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Abstract

The present report proposes a novel variational technique for the knowledge based
segmentation of two dimensional objects. One of the elements of our approach is
the use of higher order implicit polynomials to represent shapes. The most impor-
tant contribution is the estimation of uncertainties on the registered shapes, which
can be used with a variable bandwidth kernel-based non-parametric density es-
timation process to model prior knowledge about the object of interest. Such a
non-linear model with uncertainty measures is integrated with an adaptive visual-
driven data term that aim to separate the object of interest from the background.
Promising results obtained for the segmentation of the corpus callosum in MR
mid-sagittal brain slices demonstrate the potential of such a framework.

∗The author gratefully acknowledge Dr. Jean-Yves Audibert for fruitful discussion regarding
the probabilistic models and Olivier Juan for sharing his experience in gaussian mixture estimation
for region based segmentation.





Résumé

Nous introduisons dans ce rapport une nouvelle technique variationelle de seg-
mentation 2D avec ensemble d’apprentissage. Cette approche utilise une représentation
des formes à l’aide de polynomes implicites, mais la contribution la plus impor-
tante réside dans l’utilisation de mesures d’incertitudes pour décrire le recalage
des formes. Ces informations sont ensuite utilisées dans un estimateur de den-
sité par noyaux à matrice de covariance variable ; et permet de modéliser toutes
les informations a-priori sur l’objet à segmenter. Ce model de forme non linéaire
utilisant les incertitudes est utilisé avec un term image de segmentation basé sur
les histogrammes de l’objet et de l’arriere plan. Des résultats encourrageant sur
la segmentation du corps calleux dans les coupes sagittale du cerveau en IRM
montrent tout le potentiel de cette approche.
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1 Introduction
Over the last decade, shape-based segmentation methods have become more and
more common. First introduced in 1995, active shape models (ASM) and active
appearance models (AAM) [3] have been very popular tools for the segmentation
of anatomical structures in medical images [2, 5, 1, 10]. More recently, principal
component analysis (PCA) has also been applied to distance transforms for an
implicit representation of shapes [9]. Shape-based segmentation is usually equiv-
alent to recovering a geometric structure which is both highly probable in the
model space and well aligned with strong features in the image. The advantage
of the shape based methods over classical deformable templates [11] is that they
allow the deformation process to be constrained to remain within the space of al-
lowable shapes. These methods have proven to be a good compromise between
complexity and shape generalization. However, since modeling is performed after
registration, errors in the registration can be propagated into the model space. Fur-
thermore, the assumption of Gaussian shape models might be a little restrictive.

In this paper, shapes are represented implicitly using the distance transform.
To generate a model of the structure of interest, we register shape examples using
a spline based free form deformation. The main contribution of this paper is the
derivation of a measure representing the uncertainty of the registration at the zero
iso-surface. After dimensionality reduction, these measures are combined with a
variable bandwidth kernel-based approach to derive a density function that models
the family of shapes under consideration. Given a new image, the segmentation
process is expressed in a variational level set framework [14] where the energy
function makes use of the uncertainties of the registration between the deformed
shape which aligns to the image features and the model.

We apply our novel modeling and segmentation technique to the case of the
corpus callosum. The corpus callosum is a thick bundle of nerve fibers that con-
nect the left and right hemispheres in the brain. It is believed to be responsible
for balancing the load of learning tasks across each hemisphere, making each spe-
cialized in certain tasks. While not learning, it is responsible for routing most of
the communication between the two hemispheres. This is the reason why a sur-
gical procedure has been developed to cut the corpus callosum in patients with
severe epilepsy for which drug treatment is ineffective. In addition, several stud-
ies indicate that the size and shape of the corpus callosum is related to various
types of brain dysfunction such as dyslexia [4] or schizophrenia [6]. Therefore,
neurologists are interested in looking at the corpus callosum and analyzing its
shape. Magnetic resonance imaging (MRI) is a safe and non-invasive tool to im-
age the corpus callosum. Since manual delineation can be very time consuming,
we demonstrate how our algorithm can be used to segment the corpus callosum
on mid-sagittal MR slices.
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The remainder of this paper is organized as follows. In Section 2, we introduce
registration with uncertainties and probabilistic modeling to describe the corpus
callosum structure. The segmentation component combining data and shape terms
is described in Section 3. Experimental results are presented in Section 4. Finally,
conclusions and future directions are discussed in Section 5.

