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Abstract

In this technical report, we propose a novel technique to address motion estima-
tion and tracking. Such technique represents the motion field using a regular grid
of thin-plate splines, and the moving objects using an implicit function on the
image plane that is a cubic interpolation of a ”level set function” defined on this
grid. Optical flow is determined through the deformation of the grid and conse-
quently of the underlying image structures towards satisfying the constant bright-
ness constraint. Tracking is performed in similar fashion through the consistent
recovery in the temporal domain of the zero iso-surfaces of a level set that is the
projection of the FFD implicit function according to the cubic spline formulation.
Such an approach is a compromise between dense motion estimation and parame-
tric motion models, introduces smoothness in an implicit fashion, is intrinsic, and
can cope with important object deformations. Promising results demonstrate the
potentials of our approach.





Résumé

Nous proposons dans cet article une méthode originale pour l’estimation de mou-
vement et le suivi. Une telle technique consiste en une représentation du champ
de déplacements par une grille régulière sur laquelle s’appuie une transformation
« Thin Plate Splines », les objets sont délimités par un « LevelSet » formé par
l’interpolation bicubique des valeurs définies en chaque point de la grille.

Le flot optique est obtenu par la déformation de la grille et de l’image sous-
jacente en vue de satisfaire une contrainte d’invariance de l’intensité. Le suivi
d’objets est effectué de façon similaire par l’extraction dans le domaine tempo-
rel du niveau zero du « LevelSet », lui-même projection dans l’espace des fonc-
tions implicites interpolées par des splines cubiques. Une telle approche est un
compromis entre une estimation locale précise du mouvement et une formulation
paramétrique telle que la FFD, par nature continue. De plus, cette formulation im-
plicite permet d’estimer d’importantes déformations. Des résultats encourageants
montrent tout le potentiel de notre approche.
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1 Introduction
Motion perception is a fundamental task of biological vision with motion es-

timation and tracking being the most popular and well-addressed applications. To
this end, given a sequence of images, one would like to recover the 2D temporal
displacement (optical flow) and the position of objects of particular interest. These
applications often serve as input to high-level vision tasks, like 3D reconstruction,
etc.

Dense optical flow estimation is an ill-posed problem. The problem itself is
rather ill-posed since [1] the number of unknowns to be recovered is greater to
the number of constraints. Such constraints are determined through the lineariza-
tion of the visual or intensity preservation constraint [10]. Smoothness constraints
[24] are often considered to overcome the ill-poseness of the estimation process
and often lead to satisfactory results. A step further refers to the use of parame-
tric motion estimation [15] where the motion in the entire image plane or some
porions of it is represented with a linear function of the pixel coordinates. To this
end, robust statistical methods [11] were considered to account for outliers in the
estimation process leading to promising results [2, 16] when the assumption on
the motion form induced by the model is respected from the data. One can claim
that parametric motion models are efficient representations of optical flow, a good
compromise between low complexity and reasonable flow estimates that suffer
at the object boundaries. On the other hand, the neither the case of non-planar
or objects undergoing non-rigid deformations can be addressed through such a
formulation.

Tracking non-rigid objects is a task that has gained particular attention in com-
putational vision. Starting from the pioneering formulation of the snake model
[13] several attempts to address tracking through the deformation of contours can
be found in the literature either model-free [12] or model-based [6]. Level set
methods [18] is an established technique [17] to track moving interfaces through
model-free [20] or model-based [7] methods with the advantage of being implicit,
intrinsic and parameter-free. However they suffer from computational expensive
[22] while one should preserve the form of the implicit functions through frequent
re-initialization steps. Such a limitation was addressed in [23] where a finite ele-
ment approach was considered to implement a level set flow.

In this paper, we introduce a higher-order polynomial approach to address
dense optical flow estimation and tracking within the level set approach. To this
end, we represent motion using a free form deformation of a super-imposed regu-
lar connected grid, an excellent alternative to dense motion estimation as well as
to parametric motion models. Tracking is addressed through the modification of a
”level set” function on the FFD space such that its projection on the image space
captures the object boundaries. Visual preservation, consistence in the object ap-
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FIG. 1 – Car sequence (i.a) first image f , (i.b) second image g, (ii.a) deformed
grid, (ii.b) deformed grid overlaid to second image.

pearance and smoothness constraints are used to determine the deformation of the
implicit grid towards simultaneous motion estimation and tracking of objects in
successive frames.

