∫∫

Ω

(
|Lxx|2 + 2 |Lxy|2 + |Lyy|2

)
dΩ

that can be further simplified in the case of the cubic B-spline and reduced to the
quadratic form[Esmooth(L(Θ)) = ΘT .C.Θ] with C a symmetric matrix.

The objective function[Eα∞(L(Θ)) + wEsmooth(L(Θ))] is optimized using a
standard gradient descent method leading to exceptional results as shown in [FIG.
(1)]. The method was tested for approx 2000 digits of the number ’3’ from the
MNIST database and the registration ratio was98.2%. Some examples of cases
where the method has failed are shown in [FIG. (1)] for demonstration purposes.

However, one can claim that the local deformation field is not sufficient to
characterize the registration between two shapes. Often data is corrupted by noise
while at the same time outliers exist in the training set. Therefore recovering mea-
surements of the quality of the registration is an eminent condition for accurate
shape modelling.
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3 Estimation of Registration Uncertainties

Several attempts to build statistical models on noisy set of data in order to infer
the properties of a certain model were proposed in the former literature. In [9],
various techniques to extract feature points in images along with uncertainties due
to the inherent noise were reported while in [12] an iterative estimation method
was proposed to handle uncertainties estimates of rigid motion on sets of matched
points. Last, but not least in [15] an iterative technique to determine uncertain-
ties within the Iterated Closest Point [4] registration algorithm was proposed. In
a quite different context, [14] introduced uncertainties within the estimation of
dense optical flow, that can be seen as a form of registration between images.

In the present case curves are considered using implicit representation, there-
fore uncertainty does not lie in the relative position of points but of an isosurface
and therefore one can seek for equivalences with ”aperture problem” in optical
flow estimation. Inspired by the work in [2, 15] we aim to recover uncertainties
on the vectorΘ while being able to use only the zero iso-surface, defining the
shape itself. To this end, we use a discrete formulation of the EnergyE0 = Eα∞ :

E0(Θ) =
K∑

i=1

ρ(φT (L(Θ,xi)) =
K∑

i=1

ρ(φT (x′i))

Let us considerqi to be the closest point on the target contour fromx′i. Since
φT is assumed to be an Euclidean distance transform, it satisfies the condition
‖∇φT (x′i)‖ = 1. Therefore one can express the values ofφT (x′i) :

φT (x′i) = (x′i − qi) · ∇φT (x′i)

Then, one has a first order approximation ofφT (x) in the neighborhood ofx′i, in
the form :

φT (x′i + δx′i) = φT (x′i) + δx′i · ∇φT (x′i)

= (x′i + δx′i − qi) · ∇φT (x′i)

that reflects the condition that a point to curve distance is adopted rather than a
point to point. Under the assumption thatE0(L(Θ)) = ◦(1) we can neglect the
second order term in the development ofφT and therefore write the following
second order approximation ofE0 in quadratic form :

E(L(Θ)) =
∑ [

(L(Θ,xi)− qi) · ∇φT (x′i)
]2

Free form deformations is a linear transformation with respect to the param-
etersΘ = δPi,j. Therefore one can rewrite this transformation over the image



CERTIS R.R. 05-08 7

domain in a rather compact form:

L(Θ,x) = x +
2∑

k=−1

2∑
l=−1

Bk(u)Bl(v)δPi+k,j+l

= x + X (x).

whereX (x) is a matrix of dimensionality2×N with N being the size ofΘ. One
now can substitute this term in the objective function towards :

E(Θ) = (X ·Θ− y)T (X ·Θ− y)

with

X =

 ηT
1 X (x1)

...
ηT

KX (xK)

 andy =

 ηT
1 (q1 − x1)

...
ηT

K(qK − xK)


and[ηi = ∇φT (x′i)] due to the distance transform nature of the implicit function.
We assume thaty is the only random variable. Such assumption is equivalent with
saying that errors in the point positions are only quantified along the normal di-
rection. This accounts for the fact that the point set is treated as samples extracted
from a continuous manifold. One can take the derivative of the objective function
in order to recover a linear relation betweenΘ andy :

X TXΘ = X Ty

Last, assume that the components ofy are independent and identically distributed.
In that case, the covariance matrix ofy has the formσ2I of magnitudeσ2 with I
being the identity. In the most general case one can claim that the matrixX TX
is not invertible because due to the fact that the registration problem is undercon-
strained. Additional constraints are to be introduced towards the estimation of the
covariance matrix ofΘ through the use of an arbitrarily small positive parameter
γ :

E(Θ) = (XΘ− y)T (XΘ− y) + γ ΘT Θ

Then the covariance matrix of the parameter estimate is :

ΣΘ = σ2(X TX + αI)−1

Some example of such estimates are shown in [FIG 3]
Modelling the registered examples according to some density function is a

step further to registration. To this end, two critical issues are to be addressed :
the form of thepdf as well as the procedure to determine the corresponding pa-
rameters. In the most general case deformations of shapes that refer to objects of
particular interest cannot be modeled with simple parametric models likes Gaus-
sians. Therefore within our approach we propose a non-parametric form of the
pdf.
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Figure 3:Projection of the covariance matrixΣΘ on the grid points. The projec-
tions are2×2 matrices and are represented as ellipses. Displaying the importance
of the covariance coefficients between2 different points is not possible.