2 Shape Representation through Implicit Polynomi-
als

Let us consider a training set {C1, C2, ..., CN} of shapes representing the structure
of interest. The model building task consists of recovering a probabilistic repre-
sentation of this set. In order to remove all the pose variation from the training set,
all shapes have to be registered to a common pose with respect to an affine trans-
formation. Then a reference model CM is locally registered to every sample of the
training set Ci using implicit polynomials. We will first describe the registration
process and the calculation of uncertainties on the registered model. The uncer-
tainty measures represent the allowable range of variations in the deformations of
the model that still match Ci. Then we describe the way these uncertainties are
used in the estimation of probability density function of the deformations.

2.1 Registration through implicit polynomials

In the classical ASM the initial step is used to recover explicit correspondence
between the discretized contour of the model shape and the training examples. In
the present framework, the model shape is non rigidly registered to every sample
from the training, and the statistical shape model is actually built on the parameters
of the recovered transformation.

Shapes Ci are represented in an implicit fashion using the Euclidean distance
transform [9, 15] . In the 2D case, we consider the function defined on the image
domain Ω :

φCi
(x) =


0, x ∈ Ci

+D(x, Ci), x ∈ RCi

−D(x, Ci), x 6∈ RCi

where RCi
is the region enclosed by Ci. Such a space is invariant to translation,

rotation and can also be modified to account for scale variations. This repre-
sentation has already been used along with simple criteria like sum of squared
differences to address similarity registration [15] or mutual information for affine
transformations [7].
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The retained framework for density estimation does not put any constraint on
the reference model used for registration. In practice we choose a shape charac-
teristic of the object to segment. Without loss of generality, we can choose for
CM a smoothed version of C1. All contours of the training set are now regis-
tered to CM with respect to an affine transform and from now on, we will denote
{C1, C2, ..., CN} as the globally registered training set.

Local registration is crucial to model building. To this end one would like
to recover an invertible transformation (diffeomorphism) LΘi

parameterized by a
vector Θi that creates a one to one mapping between each contour of the training
set Ci and the model CM:

LΘi
: R2 → R2 and LΘi

(CM) ≈ Ci

When LΘ is chosen as a 2D polynomial with coefficients Θ in an appropriate
basis, the expression φ ◦ LΘ inherits the invariance properties of implicit poly-
nomials, i.e. linear transformations applied to Θ are related to linear transforma-
tions applied to the data space. In the present paper, we used a simple polynomial
warping technique to address the demand of local registration: the free form de-
formations method (FFD) [16]. The essence of FFD is to deform an object by
manipulating a regular control lattice overlaid on its embedding space. We use a
cubic B-spline FFD to model the local transformation L. Consider the M × N
square lattice of points, [{P0

m,n}; (m, n) ∈ [1; M ]× [1; N ]]. In this case the vector
of parameters Θ defining the transformation L is the displacement coordinates of
the control lattice. Θ has size 2MN :

Θ = {δPx
m,n, δP

y
m,n}; (m, n) ∈ [1; M ]× [1; N ]

The motion of a pixel x given the deformation of the control lattice, is defined
in terms of a tensor product of Cubic B-splines [17]. As FFD is linear in the
parameter Θ = δP, it can be expressed in a compact form by introducing X (x) a
[2× 2MN ] matrix:

L(Θ;x) =
∑ ∑

Bi(u)Bj(v)(P0
i,j + δPi,j) = x + X (x)Θ

where (u, v) are the coordinates of x, and (Bi, Bj) the cubic B-spline basis func-
tions.