Prior art in joint optical flow estimation and tracking has mostly address the
case of parametric (mostly affine) motion within the standard level set formula-
tion [19, 25, 7, 8, 26]. The reminder of this paper is organized according to the
following fashion ; In the next section, we briefly introduce the level set method
and the free form deformation model. Our variational model to recover optical
flow estimations and perform tracking is described in section 3. The optimization
process is presented in section 4, while experimental results and discussion are
part of section 5.

2 Free Form Deformations and Implicit Level Sets

Let us consider an image :

I(x, y) = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y }

and a regular lattice of control points superimposed to this image :

Pm,n = (Px
m,n,P

y
m,n); m = 1, ...,M, n = 1, ..., N
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FIG. 2 – MIFFD (4 levels) for an IKONOS satellite stereo pair. From the g image
(first from the left), the four reconstructed images from the estimated flow at each
level are shown, until the first image f (last one) is approximated.

One can introduce a third dimension on this grid, a discrete function Φ(; ), such
that input image is approximated through a tensor product of Cubic B-spline :

I(x, y) ≈
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

with k = b x
X
·Mc − 1, l = b y

Y
·Nc − 1 and Bk(u) is the kth basis function of a

Cubic B-spline :

B0(u) = (1− u)3/6, B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6, B3(u) = u3/6

with u = x
X
· M − b x

X
· Mc (Bl(v) is defined in a similar fashion with v =

y
Y
· N − b y

Y
· Nc). We assume that (sixteen) adjacent control points are needed

to produce the observed value at any given pixel of the image. The parameters of
these new representation consist of the position of the grid points and the value
embedded function at these points Θ = (Px

m,n,P
y
m,n,Φm,n).

Furthermore one can consider a deformation of this grid (deformation of the
image) starting from an initial configuration P, and the deforming control lattice
as

P′ = P + ∆P
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a) b)

FIG. 3 – Zoom on the lower right building’s part of the IKONOS (figure 4) image
(a) grid’s flow, (b) deformed grid overlaid to second image.

that can be considered as an incremental free form deformation with the deforma-
tions of the control points in both directions according to :

∆P = {(δPx
m,n, δP

y
m,n)}; (m,n) ∈ [1,M ]× [1, N ]

The essence of FFD is to deform an object by manipulating a regular control lat-
tice P overlaid on its volumetric embedding space. Once a deformation has been
applied, the displacement of a pixel (x, y) given the deformation of the control
lattice from P according to ∆P, is defined in terms of a tensor product of Cubic
B-spline :

T (∆P; (x, y)) = ((x, y)) + δT (∆P; (x, y))

=
3∑

k=0

3∑
l=0

Bk(u)Bl(v)(Pi+k,j+l + δPi+k,j+l)

Such deformation field T (∆P;x, y) [21] is a popular approach in graphics, ani-
mation and rendering [9]. Opposite to optical flow techniques, FFD techniques
support smoothness constraints, exhibit robustness to noise and are suitable for
modelling large and small non-rigid deformations. Furthermore, under certain
conditions, it can support a dense registration paradigm that is continuous and
guarantees a one-to-one mapping.

The level set method [18] consists of representing and evolving an evolving
interface ∂R(p) with the zero-level set of an embedding surface Φ. Such represen-
tation can lead to a natural handling of changing the topology of ∂R(p). Numeri-
cal simulations on Φ may be developed trivially and intrinsic geometric properties
of the evolving interface can be estimated directly from the level set function.

Let φ : Ω → R+ be a Lipschitz function that refers to a level set representa-
tion :

φ(p; t) =


0 , p ∈ ∂R(t)

+D((p), ∂R(t)) > 0 , p ∈ R(t)

−D((p), ∂R(t)) < 0 , p ∈ [Ω−R(t)]

(1)
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where Ω is the image domain (bounded) and D(p, ∂R(t)) is the minimum Eu-
clidean distance between the pixel p and the interface ∂R(t). Then, the level set
formulation can be considered as an optimization framework. To this end, one can
define the approximations of DIRAC and HEAVISIDE distributions [27, 5] :

δa(φ) =

{
0, |φ| > α
1
2α

(
1 + cos

(
πφ
a

))
, |φ| < α

Hα(φ) =


1, φ > α
0, φ < −α
1
2

(
1 + φ

α
+ 1

π
sin
(

πφ
a

))
, |φ| < α

(2)