4 Variable Bandwidth Density Estimation

Let t{xi}M
i=1 denote a random sample with common density functionf . The fixed

bandwidth kernel density estimator consists of:

f̂(x) =
1
M

M∑
i=1

KH (x− xi)

=
1
M

M∑
i=1

1
‖H‖1/2

K
(
H−1/2(x− xi)

)
whereH is a symmetric definite positive - often called a bandwidth matrix - that
controls the width of the kernel around each sample pointxi. The fixed bandwidth
approach often produces an undersmoothing in areas with sparse observations
and oversmoothing in the opposite case. Usefulness of varying bandwidths is
widely acknowledged to estimate long-tailed or multi-modal density functions
with kernel methods.

In the literature, Kernel density estimation methods that do rely on such vary-
ing bandwidths are generally referred to as ” adaptive kernel ” density estimation
methods [17]. An adaptive kernel approach adapts to the sparseness of the data by
using a broader kernel over observations located in regions of low density. Two
useful state of-the-art variable bandwidth kernels consists of thesample point es-
timator and theballoon estimator.

The first one refers to a covariance matrix depending on the repartition of the
points constituting the sample :

f̂S(x) =
1

M

M∑
i=1

1

‖H(xi)‖1/2
K

(
H(xi)

−1/2(x− xi)
)
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where a common selection ofH refers to

H(xi) = h(xi) · I

with h(xi) being the distance of pointxi from thekth nearest point. One can
consider various alternatives to determine the bandwidth function. Such estimator
may be directly used with the uncertainties calculated in section3 andH(xi) =
µΣΘi

as proposed in [3, 6].
In the present paper we may have an estimation of the uncertainty on the point

to be evaluated. In order to make use of this information we first introduce another
standard variable bandwidth kernel method knows asballoon estimator. It adapts
the measures to the point of estimation depending on the shape of the sampled
data according to:

f̂B(x) =
1
M

M∑
i=1

1
‖H(x)‖1/2

K
(
H(x)−1/2(x− xi)

)
with H(x) may be chosen with the same model assample point estimator. Such
function may be seen as the average of a density associated to the estimation point
x on all the sample pointsxi. One should point out that such a process could lead
to estimates on̂f(x) that do not refer to density function in terms of discontinuity,
integration to infinity, etc.

Let us consider{xi}M
i=1 a multi-variate set of measurements where each sam-

plexi exhibits uncertainties in the form of a covariance matrixΣi. Our objective
can be stated as follows: estimate the probability of a new measurementx that is
associated with covariance matrixΣ.

Let X be the random variable associated to the training set and assume a den-
sity functionf . f may be estimated witĥf in a similar fashion tosample point
estimator. Thereforef may be expressed in the formf =

∑
fi wherefi are den-

sities associated to a single kernelxi. Let Y be the be a random variable for the
new sample with densityg.

Then one can claim that in order to estimate the probability of the new sample,
one should first determine for all possibleu ∈ RN theirdistancefrom the existing
kernels of the trainning setX, f(u) in a similar fashion assample point estimator
and weight them according to their fit with the density function ofY :

f(x) =
∫

f(u)g(u)du

=
∫ [

M∑
i=1

fi(t)

]
g(t)dt =

M∑
i=1

[∫
fi(t)g(t)dt

]
In that case of gaussian kernels forg and thefi the following expression is recov-
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ered:

f̂G(x) =
1

M(2π)d/2

M∑
i=1

1
‖Σ + Σi‖1/2

exp
(
−1

2
(x− xi))>(Σ + Σi)−1(x− xi)

)
Such an expression has a simple mathematical interpretation: Consider two points
{x1,x2} with associated uncertainty{Σ1, Σ2}. Assuming that these are the pa-
rameters (mean and variance) of two independent random variables with normal
distribution

{X1 ∼ N(x1,Σ1),X2 ∼ N(x2,Σ2)}

Then the random variableZ = X1−X2 follows a distributionN(x1−x2, Σ1+Σ2)
and the density atZ = 0 is given by

p(X1 = X2) =
1

(2π)d/2‖Σ1 + Σ2‖1/2

exp
(
−1

2
(x1 − x2))T (Σ1 + Σ2)−1(x1 − x2)