Local registration now is equivalent to finding the best lattice configuration
such that the overlaid structures coincide. Since structures correspond to distance
transforms of globally aligned shapes, the sum of squared differences (SSD) can
be considered as the data-driven term to recover the deformation field L(Θ;x)
between the element Ci of the training set and the model CM (corresponding
respectively to the distance transform φi and φM)

Edata(Θ) =

∫∫
Ω

χα(φi(x)) [φi(L(Θ;x))− φM(x)]2 dx (1)
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with χα(φi(x)) being an indicator function that defines a band of width α around
the contour. In order to further preserve the regularity of the recovered registra-
tion, one can consider an additional smoothness term on the deformation field δL.
We consider a computationally efficient smoothness term :

Esmooth(Θ) =

∫∫
Ω

(
|Lxx(Θ;x)|2 + 2 |Lxy(Θ;x)|2 + |Lyy(Θ;x)|2

)
dx.

The data-driven term and the smoothness constraint component can now be inte-
grated to recover the local deformation component through the calculus of varia-
tions. We denote as Θi the reached minimum.

However, one can claim that the local deformation field is not sufficient to
characterize the registration between two shapes. Data is often corrupted by noise
so that the registration retrieved using a deformable model may be imprecise.
Therefore, recovering uncertainty measurements [8] that do allow the characteri-
zation of an allowable range of variation for the registration process is an eminent
condition of accurate shape modeling.

2.2 Uncertainty estimation on registered shapes
We aim to recover uncertainties on the vector Θ in the form of a [2MN × 2MN ]
covariance matrix by adapting a method initially introduced in [18]. We are con-
sidering the quality of the local registration on shapes, that is the zero levelset of
the distance transform. Therefore, Edata is formulated in the limit case where α
the size of the limited band around the model shape tends to 0. The data term of
the energy function (1) can now be expressed as:

Edata(Θ) =

∮
CM

φ2
i (L(Θ;x))dx =

∮
CM

φ2
i (x

′)dx,

where we denote x′ = L(Θi;x). Let us consider q to be the closest point from
x′ located on Ci. As φi is assumed to be a Euclidean distance transform, it also
satisfies the condition ‖∇φi(x

′)‖ = 1. Therefore one can express the values of φi

at the first order in the neighborhood of x′ in the following manner :

φi(x
′ + δx′) = φi(x

′) + δx′ · ∇φi(x
′) + ◦(δx′)

= (x′ + δx′ − q) · ∇φi(x
′) + ◦(δx′)

This local expression of φi with a dot product reflects the condition that a point
to curve distance was adopted. Under the assumption that Edata is small when
reaching the optimum, we can write the classical second order approximation of
quadratic energy in the form:

Edata(Θ) =

∮
CM

[(x′ − q) · ∇φi(x
′)]

2
=

∮
CM

[(x + X (x)Θ− q) · ∇φi(x
′)]

2
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Figure 1: Implicit higher order polynomials and registration of corpus callosum
with uncertainty estimates (this figure should be seen in color).

Localizing the global minimum of an objective function E is equivalent to
finding the major mode of a random variable with density exp(−E/β). The co-
efficient β corresponds to the allowable variation in the energy value around the
minimum. In the present case of a quadratic energy (and therefore Gaussian ran-
dom variable), the covariance and the Hessian of the energy are directly related
by Σ−1

Θi
= HΘi

/β. This leads to the following expression for the covariance :

Σ−1
Θi

=
1

β

∮
CM

X (x)T .∇φi(x
′).∇φi(x

′)T .X (x)dx

In the most general case one can claim that the matrix HΘ is not invertible be-
cause the registration problem is under-constrained. Then, additional constraints
have to be introduced towards the estimation of the covariance matrix of Θi

through the use of an arbitrarily small positive parameter γ :

E(Θ) =
∮
CM

[
(x + X (x)Θ− q) · ∇φi(x′)

]2
dx + γ ΘTΘ

This leads to the covariance matrix for the parameter estimate :

ΣΘi = β

(∮
CM

X (x)T .∇φi(x′)∇φi(x′)TX (x)dx + γI
)−1

(2)

2.3 Hybrid kernel based density function and kernel selection
Now that all shapes of the training set have been aligned, standard statistical tech-
niques like PCA or ICA could be applied to recover linear Gaussian models. But
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in the most general case shapes that refer to objects of particular interest vary non-
linearly and therefore the assumption of simple parametric models likes Gaussian
is rather unrealistic. Therefore within our approach we propose a non-parametric
form of the probability density function.