These functions can be used to define contour-based as well as region-based ener-
getic modules for the evolving interface in the level set space [27] :

(i)

∫∫
Ω

Hα(φ(p))r1(I(p))dxdy︸ ︷︷ ︸
regional module

,

(ii)

∫∫
Ω

δα(φ(p))b(I(p))|∇φ(p)|dxdy︸ ︷︷ ︸
boundary module

where r and b are region and boundary positive monotonically decreasing data-
driven functions. The first term [i] is a grouping component that accounts for
some regional properties (modulo the definition of r) of the area defined by the
evolving interface. The second term [ii] is a combination of a boundary attraction
term (modulo the definition of b) and a smoothness component [4, 14].

Within the selected representation, one can consider a function Φ defined at
the lattice P to be a level set function, if

φ(x, y) =
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

and

φ(x, y) =


0 , p ∈ ∂R(t)

+D((p), ∂R(t)) > 0 , p ∈ R(t)

−D((p), ∂R(t)) < 0 , p ∈ [Ω−R(t)]

One now can use such a formulation to encode motion estimation and tracking.
Motion is represented with the deformation of the original lattice P while tracking
will be addressed through the evolution of a ”level set function” Φ defined on the
same lattice.
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3 Optical Flow Estimation
Optical flow estimation is equivalent with recovering a pixel-wise deformation

field T (∆P;x, y) that creates visual correspondences between two consecutive
images f and g. Optical flow estimation within FFD is now equivalent with finding
the best lattice P configuration such that the overlaid structures (images) coincide.
One can consider the Sum of Squared Differences (SSD) as the data-driven term
to recover the deformation field T (Θ;x) ;

Edata(Θ) =

∫∫
Ω

(
f(x)− g(T (∆P;x, y))

)2
dxdy

Such an error norm is very sensitive to occlusions as well as to outliers and there-
fore it can be replaced with a robust estimator, or like an an M-estimator. Such a
method assigns weights to the constraints at the pixel level that are disproportio-
nal to their residual error therefore rejecting the motion outliers. to this end, one
should define the influence function, ψ(x) like for example the Tukey’s estimator :

ρ(x) =

{
x(Kσ

2 − x2)2 if |x| < Kσ

0 otherwise

where Kσ characterizes the shape of the robust function and is updated at each
iteration leading to the following cost function :

Edata(∆P) =

∫∫
Ω

ρ(r) dxdy

=

∫∫
Ω

ρ(f(x)− g(T (∆P;x, y))) dxdy

While such a model can be quite efficient it still suffers from the aperture problem.
One can consider additional constraints to the constant brightness assumption like
the gradient preservation assumption, recently introduced in [3] leading to the
following cost function ;

Edata(∆P) = α

∫∫
Ω

ρ
(
f(x)− g(T (∆P;x, y))

)
dxdy

+β

∫∫
Ω

ρ
(∣∣∣∣∇f −∇g(T (∆P;x, y); t+ 1)

∣∣∣∣)dxdy
a constraint that improves the estimation of the optical flow on the object bounda-
ries where the visual constancy assumption is often violated.

The use of thin plate splines to represent motion introduces in an implicit form
some smoothness constraint that can deal with a limited level of deformation. In
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order to account for outliers and noise, one can replace the error-two norm with
more appropriate robust metrics [11]. In order to further preserve the regularity of
the recovered motion flow, one can consider an additional smoothness term on the
deformation field δP. We consider a computationally efficient smoothness term :

Esmooth(∆P) =

∫∫ (
|Tx(∆P;x, y)|2 + |Ty(∆P;x, y)|2

)
dxdy

Such smoothness term is based on a classic error norm that has certain known
limitations. Within the proposed framework, an implicit smoothness constraint
is also imposed by the Spline FFD. Therefore there is not need for introducing
complex and computationally expensive regularization components.