)

The present concept could be relaxed to address the case of non-gaussians
kernels according to ahybrid estimator that is considered in the present paper :

f̂H(x) =
1
M

M∑
i=1

1
‖H(Σ,Σi)‖1/2

K(H(Σ,Σi)1/2(x− xi))

Such a density estimator takes into account the uncertainty estimates both on the
sample points themselves as well as on the estimation of pointx as introduced in
[11]. The outcome of this estimator may be seen as the average of the probabili-
ties that estimation measurement is equal to the sample measurement, calculated
over all sample measurements. Consequently, in directions of important uncer-
tainties the density estimation decreases more slowly when compared to the other
directions.

This metric can now be used to assess for a new sample the probability of
being part of the training set through a process that evaluates the probability for
each of the examples in the training set. The resulting approach can account for
the non-parametric form of the observed density while the limitation of being
time consuming since the cost is linear to the number of samples in the training
set. Therefore, there is an eminent need on decreasing the cardinality of the set of
retained kernels.
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4.1 Kernels Selection

The maximum likelihood criterion expresses the quality of approximation from
the model to the data.

Consider a setZK = {X1, X2, . . . , XK} of kernels extracted from the training
set. These have associated mean and uncertainties{xiΣi}|ZK |

i=1 . Then the probabil-
ity of any registered shape with associated kernelY has the form :

PZK
()(Y ) =

1

|ZK |
∑

X∈ZK

K(X,Y )

and K(X,Y) correspond to the calculation of the hybrid kernel estimator. For such
a selection of kernels, one can evaluate the log-likelihood for the entire training
set with the associated kernels{Yi}N

i=1 :

CK =
N∑

i=1

log(PZK
(Yi))

We use an efficient sub-optimal iterative algorithm to update the setZK . A new
kernelY is extracted from the training set as the one maximizing the quantity
CK+1 associated toZK+1 with : ZK+1 = ZK

⋃
Y . One kernel may be chosen

several times in order to preserve a decreasing order ofCK when adding new
kernels. Consequently the selected kernelsYi used to evaluate the global density
probability have prior weight.

4.2 Validation

The proposed method is indented to provide efficient models for family of shapes
with important variation. Digits, is an example where the shape of the characters
varies along individuals and therefore one can claim important variability on the
training set. Based on this observation and using an important training set from
the database, we have considered two digits (random variables of2000 samples
each) that have a quite similar structure, the3 and9.

Upon intra-class registration two models have been built of100 kernels each
according to the maximum likelihood principle. Then, a cross validation task
was performed where for all samples of the database (3 & 9) the probability of
being part of the classes3 & 9 was estimated according to the presented variable
bandwidth density function. In [FIG. (4)] one can see in a logarithmic scale the
performance of the method using the model built for3 and applied also to the
samples of9 while the opposite case is presented in [FIG. (4)].

In both cases one can see a clear separation of the two classes and a substantial
difference in terms of probabilities between the true and the non-true case. It is
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Figure 4: (left) Distribution of the distance of the training set from the kernel
based model build for ’3’ in logarithmic scale. (right)Distribution of the distance
of the training set from the kernel based model build for ’9’ in logarithmic scale.

important to note that the presented method is not indented for such an application.
However, given this validation we can claim that such a model can capture samples
of increasing complexity and the use of deformations along with uncertainties
provide efficient density estimators.

5 Discussion

We have introduced an original framework to estimate uncertainty in the process
of registration on shapes. We take advantage of this additional knowledge to build
an efficient probabilistic descriptor of a certain class of shapes that can be regis-
tered to a common pose.

Future directions exists in the registration as well as the modeling aspect of
our approach.

First, in the registration process, uncertainties could be propagated through
scale when updating the transformation. We shall also notice that the uncertainties
calculated on a certain ffd-grid could be extended to any finer grid and therefore
qualify the density probability of any image transformation without the limitation
of the choice of parameters.

Another path will be the exploration of the kernel used to make a Parzen-
Window like density estimation into more advanced kernel-based learning meth-
ods such as kernel-PCA. The issue of defining the right Mercer kernel has however
to be addressed.

Last but not least, this evaluation of densities using uncertainty has to be ex-
ported to the more general problem of image registration with prior knowledge.
Consider an original image used as a model with the region of interest manually
delineated. Then, registration can be performed with a shape term that directly
handle the parameters of the transformationL. Eventually, a calculation of uncer-
tainties qualifying the present image registration may enhance the confidence for
this term when using thehybrid estimator.
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