Let {Θ1...ΘN} be the N vectors of parameters associated with the registra-
tion of the N sample of the training set. Considering that this set of vectors is a
random sample drawn from the density function f describing the shapes, the fixed
bandwidth kernel density estimator consists of:

f̂(Θ) =
1

N

N∑
i=1

1

‖H‖1/2
K

(
H−1/2(Θ−Θi)

)
where H is a symmetric definite positive (bandwidth matrix) and K denote the
centered Gaussian kernel with identity covariance. Fixed bandwidth approaches
often produce under-smoothing in areas with sparse observations and over-smoothing
in the opposite case.

Kernels of variable bandwidth can be used to encode such a condition and
provide a structured way for utilizing the variable uncertainties associated with
the sample points. In the literature, kernel density estimation methods that do
rely on varying bandwidths are generally referred to as adaptive kernels. Density
estimation is performed with kernels whose bandwidth adapts to the sparseness of
the data [19].

In the present case, the vectors {Θi} come along with associated uncertainties
{Σi}. Furthermore, the point Θ where the density function is evaluated corre-
sponds to a deformed model, and therefore is also associated to a measure of un-
certainty Σ. In order to account for the uncertainty estimates both on the sample
points themselves as well as on the estimation point, we adopt a hybrid estimator
[12].

f̂H(Θ,Σ) =
1
N

N∑
i=1

K(Θ,Σ,Θi,Σi)

=
1
N

N∑
i=1

1
‖H(ΣΘ,ΣΘi)‖1/2

K(H(ΣΘ,ΣΘi)
−1/2(Θ−Θi)

where we choose for the bandwidth function: H(ΣΘ, ΣΘi
) = ΣΘ + ΣΘi

as
proposed in [12]. Using this estimator, the density decreases more slowly in di-
rections of large uncertainties when compared to the other directions.

This metric can now be used to assess the probability of a new sample being
part of the training set and account for the non-parametric form of the observed
density. However, the computation is time consuming because it leads to the
calculation of large matrix inverses. Since the cost is linear in the number of
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Figure 2: Histograms of the corpus callosum and the background area. The of
a use gaussian mixture to model the corpus callosum and background intensity
distribution in MR is appropriate (this figure should be seen in color).

samples in the training set, there is an eminent need to decrease its cardinality by
selecting the most representative kernels.

The maximum likelihood criterion expresses the quality of approximation
from the model to the data. We use a recursive sub-optimal algorithm to select
kernels and therefore build a compact model that maximizes the likelihood of the
whole training set.

Consider a set ZK = {X1, X2, . . . , XK} of K kernels extracted from the train-
ing set with mean and uncertainties estimates {Xi = (ΘiΣi)}K

i=1. The log likeli-
hood of the entire training set according to this model is:

CK =
N∑

i=1

log

 1
K

∑
(Θj ,σj)∈ZK

K(Θj ,Σi,Θi,Σi)


A new kernel XK+1 is extracted from the training set as the one maximizing

the quantity CK+1 associated with ZK+1 = ZK

⋃
XK+1. The same kernel may be

chosen several times in order to preserve a increasing sequence CK . Consequently
the selected kernels Xi in ZK are also associated with a weight factor wi. Once
such a selection has been completed, the hybrid estimator is evaluated over ZK :

f̂H(Θ, Σ) =
1

N

∑
(Θi,σi,wi)∈ZK

wiK(Θ, Σ,Θi, Σi) (3)

3 Shape based Segmentation applied to the Corpus
Callosum

Let us consider an image I where the corpus callosum structure is present and is
to be recovered. Recall that we now have a model of the corpus callosum: a shape
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that can be transformed using an affine transformation and a FFD, and a measure
of how well the deformed shape belongs to the family of trained shapes.

Let φM be the distance transform of the reference model. Segmentation con-
sists of globally and locally deforming φM towards delineating the corpus cal-
losum in I. Let A be an affine transformation of the model and L(Θ) its local
deformation using FFD as previously introduced.