Then the global deviations from the data-driven term and the smoothness
constraints term can now be integrated to define an objective function that upon
optimization will provide a smooth motion field that establishes correspondences
between the two images :

Eflow(∆P) = α

∫∫
Ω

ρ
(
f(x)− g(T (∆P;x, y))

)
dxdy

+β

∫∫
Ω

ρ
(∣∣∣∣∇f −∇g(T (∆P;x, y); t+ 1)

∣∣∣∣)dxdy
+γ

∫∫ (
|Tx(∆P;x, y)|2 + |Ty(∆P;x, y)|2

)
dxdy

Multilevel Incremental Free-Form Deformation (MIFFD) : A straightfor-
ward application of the FFD manipulation cannot always guarantee the successful
motion estimation between the two images. One reason for this is that we limit the
maximum displacement of a control point to approximately a half of the spacing
between control points in order to make the deformation function one-to-one. The
correspondences that each time can be caught are according to what level (how
coarse or fine) of the FFD’s grid has been chosen. Here, we present the MIFFD
technique that overcomes the drawbacks of the straightforward method, since it
can handle both large and small non-rigid deformations. Multiresolution control
lattices are used according to a coarse-to-fine strategy. From a coarser level of
the control lattice that can deal better with large displacements we proceed conti-
nuously to a finer level. At each level, we can solve for the incremental deforma-
tion of the control lattice using the scheme presented in the previous section. In
the end, the overall dense deformation field for motion estimation is defined by
these incremental deformations from all levels.

Let P1, ...,PK denote a hierarchy of control point meshes at different reso-
lutions. Each control mesh Pk and the associated spline-based FFD defines a
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FIG. 4 – Curve Propagation on 006 frame of player sequence.

transformation T k(∆P;x, y) at each level of resolution and the total deforma-
tion δT (x, y) for a pixel (x, y) in a hierarchy of K levels is :[

δT (x, y) =
K∑

k=0

δT k(∆Pk;x, y)

]

The hierarchy of control lattices can have arbitrary number of levels, but typically
3-4 levels are sufficient to handle both large and small deformations. Such an
otpimization will lead to successful estimation of the motion field but does not
address tracking.

Let us consider without loss of generality that an object is present in the scene.
The task of tracking consists of recovering the successive positions of a planar
curve γ(; ) such that the object is properly delineated in time. In order to address
this demand we consider a level set curve to represent objects.

4 Object Tracking
Tracking is performed through the consistent recovery in the temporal domain

of the zero iso-surfaces of a level set γ(∆P) that is the projection of the FFD
implicit function according to the cubic spline formulation.

Based on region-driven model free image segmentation techniques, objects
boundaries are approached through a curve propagation technique (Figure 1). The
essence of this approach is to optimize the position and the geometric form of
the curve by measuring information along that curve, and within the regions that
compose the image partition.
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To this end, one can assume without loss of generality that objects are uniform
that is also the case for the background. In that case, given an initial position of
the curve, one can determine global region-driven robj(f) and rbg(f) functions
provide a statistical description of the inside and outside object area :

robj(f(x, y)) =
(µobj − f(x, y))2

σ2
obj

,

rbg(f(x, y)) =
(µbg − f(x, y))2

σ2
bg

where µobj is the mean and σobj the covariance matrix of the object appearance
(similar definition for the background). In cases where the assumption of Gaussian
densities seems unrealistic one can consider a more flexible parametric density
function - gaussian mixture - to describe the visual properties of the object and
the background.

In the case of static images, one can perform object extraction through the se-
paration of image pixels according to their match with the expected appearance
properties of the object and the background. Such an optimization can be consi-
dered on the lattice space, that is

Eobject(Φ) = α

∫∫
δ

(
Φ

(
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

))
∣∣∣∣∣∇

3∑
k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

∣∣∣∣∣ dΩ

+β

∫∫
Ω

H

(
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

)
robj(f(x, y))dΩ

+β

∫∫
Ω

[
1−H

(
3∑

k=0

3∑
l=0

Bk(u)Bl(v)Φi+k,j+l

)]
rbg(f(x, y))dΩ

where the first term imposes smoothness constraints while the second address a
background/object separation according to the expected visual properties of the
two class. One now can consider the separation of the object/background in both
frames f and g given the deformation of the grid through the FFD one can address
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tracking through the minimization of

Etracking(∆P,Φ) = α

∫∫
δ

(
Φ

(
3∑

k=0

3∑
l=0

BkBlΦi+k,j+l

))
∣∣∣∣∣∇

3∑
k=0

3∑
l=0

BkBlΦi+k,j+l

∣∣∣∣∣ dΩ

+β

∫∫
Ω

H

(
3∑

k=0

3∑
l=0

BkBlΦi+k,j+l

)
robj(f(x, y))dΩ

+β

∫∫
Ω

[
1−H

(
3∑

k=0

3∑
l=0

BkBlΦi+k,j+l

)]
rbg(f(x, y))dΩ

+β

∫∫
Ω

H

(
3∑

k=0

3∑
l=0

BkBlΦi+k,j+l

)
robj(g(T (∆P;x, y)))dΩ

+β

∫∫
Ω

[
1−H

(
3∑

k=0

3∑
l=0

BkBlΦi+k,j+l

)]
rbg(g(T (∆P;x, y)))dΩ

where α, β are constant coefficients and the assumption that the object/background
properties do not change from one frame to the next. One can relax this constraint
through the estimation of visual descriptors in both frames.