For now, we assume that the visual properties of the corpus callosum πcor() as
well as the ones of the local surrounding area πbck() are known. Then segmen-
tation of the corpus callosum is equivalent to the minimization of the following
energy with respect to the parameters Θ and A:

Eimage(A,Θ) = −
∫∫

RM
log [πcor (I (A(L(Θ;x)))] dx

−
∫∫

Ω−RM
log [πbkg (I (A(L(Θ;x)))] dx

where RM denotes the inside of CM. However, the direct calculation of vari-
ations involves image gradient and often converges to erroneous solutions due to
the discretization of the model domain. In that case, we change the integration
domain to the image by implicitly introducing the inverse transformation (see Ap-
pendix). A bimodal partition in the image space is now to be recovered. The
definition of this domain Rcor depends upon the parameters of the transformation
[A,Θ] as :

Rcor = A(L(Θ,RM)) and y = A(L(Θ,x))

The actual image term of the energy to be minimized then becomes:

Eimage(A,Θ) =−
∫∫

Rcor

log [πcor (I (y))] dy

−
∫∫

Ω−Rcor

log [πbkg (I (y))] dy
(4)

where statistical independence is considered at the pixel as well as hypotheses
level. In practice the distributions of the corpus callosum as well as the ones
of the surrounding region [πcor, πbkg] can be recovered in an incremental fashion
using the Mumford-Shah principle [13]. In the present case, each distribution
is estimated by fitting a mixture of Gaussians to the image histogram using an
Expectation-Maximization algorithm (Fig. 2).

The shape based energy term, making use of the non parametric framework
introduced earlier is also locally influenced by a covariance matrix of uncertainty
calculated on the transformed model. This covariance matrix is computed in a
fashion similar to (2) with the difference that it may only account for the linear
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(a) (b) (c)

Figure 3: Segmentation with uncertainties estimates of the corpus callosum; (a)
Automatic rough positioning of the model, (b) segmentation through affine trans-
formation of the model (c) segmentation using the local deformation of the FFD
grid and uncertainties estimates on the registration/segmentation process (this fig-
ure should be seen in color).

structure of the transformed model and therefore allow variations of Θ that creates
tangential displacements of the contour:

Σ−1
Θ =

1

β

∮
CM

X (x)T∇φ̃M(x′)∇φ̃M(x′)TX (x)dx

where φ̃M is the transformation of φM under the deformation A(L(Θ)). Direct
computation leads to:

∇φ̃M(x′) = com

[
d

dx
(L(Θ,x))

]
.∇φM(x)

where ‘com’ denotes the matrix of cofactors. Then we introduce the shape based
energy term using the same notations as in (3) as:

Eshape(Θ, ΣΘ) = −log(f̂H(Θ, Σ))

The global energy is minimized with respect to the parameters ofA and Θ through
the computation of variations on E = Eimage + Eshape and implemented using a
standard gradient descent.

4 Experimental Results
We have applied our method to the segmentation of the corpus callosum in MR
mid-sagittal brain slices.



10 CERTIS R.R. 05-10

The first step was to build a model of the corpus callosum. Minimization
of the registration energy is performed using gradient descent. In parallel, we
successively refine the size of the band α around the contour (from .3 to .05 times
the size of the shape), while we increase the complexity of the diffeomorphism
(from an affine transformation to an FFD with a regular [7× 12] lattice).

Fig. 1 shows examples of FFD deformations along with uncertainty ellipses.
These ellipses are the representation of the 2D conic obtained when projecting the
covariance matrix ΣΘ (of size 168× 168) on the control points. It therefore does
not allow us to represent the correlations between control points.

The segmentation process is initialized by positioning the initial contour ac-
cording to the method proposed in [10]. Energy minimization is performed through
gradient descent, while the PDF πcor and πbkg are estimated by mixtures of Gaus-
sians. Fig. 2 shows the histogram of a typical image of the corpus callosum. The
figure illustrates how well mixtures of two Gaussian distributions can represent
the individual histograms for the corpus callosum and the background, respec-
tively. Segmentation results are presented in (Fig. 3 and Fig. 4) along with the
associated uncertainties. In Fig. 3, we demonstrate the individual steps of the
segmentation process: the left most image shows the automatic initialization of
the contour, the middle image shows the contour after the affine transformation
has been recovered, and the right image shows the local deformations. Fig. 4
shows additional results and illustrates that our method can handle a wide variety
of shapes for the corpus callosum as well as large variations in image contrast.
It can be seen that the results in the bottom left image is not perfect. In general,
failures may be due to the fact that the shape constraint is not strong enough and
the contrast in the image dominates the deformation. Also, it might be that the
shape of this particular corpus callosum cannot be captured with the current PDF
because it has been reduced to only 10 kernels.

5 Conclusions
In this paper we have introduced a novel method to account for prior knowledge
in the segmentation process using non-parametric variable bandwidth kernels that
are able to account for errors in the registration and the segmentation process.
We have shown that the method can generate a very good model of the object of
interest and produce very good segmentation results.

However the method of kernel selection presented in Section 3 has shown
some limitation in practice. Therefore there is a strong need to build more effi-
cient and compact estimators of the shape variation PDF which account for these
uncertainty measures. It is also important to note that this method can be ex-
tended to higher dimensions. Building models in 3D and segmenting objects of
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Figure 4: Additional segmentation results with uncertainty measures.

large variability is the next step of our research work.
The covariance matrices of uncertainty ΣΘ are very sparse. Indeed, while us-

ing regular FFD, the influence of every grid point is local and therefore many cross
correlation coefficients are null. Different types of B-spline deformations using an
irregular positioning of control points (but dependent on the model) will be tried
to address this issue and therefore reduce the dimensionality of the problem.

Last, but not least, introduction of uncertainties directly measured in the image
as part of the segmentation process will provide local measures of confidence
and could be considered as a major breakthrough in the area of knowledge-based
object extraction.

Appendix

In this section we give some further exploration of the calculus of the derivative
on the energy term Eimage. We need first to introduce the Heaviside distribution
which we note H and the inverse diffeomorphism of A ◦ L(Θ) which we note
G(Θ). This diffeomorphism therefore verifies:

A(L(Θ,G(Θ,y))) = y (5)

For simpler notation purpose we also pose:

D(x,y) = −H(φM(x))log(πcor(I(y)))− (1−H(φM(x)))log(πbkg(I(y)))

Then the image term of the energy (eq. 4) can be rewritten as:

Eimage(Θ) =

∫
Ω

D(G(Θ,y),y)dy
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When differentiating Eq. (5) with respect to Θ and substituting the expression
obtained for dG/dΘ into the expression of dEimage(Θ)/dΘ, we get the following:

dEimage(Θ)
dΘ

=

−
∫

Ω

∂D

∂xT
(G(Θ,y),y)

[
∂(A ◦ L)

∂xT
(G(Θ,y),Θ)

]−1 ∂(A ◦ L)
∂ΘT

(G(Θ,y),Θ)dy

Now changing the integration variable according to the diffeomorphism x =
G(Θ,y)

dEimage(Θ)
dΘ

= −
∫

Ω

∂D

∂xT
(x,A(L(Θ,x)))com

(
∂(A ◦ L)

∂xT
(x,Θ)

)T ∂(A ◦ L)
∂ΘT

(x,Θ)dx

where ‘com’ denotes the matrix of cofactors. When calculating explicitly the par-
tial derivative of D with respect to its first variable, this integral further simplifies
into a curve integral along the reference model:

dEimage(Θ)
dΘ

=

−
∮

CM

D̃(A(L(Θ,x)))
[
com

(
∂(A ◦ L)

∂xT
(x,Θ)

)
.∇φM(x)

]T ∂(A ◦ L)
∂ΘT

(x,Θ)dx

with D̃ defined as:

D̃(y) = − log(πcor(I(y))) + log(πbkg(I(y)))

This expression of the derivative refers only to the contour in the model space.
Therefore there is no need to parse the entire image domain at every iteration
of the gradient descent used in our implementation. Instead, we only scan the
model contour at every iterations. Parsing of the images is only necessary when
we reevaluate the parameters of the gaussian mixtures for πcor and πbkg (every 20
iteration).
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