Such a tracking term can be integrated with the optical flow estimation term
to simultaneously address dense optical flow estimation and object tracking.

E(∆P,Φ) = Eflow(∆P) + Etracking(∆P,Φ)

The lowest potential of this cost function will provide visual correspondences
between the two images, and recover optimal successive positions of objects in
time [Figure 2 and 3].

5 Implementation
The calculus of variations and a gradient descent method can be used to op-

timize such an objective function. A minimiser must fulfill the Euler-Lagrange
equation both in the deformation space [∆P] as well as in the implicit space [Φ] ;

∂

∂∆P
E(∆P,Φ) = 0,

∂

∂Φ
E(∆P,Φ) = 0

One can further develop these conditions using the chain rule ;

∂

∂∆P
E(∆P,Φ) =

∂Eflow(∆P)

∂∆P
+
∂Etracking(∆P,Φ)

∂∆P
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a) b)

c) d)

e) f)

g) h)

FIG. 5 – Player Sequence Recovery (frames R006 -R007) : (a) first image f
(R006), (b) second image g (R007), (c) Object boundaries on f image from Level
Set propagation , (d) Object boundaries on g image after applying the transforma-
tion of MIFFD flow, (e) Deformed Grid, (f) Deformed Grid’s Flow, (g) Zoom on
deformed grid,(h) Zoom on deformed grid’s flow.

while in the case of the implicit FFD level set the flow consists only one term ;

∂

∂Φ
E(∆P,Φ) =

∂Etracking(∆P,Φ)

∂Φ

In practice, the proposed framework works in the following fashion. Given an
initial contour, the implicit level function is estimated in the lattice space. Then, in
parallel one updates the motion parameters of the process as well as deforming the
contour. To this end, an adaptive estimation of the regional descriptors is consi-
dered as well as frequent re-initializations of the lattice implicit function. Upon a
steady state solution, the lattice deformations as well as the object positions are
recovered in successive frames. Such positions are used to initialize the process in
the next couple of frames and the process is repeated until convergence.
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a) b)

c) d)

e) f)

g) h)

FIG. 6 – Player Sequence : Recovered Frames R007-R008 and R009-R010 :
(a) frame R007, (b) frame R008, (c) Object boundaries from previous recove-
red frames (Figure 1), (d) Object boundaries after applying the transformation of
MIFFD flow, (e) frame R009, (f) frame R010, (g) Object boundaries from Le-
vel Set propagation, (h) Object boundaries after applying the transformation of
MIFFD flow.

6 Discussion

In this paper we have presented a novel algorithm to optical flow estimation
and tracking. Our approach introduces the concept of joint motion estimation and
tracking in superimposed spaces of higher order polynomials like thin plane spline
level set. The selected representation of motion guarantees one-to-one correspon-
dences, smoothness on the deformation field and is of low complexity. Parallel
to that we address tracking through the recovery of explicit correspondences bet-
ween the object temporal positions in the level set space that is implicit, intrinsic
and parameter free. Promising results, as shown in Figure 2 and 3, demonstrate
the potentials of the proposed formulation that address in a simultaneous fashion
dense optical flow estimation and non-rigid tracking.

One can consider numerous extensions of the method. The use of FFD that
also encode the structure of the image is a prominent one. The grid that was consi-
dered to represent motion has a fixed topology and the motion of each image pixel
is reproduced using the same number of neighboring elements that are distributed
according to the same topology. One can consider modifying the grid dependen-
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cies and connections according to the image structure. In terms of tracking, the
case of multiple objects is to be addressed. Within the proposed framework one
can consider the one-to-one constraint on the correspondences and preserve topo-
logy or relax such a constraint to address topological changes from one image to
the next. Such a perspective is to be investigated. Last, but not least the use of a
3D deformation grid can be considered to account for motion decomposition in
layers.
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